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Summary

qgs is a a Python implementation of a set of idealized reduced-order models representing
atmospheric mid-latitude variability. It consists of a two-layer quasi-geostrophic spectral (qgs)
model of the atmosphere on a beta-plane, coupled either to a simple land surface or to
a shallow-water ocean. The model’s dynamical fields include the atmospheric and oceanic
streamfunction and temperature fields, and the land temperature field.

• In the case where it is coupled to an ocean, it reproduces the Modular Arbitrary-Order
Ocean-Atmosphere Model (MAOOAM), described in De Cruz et al. (2016). In Vannit-
sem et al. (2015), a 36-variable configuration of this model was shown to reproduce a
low-frequency variability (LFV) typical of the coupled ocean-atmosphere system. This
coupling consists in both mechanical and heat exchange interactions between the two
components. The model has already been used in different contexts, in particular for
data assimilation (Penny et al., 2019; Tondeur et al., 2020), and predictability studies
(Vannitsem et al., 2019; Vannitsem & Duan, 2020)

• In the case of a land surface coupling, it emulates the model proposed in Reinhold &
Pierrehumbert (1982) and Cehelsky & Tung (1987) with a simple thermal relaxation
toward a climatological temperature and a mechanical coupling due to the friction
between the land and the atmosphere. It can also emulate the model proposed in
Li et al. (2018), with mechanical coupling and heat exchange. In addition, the number
of dynamical spectral modes can be configured by the user, as is the case for the
MAOOAM model.

In the qgs framework, the partial differential equations (PDEs) that govern the time evolution
of its fields are projected on a basis of functions defined on its spatial domain. This kind of
decomposition transforms the PDEs into a set of ordinary differential equations (ODEs) which
can then be solved with the usual integration techniques. Presently in qgs, the functions of
the basis are chosen amongst the orthogonal Fourier modes compatible with the boundary
conditions of each subcomponent of the system, namely the atmosphere, and the ocean or the
land surface coupled to it. A future development is planned that will enable the user to specify
the basis of functions for each component, depending on the required boundary conditions.
The model implementation consists of submodules to set up the model’s parameters and to
compute the tensor that defines the coefficients of the system of ODEs1. This tensor is used
by the code to compute the tendencies function and its Jacobian matrix. These functions can
then be fed to the qgs built-in Runge-Kutta integrator or to another integrator implemented by
the user. As an example, the usage of the Julia DifferentialEquations.jl (Rackauckas &
Nie, 2017) integration package through the Python diffeqpy (Rackauckas & Arakaki, 2020)

1More details about the implementation can be found in De Cruz et al. (2016) and in the Code Description
section of the included documentation.
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package is provided. The tangent linear and adjoint models (Kalnay, 2003) are also available
and allow one to easily conduct data assimilation and linear sensitivity analysis experiments.
The model implementation uses NumPy (Harris et al., 2020; Oliphant, 2006) and SciPy
(Virtanen et al., 2020) for arrays and computations support, as well as Numba (Lam et al.,
2015) and sparse (Sparse developers, 2020) to considerably accelerate the tensor products
computation used to compute the tendencies.

Statement of need

In atmospheric and climate sciences, research and development is often first conducted with
a simple idealized system like the Lorenz-N models (N ∈ {63, 84, 96}) (Edward N. Lorenz,
1996, 1984; Edward N. Lorenz, 1963) which are toy models of atmospheric variability. The
first two models are heavily truncated systems (3-variable) describing the very large synoptic-
scale dynamics of the single-component atmosphere, that neglect the interaction with other
components of the climate system and with smaller scales. The third one is based on reason-
able heuristic assumptions on the spatial dynamics along a latitude, which may however lead
to unrealistic statistical features.
Reduced-order spectral quasi-geostrophic models of the atmosphere with a large number of
modes offer better representations of the dry atmospheric dynamics (O’Brien & Branscome,
1989). The dynamics thus obtained allow one to identify typical features of the atmospheric
circulation, such as blocked and zonal circulation regimes, and low-frequency variability. How-
ever, these models are less often considered in literature, despite their demonstration of more
realistic behavior.
qgs aims to popularize these systems by providing a fast and easy-to-use Python framework
for researchers and teachers to integrate this kind of model. For an efficient handling of the
model by users, its documentation is conceived such that its equations and parameters are
explained and linked to the code. In the future, its development will be done in a modular
fashion which enables the connection of the atmosphere to various other subsystems and the
use of built-in and external toolboxes.
The choice to use Python was specifically made to facilitate its use in Jupyter Notebooks
(Kluyver et al., 2016) and with the multiple recent machine learning libraries that are available
in this language.

State of the field

Other software might interest the reader in need of an easy-to-use idealized atmospheric model.

• MAOOAM: The Modular Arbitrary-Order Ocean-Atmosphere Model, a coupled ocean-
atmosphere model included in qgs (De Cruz & Demaeyer, 2020). Code available in
Lua, Fortran and Python.

• q-gcm: A mid-latitude grid-based quasi-geostrophic ocean-atmosphere model with two
oceanic layers. Code in Fortran, interface in Python (Hogg et al., 2014).

• pyqg: A pseudo-spectral Python solver for quasi-geostrophic systems (Jansen et al.,
2019). Allow one to create and solve multiple-layers quasi-geostrophic systems.

• Isca: A research General Circulation Model (GCM) to simulate global dynamics. Written
in Fortran and largely configurable with Python scripts, with internal coding changes
required for non-standard cases (Isca development team, University of Exeter, 2020;
Vallis et al., 2018).
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qgs distinguishes itself from these other models by the combination of a simplified and config-
urable geometry, a spectral discretization, an efficient numerical implementation of the ODE
system by a sparse tensor multiplication, and the availability of the tangent linear and adjoint
models. As such it is very suitable to quickly simulate very long time periods while capturing
key aspects of the climate dynamics at mid-latitudes.
The mechanically coupled atmosphere-land configuration of qgs was used to test new ideas
using response theory to adapt statistical postprocessing schemes to model changes (Demaeyer
& Vannitsem, 2020). The MAOOAM model configuration of qgs was recently considered
to perform strongly-coupled data assimilation experiments in the ocean-atmosphere system
(Carrassi et al., 2020).

Performance

The performance of the qgs MAOOAM implementation has been benchmarked against the
Lua and Fortran implementations of this model (De Cruz & Demaeyer, 2020). This comparison
was done on a recent Intel CPU with 12 cores, with two different model resolutions: one used
in Vannitsem et al. (2015) and one truncated at the wavenumber 6 for both the oceanic and
atmospheric components. The former leads to a 36-dimensional system of ODEs while the
latter is higher-dimensional, using 228 variables.
In both cases, all the different code implementations have been initialized with the same
initial data and parameters, except for the length of the trajectory being computed. The
low-dimensional system was integrated for 107 timeunits (roughly ∼ 1850 years) while the
higher-dimensional one was integrated over 106 timeunits (∼ 185 years). In the case of
the Fortran implementation, two different compilers (GNU Gfortran and Intel Ifort) with two
different levels of optimization (O2 and O3) have been tested, but no significant differences
between these compilers and options were found. In addition, two different built-in integration
modules of qgs have been considered: a non-parallel integrator located in the module integr
ators.integrate and a parallel one located in the module integrators.integrator. The
latter can integrate multiple trajectories simultaneously, but for the purpose of the benchmark,
only one trajectory was computed with it, the other implementations being non-parallel.
The results of this benchmark are depicted on Figure 1 and show that qgs, while not the fastest
implementation of MAOOAM available, is a fair competitor. The time difference is in general
not greater than a factor 5 and tends to be less for high-dimensional model configurations,
with an integration time roughly the same as the Lua implementation. We note that there is
also a significant difference between the parallel and non-parallel implementation of qgs, but
this difference also seems to vanish for higher-resolution model configurations. In any case, the
parallel integrator of qgs can straightforwardly integrate multiple trajectories simultaneously
and therefore has an advantage over the non-parallel one (provided that multiple CPU cores are
available). A final remark is that the initial Python version of MAOOAM (found in De Cruz &
Demaeyer, 2020) takes 283 minutes to integrate the low-resolution model configuration (not
shown).
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Computational time by language

Figure 1: Computational times in seconds of different MAOOAM implementations: (a) time to
compute a 107 timeunits trajectory with a low-order model configuration (36 variables). (b) time to
compute a 106 timeunits trajectory with a higher-order model configuration (228 variables).

In conclusion, qgs is a sufficiently fast Python implementation as compared to the other
implementations of the MAOOAM model. In addition, it has the benefit of being more
flexible, extensible, and easier to use in the general Python scientific ecosystem.
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