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Abstract—Bad weather conditions such as heavy rain, black ice
and fog can have a significant impact on road safety. Currently ve-
hicle safety technologies such as the electronic stability program
work reactive to hazardous situations. In this paper, we propose
the use of crowd-sourced vehicle data to improve road-weather
models and provide real-time local warnings for weather-related
hazards. We present our initial results from a field test where
we used vehicle CAN-bus data and low cost external sensors to
observe local weather phenomena. The CAN-bus contains, among
others, data on vehicle dynamics such as wheel speeds. Our
approach is to isolate anomalies within these signals. Our initial
research suggests some anomalies are weather related and can
be used to describe local weather phenomena. Furthermore, the
externally installed sensors provide more information on which
we can build our assumptions. The results show that the gathered
measurements are consistent with the reliable observations from
road weather stations.

Index Terms—Anomaly Detection, Vehicle Data, Can-Bus,
Road Safety, Road Weather Conditions, Road Weather Models

I. INTRODUCTION

Studies have shown that the type and intensity of road

weather has a significant impact on the accident risk [1].

Factors such as heavy rain, snow, strong winds and limited

visibility are challenging for drivers. Dedicated road weather

models allow us to predict dangerous these road conditions.

However, they typically depend on observations from conven-

tional road weather stations, which are not available at the

fine spatio-temporal scale needed to provide localized, real-

time warnings. As a result, uncertainties in the forecast of

environmental conditions can still pose a significant risk to

driver safety. Advanced driver assistance technologies such

as stability control, anti-lock brakes, on the other hand, are

standard options in vehicles and can respond to local hazards.

However, these applications are limited in their use as they

work reactive to sensor measurements. Only when a hazardous

situation is measured the technology can react to stabilize the

vehicle. Hence, there is still much room for improvement.

Proactive safety measures such as real-time local warnings

could prevent such hazardous situations altogether. Early warn-

ings for dangerous conditions such as heavy precipitation and

fog, would allow the driver to anticipate and adjust their

driving behavior, and aid road authorities with providing safer

road management. Improving the resolution and accuracy of

models and observations is a crucial step towards such a real-

time, location-based warning systems. Fortunately, the rise

of connected vehicles and their advanced sensing capabilities

provide us with an opportunity to address this issue. The

connected car market was worth $13 billion in 2012 [2],

$42.6 billion in 2019 and is expected to be worth $212.7

billion by 2027 [3]. When equipped with road-weather sensing

capabilities, connected cars could provide us with with the

dense observation network needed for real-time, local weather

warnings.

For this purpose, a heterogeneous group of industrial stake-

holders and researchers consisting of more than 30 part-

ners from seven countries (Belgium, France, Portugal, Ro-

mania, Spain, Turkey and South Korea) initiated the Real-

time location-aware road weather services composed from

multi-modal data (SARWS) project[4]. The goal of SARWS

is to provide real-time weather services by expanding the

local data collection mechanisms from traditional data sources

towards large-scale vehicle fleets. The Belgian consortium

consists of Verhaert New Products & Services, Be-Mobile,

Inuits, bpost, imec - IDLab (University of Antwerp) and the

Royal Meteorological Institute of Belgium (RMI). Within this

consortium, the aim is to use crowd-sourced vehicle data to

enable real-time warning services for local weather phenom-

ena and dangerous road conditions that surpass the accuracy

and timeliness of current warning systems. In addition, these

observations will be used to enhance and validate weather

prediction models. Local weather data is gathered from the

vehicle’s Controller Area Network (CAN). The CAN-bus is

used by the various Electronic Control Units controlling the

vehicle to send sensor and system parameters to each other.

From this data, more specifically from parameters related

to vehicle dynamics, we can extract valuable road-weather

information. For example, wheel speed data and data from the

electronic stability program can indicate wheel slip. Changes

in braking distance, on the other hand, can provide information

on road surface wetness. This data is extended with additional

sensor data (e.g., temperature, humidity) and sent to a cloud

back-end using a data distribution framework. The collected
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data is then used for: (i) time-series data analysis on CAN-

data for the detection of weather-related anomalous vehicle

behaviour; (ii) validating and improving the accuracy of

weather and road weather models by using the high resolution,

real-time vehicle data as input for the models, and (iii) real-

time weather services that warn drivers and other stakeholders

(e.g. road authorities) about dangerous road conditions. The

primary targeted weather conditions in the SARWS project are

visibility (e.g. fog), local air and road surface temperature, and

road surface condition (slipperiness, aquaplaning, snow, black

ice), with a possible extension to precipitation (intensity, type)

and wind gusts (crosswind in particular).

In this paper, we discuss the results of our first field test,

assess the feasibility of extracting road weather conditions

from vehicle data and analyze the reliability of low-cost,

crowd-sourced sensor data. In Section II, we discuss the state

of the art in road-weather assessment using mobile platforms.

Section III discusses the proposed architecture of our solution.

In Section IV, we elaborate on our field test setup and discuss

the results of our measurement campaign and in section V we

present our conclusions.

II. RELATED WORK

The related work on road weather detection can be divided

in two categories: (1) detection and analysis of weather-related

vehicle dynamics, where we focus on extraction of anomalous

behavior from CAN-data, and (2) improving existing weather

models by ingesting crowd-sourced data.

A. Weather dependent Vehicle dynamics

Currently, detection of road conditions relies on a sparse

network of road weather stations, combined with road weather

models to fill in the gaps. The use of a vehicle fleet could

significantly increase the density of observations, enabling

improved models and real-time warnings for dangerous condi-

tions. In this research, we focus specifically on road-weather-

related vehicle behavior. The primary indicator of road-

weather conditions is tire friction. Sudden changes in wheel

speed, indicate a change in friction, which may be caused by

dangerous, weather-related road conditions. Extracting road-

weather information from this data, however, is challenging

as there are many other variables, such as tire pressure, road

surface condition, vehicle weight and acceleration, that influ-

ence the friction between vehicle and road. Hence, changes in

wheel speed can also reflect numerous other anomalies that

are not related to road-weather conditions. A railway crossing

segment, for example, may wrongly be classified as glazed

segment because of the inherent low friction between rubber

tires and the metal rail. Eriksson et al. conclude that the

presence of road-specific anomalies such as railway crossings

or cobblestone pavements must be filtered out because unrep-

resentative samples may introduce biased results [5]. The road

segment metadata needed for this filter operation is available

in Geographic Information System (GIS) databases [6]. In

addition, dependencies between features and vehicle speed can

be problematic towards classification of the road condition.

Perttunen et al. describe how these linear dependencies can be

removed [7]. Finally, it is necessary to have sufficient insight in

the interaction between the vehicle and the environment. To

investigate this relation, simulation can be used. Simulation

models of vehicle dynamics can help to identify the necessary

parameters related to weather phenomena. Most models are

created to evaluate the performance of the vehicle under

different conditions. Li et al. highlight the importance of the

road-tire friction coefficient [8]. This parameter is affected by

road conditions, so changing this parameter on a calibrated

model can provide valuable information on vehicle dynamics

under different road-weather conditions. Once anomalies are

detected, there is still the challenge of classifying (or even

quantifying) them to provide insight in the local weather

conditions. A first challenge lies in distinguishing weather-

related events (e.g., aquaplaning) from anomalies from other

sources such as poor road conditions (e.g., potholes). An added

challenge, is classifying the weather-related events themselves,

for example distinguishing between aquaplaning and sleet.

Furthermore, classification of time series data, still poses a sig-

nificant challenge, especially when considering multi-variate

signals. Fawaz et al. provide an in depth review of possible su-

pervised and unsupervised deep learning approaches to tackle

time-series classification [9]. In summary, a combination of

advances in anomaly detection, filtering and classification is

needed to accurately extract road weather conditions from

vehicle data.

B. Improved Weather Models and Real Time Warning Systems

Two types of models are considered in our use case: numeri-

cal weather prediction (NWP) models, which use mathematical

models of the atmosphere to predict the weather based on

current weather conditions, and road weather models (RWM),

which are used to specifically forecast road weather related

parameters, such as road surface condition and temperature.

Physical models ([10], [11], [12]) typically make use of

radiative balance equations at the road surface, while other

models use a statistical approach [13].

RWMs use meteorological input from nowcasting and NWP

models, and recent local observations from Road Weather

Stations (RWS) can be used to improve the forecasts [11].

NWP models also benefit from the best possible estimate of

the initial state of the atmosphere, using various techniques

to incorporate recent meteorological observations through a

process know as data assimilation [14]. Data assimilation

already makes use of a great variety of different data sources

such as observations from airplanes, ships and soundings.

RMI’s operational NWP model Alaro ([15], [16]) is currently

run at a resolution of 4km, and is being validated at a

higher resolution of 1.3km. Current NWP models still have

difficulties reproducing very local weather phenomena, even

at their highest resolutions. To provide real-time warnings for

drivers, high resolution mobile weather observations have a lot

of potential value, especially in weather situations with sharp

discontinuities, for example the boundary between rain and

snow, and local fog or severe precipitation events [17]. Various
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national meteorological services are investigating the use of

crowd-sourced data and vehicle observations in particular [18].

The use of real-time vehicle data for data assimilation could

lead to improvements in NWP forecasts, but only if sufficient

quality can be guaranteed. For example, effects such as the

impact of the vehicle speed on the observed air temperature

should be properly quantified [18]. Quality control measures

are an important aspect of the ongoing research within the

SARWS project.

There is also ongoing research to improve dedicated RWMs.

The Finnish Meteorological Institute (FMI) showed that cor-

recting RWM output with real-time data from a commuter bus

produced lower errors during a 22-day test [19]. More recently,

mobile car data were included in the FMI’s RWM during the

winter of 2017-2018 and it was shown that this is an effective

way of improving the performance in case of a sparse RWS

network [20]. The results did not show any clear improvement

when considering a dense RWS network, but the added value

of mobile data is yet to be examined on itineraries with large

variations of elevation, where it is expected to be greater, as

well as during other seasons with higher daily variations of

temperature [20]. In Austria, case studies combining RWS ob-

servations and the nowcasting system INCA were successfully

conducted and resulted in minimal forecast errors with respect

to road temperature observations [13]. The German weather

office (DWD) also conducts tests in the frame of their project

FloWKar to include car data into their weather nowcasting

system [21]. The fact that mobile and RWS weather data have

different reliability and accuracy, can be taken into account

through calibration methods [22]. Finally, it was shown in

[23] that air temperature observations from car sensors have

utility for improving thermal mapping, which also aids road

temperature forecasting.

With large-scale deployment in mind, the primary challenge

is to achieve similar results using vehicle CAN-data and a

limited set of broadly applicable low-cost sensors, such as

humidity and temperature sensors. In addition to advances

in NWP modelling, we expect that incorporation of real-time

vehicle data will lead to improvements in state-of-the-art road

weather services.

III. SARWS PROPOSED ARCHITECTURE

Figure 1 schematically presents the general use case of the

Belgian consortium with the data flows for the SARWS frame-

work. Weather related data is gathered from connected bpost

vehicles and sent to Inuits’ data broker. In case of connection

loss, data is temporarily buffered in the vehicle and transmitted

once connectivity is restored. This data can be event-data (e.g.,

change in wiper speed, fog light enabled), sensor data from

the on-board unit (e.g., temperature, humidity, camera data)

or (partially) processed vehicle data (e.g., wheel speeds). The

broker distributes this data towards imec’s backend, to further

analyse the vehicular behavior, and to Be-Mobile’s mobility

platform, where the data is processed and aggregated into

maps. These maps are sent to RMI to improve and validate

their NWP and RWM models. RMI, in turn, provides local

Fig. 1. Proposed architecture for the SARWS use case of the Belgian
consortium.

road weather data (road segment level) to Be-Mobile to enable

its real-time warning system. This data, represented at the grid

level, is also sent to imec’s backend to train and validate the

machine learning algorithms on vehicular data. In a final step,

Be-Mobile sends real-time road-weather warnings to 3rd party

stakeholders, such as drivers and road authorities. During the

project up to 30 vehicles of the bpost fleet will be used for

validation. A smartphone interface allows to collect feedback

from the drivers for validation. After the project, the goal is to

deploy the platform on all 6500 bpost vehicles and additional

3rd party fleets.

IV. RESULTS

A. Test Setup

On 19 June 2019 a field test was conducted by the Belgian

SARWS consortium with a convoy of three vehicles. A bpost

Fiat Ducato postal van and a Citroen Grand C4 Picasso were

equipped with an on-board unit (OBU) developed by Verhaert,

communicating with the data distribution platform of project

partner Inuits. This OBU records the GPS location with a

GPS dongle fixed to the windscreen. The outside temperature

and humidity were recorded by a sensor located at the air

inlet under the hood. These parameters were sent through the

SARWS platform for validation of the data pipeline. Towards

validation, the weather during the test campaign was also

recorded using a dash cam. The third vehicle, imec’s BMW

X5 test vehicle, was equipped with CAN logging setup and an

accurate Septentrio GPS-system. The BMW was not connected

to the SARWS cloud platform, but instead performed the

logging of CAN-data offline.

The day of the field test was selected based on RMI’s

prediction for severe precipitation and thunderstorms arising

from summer convection. The prepared trajectory, with a total

length of 140.5 km, passed several weather stations, including

dedicated RWS, which can be used for reference, validation

and calibration of the registered sensor data. The route and an

illustration of the heavy thunderstorm cells on the day of the

field test are shown in Figure 2.

Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on July 09,2020 at 12:50:18 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b)

Fig. 2. (a) The field test trajectory (blue) in and around Antwerp, with the location of the weather stations close to the trajectory. Orange markers indicate
RWS operated by the Flemish road management agency (AWV). Green markers are other reference stations. (b) A snapshot of the weather radar imagery on
the day of the field test (15:45 UTC). Red zones indicate thunderstorm cells with severe precipitation intensities.

Fig. 3. Air temperature (black) and relative humidity (red) as measured by the
bpost van. In purple and blue, respectively the 2 m-temperature and relative
humidity as reported from 3 RWS when the car is closest in space and time.
This reveals that the vehicle’s measurements are consistent with the reliable
RWS measurements with relatively small deviations.

B. Vehicle Data Analysis

1) External Sensor Analysis: The measurements of air

temperature (T2M), relative humidity (RH) and wipers status

are plotted together with classic observations from the RWS

or radar when relevant for consistency checking. The mea-

surements of T2M and RH from the Citroen car have been

discarded due to sensor biases induced by the vicinity of the

engine block. The time is always expressed as UTC.

In Fig. 3, the air temperature as measured by the bpost van is

consistent with the RWS observations. A sudden temperature

drop is observed around 4 pm, associated with the onset of

Fig. 4. Air temperature as reported by the bpost van (colored line) together
with RWS observations (colored circles).

heavy precipitation as derived from the radar imagery. The

relative humidity evolution is also shown for the same car.

These car observations are also relatively close to the RWS

data. Consistent with the temperature observations, a quick

humidity increase occurred around 4 pm.

Since weather parameters vary in both time and space, a 2D-

map of both temperature and relative humidity from the bpost

van are shown in Fig. 4 and Fig. 5 respectively. The RWS

measurements at the closest time of car passage, shown as

colored circles, show once again the good consistency between

mobile and static data. However, some issues remain to be

addressed, such as the absence of data transmission in the

central region of the domain.
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Fig. 5. Relative humidity as reported by the bpost van (colored line) together
with RWS observations (colored circles).

Fig. 6. Wiper status from the BMW car (black) and Quantitative Precipitation
Estimate (red) from analysis of radar images.

2) CAN-bus Data Analysis: We now discuss the first results

from analysing the CAN-bus data of the BWM X5. We

analysed the wiper status data and performed a preliminary

anomaly analysis of the wheel speeds to show that CAN data

can be correlated to road weather conditions.

The wiper data collected for the BMW during the field test

is shown in Fig. 6 together with a detailed estimate of the

precipitation amount given by RMI’s quantitative precipitation

estimation (QPE) product [24]. The wipers status are given

by discrete value codes. Separate codes for back/front and

automatic/single mode are used, and are shown as dashed

lines. For the QPE, we used a composite product made

from four meteorological radars combined with gauge data,

interpolated to GPS coordinates of the car. This product has a

time resolution of 5 minutes. Around 4 pm, the wiper status

changed from “No use” to “Back-on” and “Front-auto”, which

can be sensibly interpreted as occurrence of a precipitation

event. This is consistent with the QPE, temperature drop,

relative humidity increase, radar images, and video of the

event.
In Fig. 7 the difference in wheel speeds between the rear-

wheels is presented versus the difference at the front-wheels

for the whole test drive. These are distributed around a straight

line corresponding to equal differences. Furthermore, some

outliers are observed that deviate from this line. These outliers

or anomalies can be identified by considering the distance d
between the point and the line of equal differences (see Fig.

7) which we interpret as an anomaly score.

Fig. 7. Difference in wheel speeds (in km/h) at the front axle (v1−v2) vs the
difference at the rear-axle (v3 − v4). The differences are distributed around
the line corresponding to equal differences, i.e. v1 − v2 = v3 − v4 (black
solid line). The distance d between the points and the line (dashed line) can
be interpreted as an anomaly score to detect the outliers.

These outliers correspond to an anomalous behavior of the

relative wheel speeds which is typically related to slip behavior

of the vehicle where one or more wheels lose their grip. In

Fig. 8 the four wheel speeds are presented as a function of

the time for two outliers. In the upper figure the left wheel

at the back slips, which is then corrected by the electronic

stability program (ESP) (the BMW has four-wheel drive). In

the lower figure we see this behavior for the two left wheels.

Note that only the lower figure was recorded after it started

raining around 16:00. The first anomaly was not weather-

related, further investigation of the anomaly showed that the

acceleration of the wheel before slippage reached around 4.4

m/s2. This acceleration is close to the maximum acceleration

on a dry surface for the BMW X5 which indicates that the

anomaly originated from a high acceleration. This reveals

that further clustering of the anomalies is needed for a better

distinction of the weather-related anomalies.
To validate that the anomaly score is correlated with road

condition we consider two separate hours of the test-drive: one

from 14:00 to 15:00 before it started raining and the road was

dry and one from 16:15 to 17:15 when it was raining and the

road was wet. Each hour is split in samples of one minute

that are scored with the highest anomaly score of that minute.

Predicting the 50% samples with the highest scores as being

on wet road results in an accuracy of 65%. We note that since
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Fig. 8. Four wheel speeds for two detected anomalies where one or more
wheels starts slipping, which is corrected by the electronic stability program.

we only have data from a single drive there might also be other

factors that distinguish the two hours (such as differences in

road conditions that are not related to the weather or driver

behaviour).

This preliminary anomaly analysis of the CAN-bus data

indicates a correlation between the CAN data and the road

condition, but more data is needed to perform a proper valida-

tion. The detected anomalies could also be due to non-weather

related phenomena such as driver behavior, potholes, speed

bumps, etc.. Next steps in this research involve clustering

of the detected anomaly to distinguish between non-weather

related anomaly and weather related anomaly. To detect other

types of anomalies and other weather related events more

advanced techniques are needed to take into account additional

CAN-bus parameters and the temporal correlations between

different parameters.

V. CONCLUSIONS AND FURTHER WORK

These first results have shown that car measurements of

both temperature and relative humidity are consistent with

the reliable observations from the RWS, provided the car

sensors are located far from the engine block. These direct

observations are also consistent with wipers data (a plausible

proxy for rain), which were successfully compared to estimates

of precipitation from radar measurements. Similarly, changes

in wiper status have also shown to provide an indication of

precipitation events. This convergence of various sources of

weather data strengthens the confidence in the added value

of car weather data, in particular when considering the small

spatio-temporal scales that cannot be resolved by a conven-

tional RWS network. Currently, the RWM used at the RMI

is launched each hour and provides forecasts of road surface

temperature and road conditions corresponding to locations

of the RWS network throughout Belgium. In the short-term,

RMI plans to incorporate real-time vehicle data in this RWM

which will run at a higher time resolution for each 250 m-road

segment in the region of Antwerp.

A preliminary analysis of CAN-bus data has also shown

that anomalies related to road conditions can be extracted from

time-series data such as wheel speeds, indicating that it can

be an additional data source for RMI’s models and can be of

significant value in setting up real-time warning services for

dangerous conditions. Future work will focus on optimizing

the detection algorithm to evaluate more relations present in

the vehicle data such as temporal or higher order dependencies.

This might be achieved using temporal auto-encoders or

other deep learning approaches. Although a distinction can be

made between weather an non-weather-related events, further

research in time-series classification will also be needed to

further automate the process.
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