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Abstract. Emissions of ammonia (NH3) to the atmosphere impact human health, climate, and ecosystems via
their critical contributions to secondary aerosol formation. However, the estimation of NH3 emissions is as-
sociated with large uncertainties because of inadequate knowledge about agricultural sources. Here, we use
satellite observations from the Infrared Atmospheric Sounding Interferometer (IASI) and simulations from the
GEOS-Chem model to constrain global NH3 emissions over the period from 2008 to 2018. We update the prior
NH; emission fluxes with the ratio between biases in simulated NH3 concentrations and effective NH3 lifetimes
against the loss of the NH,, family. In contrast to the approximate factor of 2 discrepancies between top-down
and bottom-up emissions found in previous studies, our method results in a global land NH3z emission of 78
(70-92) Tga~!, which is ~ 30 % higher than the bottom-up estimates. Regionally, we find that the bottom-
up inventory underestimates NH3 emissions over South America and tropical Africa by 60 %—70 %, indicating
underrepresentation of agricultural sources in these regions. We find a good agreement within 10 % between
bottom-up and top-down estimates over the US, Europe, and eastern China. Our results also show significant
increases in NH3 emissions over India (13 % per decade), tropical Africa (33 % per decade), and South America
(18 % per decade) during our study period, which is consistent with the intensifying agricultural activity in these
regions in the past decade. We find that the inclusion of the sulfur dioxide (SO;) column observed by satellite
is crucial for more accurate inference of NH3 emission trends over important source regions such as India and
China where SO, emissions have changed rapidly in recent years.

late matter also affects the Earth’s radiative balance directly,

Emissions of ammonia (NH3) to the atmosphere have critical
implications for human health, climate, and ecosystems. As
the main alkaline gas, NH3 reacts with acidic products from
precursors such as nitrogen oxides (NO,) and sulfur diox-
ide (SO;) to form fine particulate matter, which is a well-
documented risk factor for human health, causing great wel-
fare loss globally (Erisman, 2021; Gu et al., 2021). Particu-

by scattering incoming radiation (Ma et al., 2012), and indi-
rectly, as cloud condensation nuclei (Hopfner et al., 2019).
Additionally, both gas-phase ammonia (NH3) and aerosol-
phase ammonium (NHI) can deposit onto the surface of land
and water through dry and wet processes, and they are as-
sociated with soil acidification (Zhao et al., 2009), ecosys-
tem eutrophication (Dirnbdck et al., 2014), biodiversity loss
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(Stevens et al., 2010), and cropland nitrogen uptake (Liu et
al., 2013).

NHj3 is emitted from a variety of anthropogenic and natural
sources, including agriculture, industry, fossil fuel combus-
tion, biomass burning, natural soils, the ocean, and wild ani-
mals (Behera et al., 2013). Among these, agricultural activity,
mainly livestock manure management and mineral fertilizer
application, is the most important NH3 source, accounting
for ~ 70 % of the total NH3 emissions globally (Bouwman
et al., 1997; Sutton et al., 2013). NH3 emissions can be es-
timated using a bottom-up approach based on information
about emission activity and emission factors (Hoesly et al.,
2018; Crippa et al., 2020). However, bottom-up estimates of
NHj3 emissions are generally thought to be uncertain, relative
to other pollutants that are mainly from fossil fuel combus-
tion sources (e.g., NO, and CO). One of the challenges is that
the intensity of agricultural NH3 emissions (i.e., emission
factors), either from livestock or fertilizer, depends strongly
on management and farming practices, but this information
is usually not widely available (Zhang et al., 2017). Fur-
thermore, microbial activity that is responsible for agricul-
tural NH3 emissions is highly variable and has a complex
dependence on environmental conditions, which is often in-
adequately captured by bottom-up approaches (Behera et al.,
2013; Vira et al., 2022). In many cases, emission factors used
in bottom-up modeling are based on local studies that are not
representative of the diversity of conditions and are not de-
pendent on meteorological parameters.

Top-down analyses of atmospheric observations (e.g.,
NH3 concentrations or NHI depositional fluxes) provide an
alternative constraint on NH3 emissions. For example, ob-
servations of NH3 concentrations and NHI deposition fluxes
from surface networks can be used to infer regional NHj3
emission fluxes (e.g., Paulot et al., 2014). However, surface
sites are often sparse, especially on developing continents
such as Africa and South America, limiting our capability
to constrain NH3 emissions globally. The advent of satel-
lite observations has made it possible to investigate long-
term spatially resolved NH3 emissions at national, continen-
tal, or even global scales. Van Damme et al. (2018) reported
large NH3 point sources across the globe that have been de-
tected by the Infrared Atmospheric Sounding Interferometer
(IASI) instrument but are missing in the bottom-up inven-
tories. Studies have also applied satellite data (e.g., IASI and
Cross-track Infrared Sounder, CrIS, data) to study NH3 emis-
sions from important source regions, including the US (Cao
et al., 2020; Chen et al., 2021a), China (Zhang et al., 2018),
and Europe (Marais et al., 2021; van der Graaf et al., 2022).
These regional studies show 20 %—50 % differences between
top-down and bottom-up estimates of NH3 emissions.

Compared with regional analyses, long-term global anal-
yses of NH3 emissions based on satellite observations are
relatively scarce (e.g., Evangeliou et al., 2021). This is partly
because of the computational challenges arising from a full-
fledged inversion for a long period of time and over large
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spatial extents. In a recent study, Evangeliou et al. (2021)
proposed a fast top-down method in which NH3 emissions
are computed as the ratio between NH3z column observations
and NH3 lifetime. This method relies on NH3 lifetime diag-
nosed from a chemical transport model (CTM) and assumes a
local mass balance. Their analysis found a global NH3 emis-
sion of around 180 Tga~!, which is roughly triple the widely
used bottom-up estimates (e.g., 62 Tga~! from the Commu-
nity Emission Data System, CEDS). This large upward ad-
justment, if true, would have huge implications for global
reactive nitrogen cycles and would indicate that our current
understanding of global NH3 emissions is seriously flawed.

In this paper, we examine if the large discrepancy between
the bottom-up and top-down estimates is due to the method-
ology. We refine the fast top-down approach by improving
the NH3 lifetime diagnosis and partially accounting for the
transport contributions. We develop a series of data-filtering
procedures to exclude results that are not sufficiently con-
strained by observations or affected by large deviations from
the assumption of the fast top-down method. We apply the
updated method to IASI observations to derive the global
distribution of NH3 emissions fluxes from 2008 to 2018, and
examine the impact of the improved method on global NHj3
emission inferences.

2 Methods

2.1 |ASI observations

We use 2008-2018 reanalyzed daily NH3 total column re-
trievals (ANNI-NH3-v3R) from the IASI on board Metop-A.
The IASI instrument measures the infrared radiation (645-
2760 cm~!) from Earth’s surface and the atmosphere with a
circular 12 km footprint at nadir (Clerbaux et al., 2009; Van
Damme et al., 2017). The retrieval algorithm calculates the
hyperspectral range index from IASI spectra measurements
(Van Damme et al., 2014) and converts it to the NH3 total
column density via an artificial neural network (Whitburn et
al., 2016; Franco et al., 2018). The retrieval uses consistent
meteorological data from the ERAS reanalysis, so it is suit-
able for the analyses of interannual variability and long-term
trends (Hersbach et al., 2020). The ANNI-NH3-v3R product
has been validated against in situ measurements and has been
shown to have a good regional correlation (Guo et al., 2021;
Van Damme et al., 2021). The dataset has been used in previ-
ous studies to estimate NH3 emissions globally (e.g., Evan-
geliou et al., 2021) and regionally (e.g., Chen et al., 2021a;
Marais et al., 2021).

Here, we only use morning NH3 data (around 09:30 local
solar time), although IASI provides global coverage twice
daily, because of the better precision of morning observa-
tions resulting from favorable thermal contrast conditions
(Clarisse et al., 2009). We filter out data with a cloud fraction
greater than 10 % (Van Damme et al., 2018) and a skin tem-
perature below 263 K (Van Damme et al., 2014). The skin
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temperature dataset is from ERAS (Hersbach et al., 2020).
For comparison with simulated NH3 columns (see Sect. 2.2),
we regrid and average monthly TASI NH3 observations over
land on the GEOS-Chem 4° x 5° grid (Fig. la). To reduce
uncertainty from sparse sampling, we further exclude grid
cells with a monthly number of successful retrievals of less
than 800. We also test threshold values of 400 and 1200 suc-
cessful retrievals per month in the sensitivity calculations
(Table 1, rows 5-6). This criterion mainly affects the high
latitudes during wintertime, as snow surfaces make these re-
gions unfavorable for infrared measurements (Fig. S1).

2.2 GEOS-Chem simulations

We use the GEOS-Chem CT™M v12.9.3
(https://doi.org/10.5281/zenodo.3974569; The Interna-
tional GEOS-Chem User Community, 2020) to simulate
global NH3 concentrations. The GEOS-Chem model, driven
by Version 2 of the Modern-Era Retrospective Analysis
for Research and Applications (MERRA-2) reanalyzed
meteorology (Gelaro et al., 2017), simulates the tropo-
spheric ozone-NO,—volatile organic compound—aerosol
chemistry at a 4° x 5° resolution with 47 vertical layers
(30 layers in the troposphere) (Bey et al., 2001; Park et al.,
2004). The thermodynamic equilibrium between gas-phase
NH3 and aerosol-phase NHZ is explicitly simulated by
the ISORROPIA II module in GEOS-Chem (Fountoukis
and Nenes, 2007). The model also simulates the wet and
dry deposition of NH3 and NH, which represent the
terminal sinks of atmospheric NH, (=NH3+ NHI). Dry
deposition is represented with a resistances-in-series scheme
(Wesely, 2007), and wet deposition includes scavenging in
convective updrafts and in- and below-cloud scavenging
from large-scale precipitation (Wang et al., 2011; Amos et
al., 2012). Anthropogenic emissions of simulated chemicals,
including those of NHj3, are taken from the CEDS global
emission inventory (Hoesly et al., 2018), overridden by
regional inventories in Canada (Air Pollutant Emission
Inventory, APEI), the US (2011 National Emissions Inven-
tory, NEI-2011), Asia (MIX-Asia v1.1; Li et al., 2017), and
Africa (DICE-Africa; Marais and Wiedinmyer, 2016). Such
compiled anthropogenic emissions only include incomplete
information on interannual trends because inventories are
not all available throughout the whole period. Anthropogenic
emissions are essentially invariant after 2013 in our setup
(Fig. S2). The general lack of trends in SO, emissions in
the simulation, if not accounted for, may cause biases in
inferred trends over regions such as India and China where
SO, emissions have changed rapidly (Sun et al., 2018;
Qu et al., 2019; Chen et al., 2021b). Fire emissions are
from the Global Fire Emissions Database (GFED4; van der
Werf et al., 2017), and biogenic volatile organic compound
(VOC) emissions are from the Model of Emissions of
Gases and Aerosols from Nature (MEGAN; Guenther et al.,
2012). Temporal (seasonal and interannual) variations in
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fire and biogenic emissions are resolved by the inventories.
Hereafter, we refer to NH3 prior bottom-up emissions from
this set of inventories as “BUE1”. For comparison, we
also use another set of bottom-up inventories that consist
of EDGARvV5.0 (Emissions Database for Global Atmo-
spheric Research, version 5.0) for anthropogenic emissions
(https://data.jrc.ec.europa.eu/collection/edgar, last access:
8 March 2022, Crippa et al., 2020) and the Global Fire
Assimilation System (GFAS) for fire emissions (CAMS,
https://apps.ecmwf.int/datasets/data/cams- gfas/, last access:
8 March 2022) (minor natural emissions are the same as
BUEL1), which we denote as “BUE2”.

The GEOS-Chem simulation is conducted from 2008 to
2018 with an additional 1-month spin-up starting from De-
cember 2007. We sample the simulated NH3 and NHI con-
centration fields between 09:00 and 10:00 local solar time,
approximately the IAST morning overpass time. For compar-
ison with the TAST NH3 columns, we integrate the vertical
profiles of simulated NH3 concentrations by layer thickness.
We note that the ANNI-NH3-v3R algorithm does not involve
averaging kernels (Whitburn et al., 2016; Van Damme et al.,
2021). Van Damme et al. (2018) reported the uncertainty in
different vertical profiles of individual NH3 measurements
to be 2 % £24 % (global average). We also archive simulated
depositional and transport rates for NH3 and NHI, which are
used in emission flux estimations. In addition, we perform
GEOS-Chem simulations in selected years (2008, 2013, and
2018) to examine the validation and consistency of our top-
down NH3 emission estimates with the ground-based mea-
surements and IAST observations.

2.3 NHgz emission flux estimations

We compute NH3 fluxes (Enp;, in molec.m™2s71) in
land grid cells for individual months from 2008 to 2018.
We update the prior model emission fluxes (ENH; mods
in molec. m™2s™!) with a correction term positively pro-
portional to the difference between observed (CnH;,obss
in molec. m_2) and simulated (CNH;,mod, in molec. m_2)
monthly averaged NHj3 total column densities and inversely
proportional to the lifetime of NH3 (7NH;,mod, 10 8):

CNH;,0bs — CNH;3,mod
TNH3,mod

ENHg = ENH;,mod + (1)
Here, T™NH;, mod 1S computed as the ratio of the simulated NH3
column and the sum of the simulated loss rate of the NH,
family (NH, =NH3+ NHI) through dry and wet deposition

of NH3 (DNH;,mod, in molec. m~2 s’l) and NHI (DNHj,mod’

in molec. m~2s~1):

CNH;,mod

2

TNH3,mod = .
Dnn;,mod + Dt mod

We calculate the lifetime of NH3 with the loss of the NH,
family, rather than that of NH3, because of the fast thermo-
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Figure 1. Spatial distribution of (a, ¢) IASI and (b, d) GEOS-Chem NHj3 column concentrations. (a, b) Mean and (¢, d) linear trends within
the 70° N-70° S band during 2008-2018. The dots in panels (c) and (d) indicate that linear trends are significant at the 95 % confidence level.

Linear trends are computed from the time series of annual averages.

dynamic equilibrium between gas-phase NH3 and aerosol-
/aqueous-phase NH, which implies that the conversion
from NHj to NHI is not a terminal loss for NH3 from the
atmosphere. The NHj lifetime may be underestimated over
source regions and overestimated over remote regions if NH3
to NHI conversions are treated as a terminal loss, as in Evan-
geliou et al. (2021), rather than a partition within a chemical
family (NH,), as in Eq. (2).

In addition, our method linearizes the column—emission
relationship at prior emissions as opposed to zero emissions,
as used in the previous method (e.g., Evangeliou et al., 2021).
Here, the baseline NH3 column (CnH;,mod) Simulated by the
GEOS-Chem model explicitly accounts for the nonlocal con-
tribution of transport, whereas the correction to prior emis-
sions is only done locally — that is, the difference between
CNH3,0bs and CNH;,mod 1S attributed only to errors in local
emissions without accounting for the sensitivity to emissions
from other grid cells. This hybrid approach can partially in-
clude the nonlocal contribution from transport but still keeps
the computation tractable for a long-term study (such as this
study), striking a trade-off between the computational effi-
ciency of a local mass balance method (e.g., Van Damme
et al., 2018; Evangeliou et al., 2021) and the accuracy of a
full-fledged inversion, such as the 4D-Var method (e.g., Cao
et al., 2020; Chen et al., 2021a). The errors arising from lo-
cal correction of NH3 emissions are expected to be small in
most cases, as the NH3 lifetime is short relative to a typi-
cal transport time across a 4° x 5° grid cell on which emis-
sions are estimated. To identify cases when this error is not
negligible, we apply a monthly NH, budget analysis based
on the GEOS-Chem simulation and exclude grid cells from
our analysis where transport dominates over local prior emis-

Atmos. Chem. Phys., 22, 10375-10388, 2022

sions or deposition in the monthly NH, budget (Transport/E-
mission > 1 or Transport/Deposition > 1) (Fig. S3).

Because rapid changes in SO, emissions in eastern China
and India, particularly after 2012, are not captured by our
prior simulation (Fig. S2), the estimation of NH3 emission
trends using Eq. (1) may be biased over these regions. To
address this issue, we further modify Eq. (1) to include ob-
served trends in SO, column concentrations:

ENH3,SOQ —correct

CNH},ObS - CNH3,m0d + ZwCSOi_,mod

= ENH;,mod + ., 3
TNH3,mod

where w (%) is the fractional changes in average SO;

columns relative to the baseline year (i.e., 2012) over China

or India, and Cyp- . (molec. m~2s~1) is the simulated
4 )

column densities of aerosol sulfate. Here, we specify a linear
trend of —5%a~! for eastern China and 5% a~! for India
between 2012 and 2018, based on values derived from the
Ozone Monitoring Instrument (OMI) and Ozone Mapping
and Profiler Suite (OMPS) observations (Wang and Wang,
2020; Liu et al., 2018). We also test the impact of the un-
certainty in w on trend inferences over China and India. The
factor 2 accounts for the fact that two molecules of NHj3 are
required to neutralize one molecule of H,SO4. Equation (3)
only applies when NH3 is in excess, which is a condition usu-
ally met in eastern China and India but not necessarily else-
where (Lachatre et al., 2019; Acharja et al., 2022). Therefore,
we only apply Eq. (3) to eastern China and India to under-
stand the impact of changing SO, emissions on the inference
of NHj3 emission trends. The systematic use of SO, observa-
tions in NH3 emission estimations requires further investiga-
tions.
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Table 1. Uncertainty and sensitivity analyses of top-down NHj
emissions. Annual averaged NHj3 emissions are summed over
global land areas for 2008-2018.

Parameter perturbed Average emission (Tga™ 1y

0 None? (TDE) 78
1 Halved NHj lifetime® 92
2 Doubled NHj3 lifetime® 70
3 Upper IASI column error 83
4 Lower IASI column error 72
5  Number of retrievals > 4004 81
6  Number of retrievals > 1200° 74
7  Transport/Emission < 0.2f 72
8  Transport/Emission < 58 84

2 Excluding a grid cell if the retrieval number is less than 800 during a month or if

transport dominates over emissions or deposition in the simulated monthly NH3 budget.

b.¢ The lifetime is 50 % or 200 % of values from Eq. (1), respectively. de The monthly
retrieval number threshold for including a grid cell is set to be 400 or 1200,
respectively. ¢ The local budget ratio of the threshold for including a grid cell is set to
be 0.2 or 5, respectively.

2.4 Uncertainty and sensitivity analysis

We perform a series of perturbation and sensitivity experi-
ments to assess the uncertainty of our estimates (Table 1). We
perturb CNH;,mod and TNH;,mod in Eq. (1). The perturbations
t0 TNH;,mod are set to be 50 % and 200 % (Table 1, rows 1-
2). The perturbation to CNH;,mod 1S set to be the standard
deviation of monthly mean column concentrations (oc,obs)
(Table 1, rows 3—4), which is given by

; “

OC,obs =

where €; (in mol m~2) is the ith NH3 column measurement
out of a total number of n observations in a grid cell during
a month, and o; is the relative error. We then use 2 = o ¢ obs
to evaluate the effect of measurement errors in emission esti-
mates (Table 1, rows 3—4). We compute results with alterna-
tive data-filtering parameters (Table 1, rows 5-8), including
the thresholds to exclude grid cells when the number of ob-
servations is too small (Table 1, rows 5-6) and the local mass
balance assumption is potentially invalid (Table 1, rows 7-8).
We also test if our trend inferences over China and India us-
ing Eq. (3) are sensitive to uncertainty in observed trends in
SO, concentrations (w).

3 Results and discussion

3.1 Observed and simulated NH3z concentrations

Figure 1a and b plot observed and simulated NH3 total col-
umn concentrations averaged over 2008-2018. The GEOS-
Chem simulation generally reproduces the global distribu-
tion of NH3 concentrations observed by the IASI instru-
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ment. Good agreements (i.e., difference < 10 %) are found
in the US, Europe, and southern South America. However,
the GEOS-Chem model underestimates NH3 concentrations
by 20 %—-120 % in eastern China, northern South America,
and tropical Africa, and it overestimates NH3 concentrations
by around 50 % in southern India, indicating biases in NH3
emissions over these regions.

Figure Ic and d show 2008-2018 linear trends in NHj3
column concentrations derived from the IASI observations
and the GEOS-Chem simulations. The linear trends are com-
puted based on the time series of annual averages. The IASI
trends shown in Fig. lc are generally consistent with a re-
cent analysis by Van Damme et al. (2021). IASI observes a
positive NH3 concentration trend of 2.9 % a—! over the US,
and this trend is well captured by GEOS-Chem. Similarly,
the observations and simulation agree on a dipole pattern
in South America (i.e., positive trend in Brazil and nega-
tive trend in Argentina). Because anthropogenic emissions
over this region are set to be invariant in our simulation
(Fig. S2), this agreement suggests that these trends are due to
meteorological conditions and/or fire emissions, rather than
changes in anthropogenic emissions. The satellite also ob-
serves significant positive trends in NH3 concentrations over
China (5.2 % a~"') and tropical Africa (2.0 % a~!), but these
trends are not reproduced in the simulation (0.3%a~! for
China and 0.2 % a~! for tropical Africa). These simulation—
observation differences may not only reflect discrepancies in
the trends in anthropogenic NH3 emissions but can also be at-
tributed to uncaptured changes in SO; and/or NO,. emissions
in these regions. We also find that a positive NH3 concentra-
tion trend over Europe appears in the simulation (3.0 % a~')
but is much weaker (1.0%a~!) in the observations, sug-
gesting decreasing emissions after 2013. Satellite data show
positive NH3 concentration trends in northwestern India but
negative trends in southeastern India which are not repro-
duced by the simulation, although these trends over India are
mostly insignificant (at the 95 % confidence level) except for
a few grid cells in the southeast. Strong GEOS-Chem trends
in eastern Canada and Siberia result from large wildfires that
occurred in the latter part of the study period. IASI trends in
northern boreal regions are less robust because of noisy and
sparse measurements over high latitudes (Figs. S1, S3).

3.2 NHg3 emissions inferred from IASI observations

Figure 2 shows the spatial distributions of NH3 emission
fluxes and their 2008—2018 linear trends inferred from IASI
observations using the method described in Sect. 2.3. Fig-
ure 3 plots annual time series aggregated for seven se-
lected regions. The top-down emission (TDE) estimates sug-
gest upward adjustments in NH3z emissions of 62 % over
South America (SA), 69 % over tropical Africa (TA), and
327 % over Central Asia (CA), relative to the prior inven-
tory (BUE1), but downward adjustments in NH3 emissions
of 14 % over the India Peninsula (IP) and 33 % over Canada.

Atmos. Chem. Phys., 22, 10375-10388, 2022
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After accounting for the contributions from natural emissions
including fires, we find that most of these biases in NHj3
emissions can be attributed to anthropogenic sources, except
in Canada where the underestimation appears to be related
to fire emissions. This result reflects a general inadequate
representation of agricultural and industrial emissions from
developing continents in current global emission inventories.
The TDE finds good agreements with the BUE1 (difference
within 10 %) over the US, Europe (EU), eastern China (EC),
and Australia.

In addition to the adjustments in average emissions, the
TDE also detects changes in NH3 emissions during the pe-
riod from 2008 to 2018, as expressed in linear trends com-
puted from annual time series. We find significant positive
emission trends in SA (1.7 Tga~! per decade or 18 % per
decade) and TA (2.8 Tga~! per decade or 33 % per decade)
(Fig. 3). The large positive trends in TA are found around
Lake Natron, consistent with Clarisse et al. (2019) (Fig. 2d).
These increases in NHj3 emissions are concurrent with in-
tensifying agricultural activity in these regions (Warner et
al., 2017; Hickman et al., 2021), except for a 2010 peak
over SA that coincides with fires in savanna and evergreen
forests in this region (Chen et al., 2014). Comparison with
data from the Food and Agriculture Organization (FAO) of
the United Nations (http://www.fao.org/faostat, last access:
7 May 2022) suggests that the increase in SA is driven pri-
marily by a growing application of synthetic fertilizer (55 %
per decade), whereas the increase in TA is consistent with an
increasing amount of manure (28 % per decade) from a grow-
ing livestock population (Hickman et al., 2021) (Fig. 4).

Our results infer large but variable trends over northern
high latitudes (e.g., negative trends in Alaska, central Russia,
and eastern Europe, but positive trends in Canada) (Fig. 2d).
Because of large uncertainties associated with high-latitude
observations and emission optimization, these trends are less
robust but can be partly attributed to variations in fire ac-
tivity. Decreases in Russia and eastern Europe are related
to wildfire in boreal forests in the early part of the study
period (2008-2011) (Keywood et al., 2011; Warner et al.,
2017), while emission increases in Canada are due to wild-
fire in the late part of the study period (2013-2016 and 2017)
(Pavlovic et al., 2016), as also shown in the prior fire in-
ventory (GFED4) (Fig. S4). We also infer negative trends
(—43 % per decade) in Australia, which are statistically sig-
nificant, but the absolute magnitude of these trends is small
(—0.03gm~2a~! per decade; Fig. 2d). The TDE estimation
does not find significant trends in NH3 total emissions over
the US or Central Asia.

3.3 Impact of changing SO, emissions on NH3
emission trends over eastern China and India

Based on NH3; column measurements (Eq. 1), we also find
an increase of 61 % per decade (6.6 Tga~! per decade) in
NH3 emissions over eastern China (Fig. 3). This increase
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is especially large after 2013 and is driven mainly by in-
creases in the IASI NHj3 column concentration in eastern
China (Fig. 1c). This large post-2013 increase is inconsistent
with flat or even declining fertilizer input and manure amount
(Fig. 4). On the other hand, we find no appreciable emission
trend in IP (Fig. 3), which appears to agree with relatively
stable IAST NH3 concentrations over the period (Fig. 1c) but
is not supported by the increases in fertilizer application and
manure amount shown in the FAO report (Fig. 4).

An underlying assumption in Eq. (1) is that the model sim-
ulation captures the partition between gas-phase NH3 and
aerosol-phase NHI. In addition to alkaline NH3, the partition
is also determined by the abundance of acids (e.g., H2SO4
and HNO3). Inaccurate emissions of their precursors (e.g.,
SO; and NOy) in the model simulation, in particular over re-
gions with excessive NH3, can lead to biases in simulating
the NH3—NHI partition. It is well known that SO, emissions
in China have decreased rapidly since 2013 because of strin-
gent air pollution control measures (Sun et al., 2018; Zhai
et al., 2021), while SO, emissions from India have been in-
creasing (Qu et al., 2019). However, these regional trends are
not captured in our prior simulation because our simulation
does not have annually varying emission inventories for these
regions (Fig. S2).

We find that the discrepancies between top-down (Eq. 1)
and bottom-up estimates of emission trends over EC and IP
can be largely reconciled by including observed SO, column
concentrations in the top-down calculation (Eq. 3). By ac-
counting for OMI- and OMPS-observed SO, trends (Wang
and Wang, 2020), we derive an overall decreasing trend
in NH3 emissions in EC between 2013 and 2018 (—2.2 £
2.3Tga~! per decade, —28 4-32 % per decade) (the uncer-
tainty is derived by perturbing w by 1% a~!, as for the India
results below). This result suggests that observed increases in
NHj3 columns over China are largely explained by decreases
in SO, emissions (Figs. 1, 3), which is consistent with previ-
ous studies (Fu et al., 2017; Liu et al., 2018; Lachatre et al.,
2019; Chen et al., 2021b). Bottom-up inventories (e.g., the
Multi-resolution Emission Inventory for China, MEIC, v1.3
and EDGAR v5.0) also report stable or declining NH3 emis-
sions from China during the study period (Li et al., 2017;
Crippa et al., 2020). Meanwhile, the revised method (Eq. 3)
finds a positive post-2013 trend (3.3+£0.3 Tga~! per decade,
30+3%a~!) in NH; emissions over India. Compared with
our original estimate using Eq. (1), NH3 emission trends de-
rived with Eq. (3) (i.e., decrease in China and increase in In-
dia after 2013) are more consistent with the bottom-up infor-
mation on fertilizer input and manure management (Fig. 4).
This result demonstrates the potential of assimilating both
NH3 and SO satellite observations when constraining NH3
emissions, which should be explored further in the future.
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Figure 2. Spatial distribution of NH3 emission fluxes during 2008-2018, showing (a) bottom-up emissions (BUE1) and (b) top-down
emissions (TDE) inferred from IASI observations, (¢) the difference between TDE and BUE1 estimates, and (d) emission trends derived from
TDE estimates. Green boxes denote the seven regions analyzed in Sect. 3.2. Top-down emission fluxes are computed with Eq. (1) except for
IP and EC for which Eq. (3) is applied. Linear trends are computed from the time series of annual averages. The dots in panel (d) represent
significant linear trends at the 95 % confidence level.
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Figure 3. Annual NH3 emissions for seven selected regions during 2008-2018. The shaded regions represent the upper and lower bounds
derived from uncertainty analyses (see Sect. 2.4). Average annual emissions (Tga™ 1y, absolute linear trends (Tg a~! per decade), and relative
trends (% per decade) for 2008-2018 are inset. The asterisk symbols “*” and “**” represent that linear trends are significant at the 95 %
and 99 % confidence levels, respectively. Red dashed lines represent top-down NH3 emission estimates over IP and EC during 2013-2018,
based on Eq. (3) which accounts for observed trends in SO, (denoted as “SO;-corrected”). Statistics for this estimate are also inset. The prior
inventory (BUE1) implemented in our simulation only partially accounts for interannual changes from bottom-up information (i.e., Fig. 4).

3.4 Global total NH3 emissions sion of 180 Tga~! (Fig. 5). One cause of the difference be-

tween the two IASI-based estimates is in the diagnosis of
Integrating over land areas globally, our IASI-based TDE es- NHj lifetime from CTM. Evangeliou et al. (2021) treats con-
timate of NH3 is 78 (70-92) Tga™! (range of estimates from version from NHj to NH; as a terminal loss and diagnoses
uncertainty analysis, see Table 1) (Fig. 5). This result is about an average NHj lifetime of 11.6+0.6 h globally from a CTM,
20 %—40 % higher than bottom-up inventories (BUEI esti- which is close to the constant NHj3 lifetime of 12 h assumed
mate of 62 Tga ™! and BUE2 estimate of 56 Tga™"). In con- in Van Damme et al. (2018). In this study, we account for

trast, a previous study by Evangeliou et al. (2021), also based  the fact that fast thermodynamic equilibrium can be estab-
on the TASI data, estimated a much higher global NH3 emis-
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Figure 4. Synthetic fertilizer and livestock manure amount based on FAO reports (http://www.fao.org/faostat, last access: 7 May 2022)
during 2008-2018. To roughly compare the contribution from the two sectors, we convert FAO-reported statistics to NH3 emissions (Tg a—h
by applying fixed emission factors of 13 % for manure N contents (Ma et al., 2021) and 17 % for synthetic fertilizer N contents (Riddick et
al., 2016). The values of means (Tg a~ 1) and linear trends (Tg a~l per decade) are inset. Scales differ between panels.

lished between NH3 and NHI; thus, NH3 can only be termi-
nally lost through the deposition of the NH, family (Eq. 2),
which yields a global average NH3 lifetime of 21.2+3.8h
(Fig. 6). This longer NHj3 lifetime implies higher sensitivity
of the NH3 column density to NH3 emissions, leading to a
lower estimate of global NH3 emissions. In addition, instead
of locally scaling the observed NH3 column by lifetime (Van
Damme et al., 2018; Evangeliou et al., 2021; Marais et al.,
2021), our method (Eq. 1) partially accounts for the nonlocal
contribution from transport by including prior NH3 columns
from a full 3D simulation and using their difference from ob-
served NH3 columns to correct prior emissions, which pre-
vents the derivation of large NH3 emissions in remote re-
gions where observed NH3 concentrations are mainly driven
by transport. Our data-filtering strategy (Sect. 2.1 and 2.2) is
also crucial to avoid spurious top-down results when satellite
coverage is poor and the local mass balance assumption does
not hold.

Figure 6 shows the spatial variation in the NHj3 lifetime
diagnosed from the GEOS-Chem simulation. Short NHj
lifetimes (< 10h) are mainly found in northern high lati-
tudes. The short lifetime in eastern China is due to the high
wet NHI deposition velocity, although some regional stud-
ies suggested an overestimation of deposition fluxes by the
model, especially in forest areas (e.g., the Yangtze River
Basin) (Zhao et al., 2017; Xu et al., 2018). A very long
NHj lifetime (> 100 h) occurs over the Sahara and Australia,
where dry conditions result in slow wet deposition.

3.5 Uncertainty evaluation

We derive the uncertainty of top-down estimates from the
perturbation tests in Table 1. Figure 7 shows the global spa-
tial distribution of annual average uncertainties of NH3 emis-
sions derived from the ensemble of these perturbation tests.
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Absolute uncertainties are expressed as half of the ensem-
ble ranges, and relative uncertainties are computed by nor-
malizing absolute uncertainties by ensemble averages. We
find that both absolute and relative uncertainties are large in
Central Asia and tropical Africa, indicating that these source
regions are not well constrained by observations. In com-
parison, observations have some constraints over important
source regions of eastern China and northern India, which
have small relative uncertainties (< 20 %) but appreciable
absolute uncertainties (> 0.4 ga_1 m_2). Uncertainties are
small (< 20% and/or <0.2ga~!'m~2) in Europe and the
US.

Our fast top-down method (Egs. 1, 3) relies on the simpli-
fication of NH3 chemical and physical processes. Therefore,
it is not guaranteed that a simulation driven by TDE will gen-
erate results that are in improved agreement with ITASI obser-
vations. We evaluate the consistency of our results using full
GEOS-Chem simulations in the selected years of 2008, 2013,
and 2018. Results are shown in Fig. S5 (fractional bias, FB)
and Table S1 (number of valid grid cells; RZ: and root mean
square error, RMSE). The GEOS-Chem simulations driven
by the prior emissions (BUE1) tend to underestimate NH3
column density (mean FB ~ —30 %), whereas that driven by
our TDE estimates achieves a lower bias (mean FB ~ 10 %),
demonstrating the consistency of our TDE results with IASI
observations.

3.6 Comparison with independent surface networks

We also compare simulated surface NH3 concentra-
tions with independent ground-based measurements, in-
cluding (1) biweekly averaged NHj3 concentrations in
North America (AMoN, https://nadp.slh.wisc.edu/networks/
ammonia-monitoring-network/, last access: 3 June 2022),
(2) half-hourly/daily/weekly averaged NH3 concentrations
in Europe (emep, http://ebas-data.nilu.no/, last access:
3 June 2022), and (3) monthly averaged NH3 concentrations
in Southeast Asia (EANET, https://www.eanet.asia/, last ac-
cess: 3 June 2022). AMoN measures NH3 concentrations us-
ing passive devices (simple diffusion-type simpler), whereas
emep and EANET use both active and passive sampler sys-
tems among different sites (multi-type samplers). For com-
parison, we convert the observed NH3 concentrations in mi-
crograms per cubic meter (ugm ™) to parts per billion by vol-
ume (ppbv) using a factor of 1.44 (assuming a 25 °C temper-
ature and 1 atmosphere pressure) and average observations
monthly over the GEOS-Chem 4° x 5° grid. Figure 8 shows
the comparison by season. Only small adjustments are in-
ferred by our satellite-based estimations in these regions (i.e.,
North America, Europe, and Southeast Asia). Thus, TDE and
BUEI show similar performance against these ground mea-
surements. Although the simulation can capture the site-to-
site variations reasonably well, simulated surface values are
generally biased low compared with observations. This low
bias is also reported in the evaluation of previous IASI-based
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estimates (e.g., Evangeliou et al., 2021; Chen et al., 2021a).
Further investigations are needed to understand the reasons
for this bias.

4 Conclusions

This study quantifies global ammonia (NH3) fluxes monthly
from 2008 to 2018 at a 4° x 5° resolution using a fast
top-down method that incorporates IASI satellite observa-
tions and GEOS-Chem model simulations. The top-down
method updates the prior NH3 emissions with a correction
term that is positively proportional to the difference be-
tween the observed and simulated NH3 concentrations and
that is inversely proportional to the lifetime diagnosed from
a CTM. This method revises previously proposed fast top-
down methods in two aspects. First, we account for thermo-
dynamic equilibrium within the NH, family in diagnosing
the NHj3 lifetime, whereas previous studies have either as-
sumed a globally constant lifetime or treated the conversion
from NHj3 to NH;LF as a terminal sink. Second, our formu-
lation linearizes the column—emission relationship at prior
emissions as opposed to zero emissions, as done in the pre-
vious method, which generally reduces errors from the local
mass balance approximation. Another improvement is that
we apply several data-filtering procedures to exclude unre-
liable top-down results that are not sufficiently constrained
by observations or affected by large deviations from the lo-
cal mass balance assumption. The top-down method devel-
oped in this study is particularly useful for the long-term
global analysis of emission trends, as it largely accounts for
the impact of meteorology through the CTM simulation and
requires only small amount of computation relative to a full-
fledged inversion.

We apply this improved fast top-down method to TASI
NH3 column observations from 2008 to 2018. We find that
the BUE1 underestimates NH3 emission over South Amer-
ica (62 %) and tropical Africa (69 %) but results in overesti-
mates over India (14 %) and Canada (33 %). The bottom-up
inventory agrees with the top-down estimate over the US, Eu-
rope, and eastern China (i.e., within 10 %). Our analysis also
shows significant increases in India (13 % per decade), trop-
ical Africa (33 % per decade), and South America (18 % per
decade) during the study period, which is consistent with in-
tensifying agricultural activity over these regions. An analy-
sis of agricultural statistics suggests that the increase in tropi-
cal Africa is likely driven by a growing livestock population,
whereas the increase in South America is likely driven by
increasing fertilizer usage.

We show that large increases in NH3 concentrations in
eastern China are mainly driven by rapid decreases in SO;
emissions in recent years. By accounting for observed SO,
columns, we find that NH3 emissions from eastern China
are significantly decreasing during 2008-2018 (—19 % per
decade), with a larger negative trend after 2013 (—28 % per
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decade), compared with a significant positive trend (61 % per
decade) derived from assimilating only NHj3 data. Similarly,
a lack of trend in observed NH3 concentrations over India is
due to concurrent increases in SO, and NH3 emissions. Af-
ter including observed SO, columns in the calculation, we
estimate a 13 % increase in NH3z emissions over India, with a
significant post-2013 positive trend (30 % per decade). These
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results from assimilating both NH3 and SO, data are more
consistent with the agricultural statistics in China and India.
The multi-satellite (SO, and NH3) method is only applied
in India and China in this study. The extension of this idea
globally requires the development of formulations for varied
sulfate—nitrate—ammonium aerosol regimes and needs to be
addressed in a future study.
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Our estimate of global total NH3 emission is 78 (70-
92) Tga~!, about 30 % higher than the BUEI estimate. This
contrasts with a much higher estimate (180 Tga™') derived
from Evangeliou et al. (2021), also using TASI data. This dis-
crepancy can be primarily attributed to the longer NHj3 life-
time (i.e., global average of 21 h) diagnosed in our method,
which represents a greater sensitivity of NH3 column to
emissions, and the more conservative data-filtering strategy,
which removes potentially unreliable top-down results. Our
diagnosis of the NHj3 lifetime is an improvement over Evan-
geliou et al. (2021), as our formula accounts for the thermo-
dynamic equilibrium between gas-phase NH3 and aerosol-
phase NHI. Using model simulations, we show that our top-
down estimate achieves better consistency with IASI obser-
vations, compared with the bottom-up emission inventory.
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