
CHAPTER

UNCERTAIN FORECASTS FROM
DETERMINISTIC DYNAMICS 1

Daniel S. Wilks*, St�ephane Vannitsem†

Cornell University, Ithaca, NY, United States* Royal Meteorological Institute of Belgium, Brussels, Belgium†

CHAPTER OUTLINE

1.1. Sensitivity to Initial Conditions, or “Chaos” ......................................................................................1

1.2. Uncertainty and Probability in “Deterministic” Predictions ................................................................5

1.3. Ensemble Forecasting ......................................................................................................................7

1.4. Postprocessing Individual Dynamical Forecasts ................................................................................8

1.5. Postprocessing Ensemble Forecasts: Overview of This Book ........................................................... 10

References .......................................................................................................................................... 11

1.1 SENSITIVITY TO INITIAL CONDITIONS, OR “CHAOS”
In a startling paper that was published more than a half-century ago, Lorenz (1963) demonstrated that

solutions to systems of deterministic nonlinear differential equations can exhibit sensitive dependence

on initial conditions. That is, even though deterministic equations yield unique and repeatable solutions

when integrated forward from a given initial condition, integrating systems exhibiting sensitive depen-

dence from very slightly different initial conditions eventually yields computed states that diverge

strongly from each other. Twelve years later, Li and Yorke (1975) coined the name “chaotic” dynam-

ics, although this label is somewhat unfortunate in that it is not descriptive of the sensitive-dependence

phenomenon.

The system of three coupled ordinary differential equations used by Lorenz (1963), and originally

derived by Saltzman (1962), is deceptively simple:

dX

dt
¼�10X + 10Y (1.1a)

dY

dt
¼�XZ + 28X�Y (1.1b)

dZ

dt
¼XY�8

3
Z (1.1c)
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This system is a highly abstracted representation of thermal convection in a fluid, where X represents

the intensity of the convective motion, Y represents the temperature difference between the ascending

and descending branches of the convection, and Z represents departure from linearity of the vertical

temperature profile. Despite its low dimensionality and apparent simplicity, the system composed

of Eqs. (1.1a)–(1.1c) shares some key properties with the equations governing atmospheric flow, in

particular an apparently erratic behavior whose characterization is at the heart of dynamical weather

prediction. Accordingly, Lorenz (1963, p. 141) concluded that his results “indicate that prediction of

the sufficiently distant future is impossible by any method, unless the present conditions are known

exactly. In view of the inevitable inaccuracy and incompleteness of weather observations, precise

very-long-range forecasting would seem to be nonexistent.”

Palmer (1993)pointsout that in addition to sensitivedependence, the simpleLorenz systemand theequa-

tions governing atmospheric motion also exhibit regime structure, multiple distinct time scales, and state-

dependent variations in predictability. Because the Lorenz system has only three prognostic variables, these

three properties, as well as their sensitive dependence on initial conditions, can be visualized in terms of tra-

jectories on the system’s phase-space attractor. A phase space is an abstract geometrical space, each of the

coordinate axes of which corresponds to one of the prognostic variables in a dynamical system. The phase

space for the Lorenz system (Eqs. 1.1a–1.1c) is therefore a three-dimensional volume. The attractor of a dy-

namical system is a geometrical object within the phase space toward which trajectories are attracted in the

course of time, each point onwhich represents a dynamically self-consistent state, jointly for all of the prog-

nostic variables. The understanding of the specific geometry and the dynamical properties of this type of

attractor is the subject of theergodic theoryof chaosandof strangeattractors (e.g.,Eckmann&Ruelle, 1985).

Fig. 1.1, from Palmer (1993), shows an approximate rendering of the Lorenz attractor, projected

onto the X–Z plane. The figure has been constructed by numerically integrating the Lorenz system

X

Z

FIG. 1.1

Projection of a finite rendering of the Lorenz attractor onto the X–Z plane, yielding the Lorenz “butterfly.”

From Palmer, T. N. (1993). Extended-range atmospheric prediction and the Lorenz model.

Bulletin of the American Meteorological Society, 74, 49–65.
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forward for an extended time, with each dot representing the system state at a discrete time increment.

The characteristic shape of this projection of the Lorenz attractor has come to be known as the Lorenz

“butterfly.” In a sense, the attractor can be thought of as representing the “climate” of its dynamical

system, on which each point represents a possible instantaneous “weather” state. A sequence of these

states then traces out a trajectory in the phase space, along the attractor.

Each wing of the attractor in Fig. 1.1 represents a regime of the Lorenz system. Trajectories in the

phase space consist of some number of clockwise “laps” around an unstable fixed point of the dynam-

ical equations on the left-hand (X<0) wing of the attractor, followed by a shift to the right-hand (X >0)

wing of the attractor where some number of counterclockwise laps are executed around a second un-

stable fixed point, until the trajectory shifts again to the left wing, and so on. The transition from one

wing to the other is performed in the vicinity of the third unstable fixed point of the dynamical equa-

tions. Circuits around one or the other of the wings occur on a faster time scale than residence times on

each wing. The traces in Fig. 1.2, which are example time series of the X variable, illustrate that the fast

FIG. 1.2

Example time series for the X variable in the Lorenz system. The two time series have been initialized at nearly

identical values.

From Palmer, T. N. (1993). Extended-range atmospheric prediction and the Lorenz model.

Bulletin of the American Meteorological Society, 74, 49–65.
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oscillations around one or the other wings are variable in number, and that transitions between the two

wing regimes occur suddenly. The two traces in Fig. 1.2 have been initialized at very similar points, and

the sudden difference between them that begins after the first regime transition illustrates the sensitive-

dependence phenomenon.

An especially interesting property shared by the Lorenz system and the real atmosphere is their

state-dependent variations in predictability. That is, forecasts initialized in some regions of the phase

space (corresponding to particular subsets of the dynamically self-consistent weather states) may yield

better predictions than others. Fig. 1.3 illustrates this idea for the Lorenz system by tracing the

trajectories of loops of initial conditions initialized at different parts of the attractor. The initial loop

in Fig. 1.3a, on the upper part of the left wing, illustrates extremely favorable forecast evolution. These

initial points remain close together throughout the 10-stage forecast (although of course they would

eventually diverge if the integration were to be carried further into the future). The result is that the

forecast from any one of these initial states would produce a good forecast of the trajectory from

the (unknown) true initial condition, which might be located near the center of the initial loop. In con-

trast, Fig. 1.3b shows forecasts for the same set of future times when the initial conditions are taken as

the points on the loop that is a little lower on the left wing of the attractor. Here, the dynamical pre-

dictions are reasonably good through the first half of the forecast period, but they diverge strongly to-

ward the end of the period as some of the trajectories remain on the left-hand wing of the attractor while

others undergo the regime transition to the right-hand wing. The result is that a broad range of the

prognostic variables might be forecast from initial conditions near the unknown true initial condition,

and there is no way to tell in advance which of the trajectories might represent good or poor forecasts.

FIG. 1.3

Collections of forecast trajectories for the Lorenz system, initialized at (a) a high-predictability portion of the

attractor, and (b) a moderate-predictability portion of the attractor. Any of the forecasts in panel (a) would

likely represent the unknown true future state well, whereas many of the results in panel (b) would correspond to

poor forecasts.

From Palmer, T. N. (1993). Extended-range atmospheric prediction and the Lorenz model.

Bulletin of the American Meteorological Society, 74, 49–65.
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This high sensitivity is related to the divergence along the unstable direction on both sides of the saddle

node present at the center of the attractor. The inhomogeneity of the predictability of the flow on the

attractor is a property shared bymany low-order systems such as the Lorenz model, as well as by higher

complexity models up to and including operational forecasting systems, as discussed in two recent

reviews (Vannitsem, 2017; Yoden, 2007).

1.2 UNCERTAINTY AND PROBABILITY IN “DETERMINISTIC” PREDICTIONS
In the middle of the past century, when dynamical weather prediction was not yet an operational tool

but rather a research curiosity, Eady (1951) wrote:

[T]he initial state of motion is never given precisely and we never knowwhat small perturbations may

exist below a certain margin of error. Since the perturbations may grow at an exponential rate, the

margin of error in the forecast (final) state will grow exponentially as the period of forecast is in-

creased, and this possible error is unavoidable whatever our method of forecasting… [T]he set of

all possible future developments consistent with our initial data is a divergent set and any direct com-

putation will simply pick out, arbitrarily, one member of the set. Clearly, if we are to glean any in-

formation at all about developments beyond the limited time interval, we must extend our analysis

and consider the properties of the set or “ensemble” (corresponding to the Gibbs-ensemble of statis-

tical mechanics) of all possible developments. Thus, long-range forecasting is necessarily a branch of

statistical physics in its widest sense: both our questions and answers must be expressed in terms of

probabilities.

Of course Eady could not have been aware of what today is called chaotic dynamics, but he realized that

amplification of initial-condition errors would inevitably lead to uncertainty in dynamical forecasts,

and that those uncertainties should be expressed in the language of probability.

The connection between uncertainty, probability, and dynamical forecasting can be approached

using the phase space of the Lorenz attractor as a low-dimensional and comprehensible metaphor for

the millions-dimensional phase spaces of realistic modern dynamical weather prediction models. Con-

sider again the forecast trajectories portrayed in Fig. 1.3. Rather than regarding the upper-left loops as

collections of initial states, imagine that they represent boundaries containing most of the probability,

perhaps the 99% probability ellipsoids, for probability density functions defined on the attractor. When

initializing adynamical forecastmodelwe cannever be certain of the true initial state, butwemaybe able

to quantify that initial-condition uncertainty in terms of a probability distribution, and that distribution

must be defined on the system’s attractor if the initial state is to be dynamically consistent with the gov-

erning equations. In effect, those governing equations will operate on the probability distribution of

initial-condition uncertainty, advecting it across the attractor and distorting its initial shape in the pro-

cess. If the initial probability distribution is a correct representation of the initial-condition uncertainty,

and if the model’s equations are a correct representation of the dynamics of the true system, then

the subsequent advected and distorted probability distributions will correctly quantify the forecast un-

certainty at future times. This uncertainty may be larger (as represented by Fig. 1.3b) or smaller

(Fig. 1.3a), depending on the intrinsic predictability of the states in the initial region of the attractor.

(To the extent that the forecast model equations are not complete and correct representations of the true

dynamics, which is inevitable in atmospheric modeling, then additional uncertainty will be introduced.)
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Using this concept of a probability distribution that quantifies the initial-condition uncertainty,

Epstein (1969) proposed the method of stochastic-dynamic prediction. The historical and biographical

background leading to this important paper has been reviewed by Lewis (2014). Denoting the (mul-

tivariate) uncertainty distribution as φ and the vector _X as containing the total derivatives with respect

to time of the prognostic variables defining the coordinate axes of the phase space, Epstein (1969) be-

gins with the conservation equation for total probability, φ,

∂φ

∂t
+r � _Xφ

� �¼ 0 (1.2)

Eq. (1.2), also known as the Liouville equation (Ehrendorfer, 1994a; Gleeson, 1970), is analogous to

the more familiar continuity (i.e., conservation) equation for mass. As noted by Epstein (1969),

It is possible to visualize the probability density in phase space, as analogous tomass density (usually ρ)
in three-dimensional physical space. Note that ρ � 0 for all space and time, and

Ð Ð Ð
(ρ/M)dxdydz ¼ 1

if M is the total mass of the system. The "total probability" of any system is, by definition, one.

Eq. (1.2) states that any change in the probability contained within a small (hyper-) volume surrounding

a point in phase space must be balanced by an equal net flux of probability through the boundaries of

that volume. The governing physical dynamics of the system (e.g., Eqs. 1.1a–1.1c for the Lorenz sys-
tem) are contained in the time derivatives _X in Eq. (1.2), also known as tendencies. Note that the

integration of Eq. (1.2) is deterministic, in the sense that there are no random terms introduced on

the right-hand sides of the dynamical tendencies. The Liouville equation is, in fact, the limiting case

(drift-only case) of a more general approach in which stochastic diffusion forcings and jump processes

are incorporated, known as the Chapman-Kolmogorov equation (e.g., Gardiner, 2009). Thus the ter-

minology used by Epstein (1969) should not be confused with the current notion of a stochastic system.

Epstein (1969) considered that direct integration of Eq. (1.2) on a set of gridpoints within the phase

space was computationally impractical, even for the idealized 3-dimensional dynamical system he used

as an example. Instead he derived time-tendency equations for the elements of the mean vector and

covariance matrix of φ (in effect, assuming multivariate normality for this distribution initially and

at all forecast times) yielding a system of nine coupled differential equations (three each for the means,

variances, and covariances), by assuming that the third and higher moments of the forecast distributions

vanished. In addition to providing a (vector) mean forecast, the procedure characterizes state-

dependent forecast uncertainty through the forecast variances and covariances that populate the fore-

cast covariance matrix, the increasing determinant (“size”) of which at increasing lead times can be

used to characterize the increasing forecast uncertainty.

Stochastic-dynamic prediction in the phase-space in terms of the first and second moments of the

uncertainty distribution, or related approaches to integration of Eq. (1.2) (Ehrendorfer, 1994b;

Thompson, 1985), are even today computationally impractical when applied to realistic forecast

models. Furthermore, forecasts of forecast uncertainty based on Eq. (1.2) assume that the system dy-

namics encoded in the elements of _X are correct and complete, whereas the violation of this assumption

in realistic weather forecast models adds uncertainty to any forecast.
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1.3 ENSEMBLE FORECASTING
Even though the stochastic-dynamic approach to forecasting as proposed by Epstein (1969) is out of

reach computationally, it is theoretically sound and conceptually appealing. It provides the philosoph-

ical basis for addressing the problem of sensitivity to initial conditions in dynamical weather and cli-

mate models, which is currently best achieved through ensemble forecasting. Rather than computing

the effects of the governing dynamics on the full continuous probability distribution of initial-condition

uncertainty, ensemble forecasting proceeds by constructing a discrete approximation to this process.

That is, a collection of individual initial conditions (each represented by a single point in the phase

space) is chosen, and each is integrated forward in time according to the governing equations of the

dynamical system. Ideally, the distribution of these states in the phase space at future times, which

can be mapped to physical space, will then represent a sample from the statistical distribution of fore-

cast uncertainty.

Ensemble forecasting is an instance of Monte-Carlo integration, (Metropolis & Ulam, 1949), the

use of which in meteorology was foreshadowed by the quotation from Eady (1951) reproduced at the

beginning of Section 1.2. Ensemble forecasting in meteorology appears to have been first proposed

explicitly in a conference paper by Lorenz (1965):

The proposed procedure chooses a finite ensemble of initial states, rather than the single observed

initial state. Each state within the ensemble resembles the observed state closely enough so that

the differences might be ascribed to errors or inadequacies in observation. A system of dynamic equa-

tions previously deemed to be suitable for forecasting is then applied to each member of the ensem-

ble, leading to an ensemble of states at any future time. From an ensemble of future states, the

probability of occurrence of any event, or such statistics as the ensemble mean and ensemble standard

deviation of any quantity, may be evaluated.

Ensemble forecasting was first implemented in a meteorological context by Epstein (1969) as a means

to provide representations of the true forecast distributions to which his (truncated) stochastic-dynamic

calculations could be compared. He explicitly chose initial ensemble members as independent random

draws from the initial-condition uncertainty distribution:

Discrete initial points in phase space are chosen by a random process such that the likelihood of

selecting any given point is proportional to the given initial probability density. For each of these

initial points (i.e. for each of the sample selected from the ensemble) deterministic trajectories in

phase space are calculated by numerical integration… Means and variances are determined, corre-

sponding to specific times, by averaging the appropriate quantities over the sample.

Forecasts entailing more or less uncertainty are then characterized by larger or smaller ensemble

variances. A more detailed exposition of the procedure was provided in the influential paper by

Leith (1974).
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In addition to computational tractability, an advantage of ensemble forecasting is that it permits bi-

or multi-modal forecast distributions as ensemble members diverge, allowing representation of possi-

ble regime shifts. Lorenz (1965) specifically considered this attribute in his proposal for the method. In

contrast, Epstein’s (1969) truncated stochastic-dynamic formulation is limited in the allowed mathe-

matical form of its predictive distributions because of its formulation in terms of distribution moments,

so that only unimodal predictive distributions can be computed. This problem of multimodality was

nicely addressed in the context of the atmospheric Lorenz 3-variable model through the development

of a stochastic equation for the error growth by Nicolis (1992).

Both the stochastic-dynamic and ensemble approaches to representing the effects of initial-

condition uncertainty initially assumed that the equations governing the physical dynamics were com-

plete and correct. Of course, in practice dynamical weather forecast models are not perfect, and errors

are introduced through spatial and temporal discretization, and through empirical formulations for

unresolved processes. Pitcher (1974, 1977) represented the effects of these structural model errors

through addition of random forcing terms to the prognostic equations following approaches developed

in the context of stochastic modeling (e.g., Gardiner, 2009), and Leith (1974) suggested applying the

same approach to ensemble forecasts.

This “stochastic parameterization” approach was first introduced into operational ensemble

weather forecasting practice at the European Centre for Medium Range Weather Forecasts

(ECMWF, Buizza, Miller, & Palmer, 1999), although the issue is not considered solved and research

in this area is ongoing both from a practical forecasting side (e.g., Christensen, Lock, Moroz, & Palmer,

2017), and from a more theoretical perspective through the development of techniques deduced from

first principles (e.g., Demaeyer & Vannitsem, 2017; Majda, Timofeyev, & Vanden Eijnden, 2001;

Wouters & Lucarini, 2012).

Stochastic approaches for the representation of uncertainties are also very popular in the context of

climate (e.g., Hasselman, 1976) and hydrological modeling (Bras & Rodriguez-Iturbe, 1984), due to a

larger number of sources of uncertainties than in atmospheric modeling for weather forecasting. For

climate modeling, many forcings influence the atmosphere that are either not fully understood or too

expensive to incorporate at the current stage of development of climate models. In hydrology, both

external forcings essentially coming from the atmosphere and the description of (small-scale) surface

processes display important uncertainties. In both cases, these uncertainties are often best described

with stochastic forcings.

1.4 POSTPROCESSING INDIVIDUAL DYNAMICAL FORECASTS
Statistical postprocessing of dynamical weather forecasts has a history that is almost as long as the

history of dynamical weather forecasting itself. Operational dynamical forecasting began in 1956 in

the U.S. (Fawcett, 1962), and dissemination to the public of products derived from statistically post-

processed dynamical forecasts (Klein & Lewis, 1970) was initiated in 1968 (Carter, Dallavalle, &

Glahn, 1989). These early forecasts were based on a technique known as “perfect prog” (e.g.,

Wilks, 2011), which required no training data from the dynamical model. Shortly thereafter, the pre-

ferred model output statistics (MOS, Glahn & Lowry, 1972) method began to be used when sufficient

dynamical-model training data became available.
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The MOS approach continues to be preferred because it relates past forecasts from a particular dy-

namical forecast model to the subsequent weather elements of interest, and so is able to correct biases

deriving from structural errors that are specific to that particular dynamical model. MOS methods also

adjust for “representativeness errors,” notably mismatches between grid-cell-scale dynamical forecast

output and the local instrumental observations that are of primary interest to many forecast users, the

correction of which is known in the climate-change literature as “downscaling” (e.g., Wilby &Wigley,

1997). These mismatches are illustrated by the cartoon in Fig. 1.4.

The originalMOS forecast systems operated on the single-integration dynamical forecasts available

at the time, and were nearly all structured as multiple linear regressions:

yt ¼ a+ b1xt,1 + b2xt,2 +⋯+ bmxt,m + εt (1.3)

where yt, t ¼1, …, n, are the values to be predicted in a set of training data, the xt,k are any relevant

predictor variables, and the regression coefficients bk, k ¼1, …, m, are estimated by minimizing the

sum of the squared residuals εt
2 over the n training samples. Often one of the predictor variables

corresponds to the quantity y of interest if it is available as a prognostic variable in the dynamical

model. However, due to the lower quality of the early dynamical models relative to those of the present

day, these equations sometimes included 10 or more additional predictors (Glahn, 2014), such as other

dynamical prognostic variables, recent surface observations, climatological values, and (trigonometric

transformations of ) the day of the year in order to represent some aspects of seasonality (e.g., Jacks

et al., 1990).

Nearly all MOS forecasts based on single-integration dynamical forecasts were, and continue to be

disseminated in nonprobabilistic formats, although some of the computations underlying these fore-

casts are probabilistic. For others, issued forecasts correspond to Eq. (1.3), operating on new predictor

data xt,k with εt ¼0, with no expression of uncertainty and so yielding an estimate of the conditional

expectation for y given current values of the xt,k. Although a probabilistic forecast can be constructed

Real world Model world

Model gridpoint(s)Instrument shelter(s)

Snow
Snow

Land Land

Ocean Ocean

Vs.

FIG. 1.4

Cartoon illustration of representativeness error inherent in making forecasts for small-scale variations in the real-

world (left) on the basis of coarse grid-cell dynamical forecasts (right).

From Karl, T. R., Schlesinger, M. E., & Wang, W. C. (1989). A method of relating general circulation model simulated climate to the

observed local climate. I. Central tendencies and dispersion. In: Preprints, sixth conference on Applied Climatology, American

Meteorological Society (pp. 188–196).
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using Eq. (1.3), by assuming a Gaussian predictive distribution centered on yt, with variance related to
the regression mean-squared error (e.g., Glahn et al., 2009; Wilks, 2011), case-to-case (i.e., state-

dependent) variations in forecast uncertainty are not represented. However, extension of this MOS

concept to postprocessing of ensemble forecasts allows both correction of biases due to model errors

as well as representation of variations in uncertainty based on variations in ensemble spread.

1.5 POSTPROCESSING ENSEMBLE FORECASTS: OVERVIEW OF THIS BOOK
Operational ensemble forecasting began in 1992 at both ECMWF and the U.S. NationalMeteorological

Center (Molteni, Buizza, Palmer, & Petroliagis, 1996; Toth & Kalnay, 1993). As expected from prior

research, ensemble-mean forecasts outperformed traditional high-resolution single-integration dynam-

ical forecasts in terms of such metrics as mean-squared error, but the primary aim was to characterize

and forecast the uncertainty on the basis of ensemble spread. Initially, relative frequency within each

forecast ensemble was regarded as a rough estimate of the corresponding outcome probability, but it

became quickly evident that these probability estimates were typically biased. In particular, the raw

dynamical ensembles exhibited insufficient dispersion (e.g., Buizza, 1997; Hamill, 2001), which

imparted overconfidence to their uncertainty forecasts (e.g., Wilks, 2011).

Evidently, ensemble forecasts require the same kinds of statistical postprocessing for bias correc-

tion as their traditional single-integration counterparts. Indeed, the same computer code is executed for

both. But in addition, forecast ensembles require statistical postprocessing to adjust their dispersion to

yield properly calibrated forecast probabilities. Ensemble-MOS methods thus aim to correct forecast

errors deriving from both structural deficiencies in the dynamical models and forecast sensitivity to

uncertain initial conditions. These methods began to be developed early in the present century, and

a comparison among the first approaches to be proposed is provided in Wilks (2006). The past decade

has seen an explosion of interest in the statistical postprocessing of ensemble forecasts, and the purpose

of this book is to document the progress to date in this rapidly expanding field.

In Chapter 2, Buizza (2018) concludes the introductory section of this book by reviewing the con-

struction of ensemble prediction systems, with a particular focus on operations at ECMWF, and un-

derscores their need for postprocessing.

The second section of the book is devoted to exposition of the methods available for statistical post-

processing of ensemble forecasts. In Chapter 3, Wilks (2018) reviews univariate ensemble postproces-

sing, where forecasts for a single weather element, at one location and for one time in the future, are

considered. Chapter 4, by Schefzik and M€oller (2018), extends these methods for multivariate fore-

casts, where the postprocessed forecasts for multiple weather elements are meant to be statistically

consistent with each other. Such methods are important where spatial and/or temporal coherence of

the forecasts are important to the management of weather-sensitive enterprises. In Chapter 5,

Friederichs, Wahl and Buschow (2018) consider the specialized perspective necessary for postproces-

sing forecasts for extreme, and therefore rare, events. The section concludes with the discussion in

Chapter 6, by Thorarinsdottir and Schuhen (2018), of the methods of forecast verification devised spe-

cifically for evaluation of postprocessed ensemble forecasts.

Section three of this book is devoted to applications of ensemble postprocessing. Practical aspects

of ensemble postprocessing are detailed by Hamill (2018) in Chapter 7, including an extended and il-

lustrative case study. In Chapter 8, Hemri (2018) discusses ensemble postprocessing specifically for

hydrological applications, where the spatial correlations among the forecast elements must be
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represented correctly if the forecasts are to have real-world utility. Pinson and Messner (2018) treat

postprocessing in support of renewable energy applications, where the conversion of meteorological

variables into power generation imposes additional challenges, in Chapter 9. Chapter 10, by Van

Schaeybroeck and Vannitsem (2018), discusses postprocessing of monthly, seasonal, and interannual

forecasts, which is especially difficult because for these lead times the predictable signal is typically

small relative to the intrinsic uncertainty. Finally, in Chapter 11Messner (2018) provides a guide to the

ensemble-postprocessing software available in the R programming language, that should greatly help

readers implement many of the ideas presented in this book.
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