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Abstract. The availability of formaldehyde (HCHO) (a proxy for volatile organic compound reactivity) and
nitrogen dioxide (NO2) (a proxy for nitrogen oxides) tropospheric columns from ultraviolet–visible (UV–Vis)
satellites has motivated many to use their ratios to gain some insights into the near-surface ozone sensitivity.
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Strong emphasis has been placed on the challenges that come with transforming what is being observed in the
tropospheric column to what is actually in the planetary boundary layer (PBL) and near the surface; however,
little attention has been paid to other sources of error such as chemistry, spatial representation, and retrieval
uncertainties. Here we leverage a wide spectrum of tools and data to quantify those errors carefully.

Concerning the chemistry error, a well-characterized box model constrained by more than 500 h of aircraft data
from NASA’s air quality campaigns is used to simulate the ratio of the chemical loss of HO2+RO2 (LROx) to the
chemical loss of NOx (LNOx). Subsequently, we challenge the predictive power of HCHO/NO2 ratios (FNRs),
which are commonly applied in current research, in detecting the underlying ozone regimes by comparing them
to LROx/LNOx . FNRs show a strongly linear (R2

= 0.94) relationship with LROx/LNOx , but only on the
logarithmic scale. Following the baseline (i.e., ln(LROx/LNOx)=−1.0± 0.2) with the model and mechanism
(CB06, r2) used for segregating NOx-sensitive from VOC-sensitive regimes, we observe a broad range of FNR
thresholds ranging from 1 to 4. The transitioning ratios strictly follow a Gaussian distribution with a mean and
standard deviation of 1.8 and 0.4, respectively. This implies that the FNR has an inherent 20 % standard error (1σ )
resulting from not accurately describing the ROx–HOx cycle. We calculate high ozone production rates (PO3)
dominated by large HCHO×NO2 concentration levels, a new proxy for the abundance of ozone precursors. The
relationship between PO3 and HCHO×NO2 becomes more pronounced when moving towards NOx-sensitive
regions due to nonlinear chemistry; our results indicate that there is fruitful information in the HCHO×NO2
metric that has not been utilized in ozone studies. The vast amount of vertical information on HCHO and NO2
concentrations from the air quality campaigns enables us to parameterize the vertical shapes of FNRs using a
second-order rational function permitting an analytical solution for an altitude adjustment factor to partition the
tropospheric columns into the PBL region. We propose a mathematical solution to the spatial representation
error based on modeling isotropic semivariograms. Based on summertime-averaged data, the Ozone Monitoring
Instrument (OMI) loses 12 % of its spatial information at its native resolution with respect to a high-resolution
sensor like the TROPOspheric Monitoring Instrument (TROPOMI) (> 5.5× 3.5 km2). A pixel with a grid size of
216 km2 fails at capturing ∼ 65 % of the spatial information in FNRs at a 50 km length scale comparable to the
size of a large urban center (e.g., Los Angeles). We ultimately leverage a large suite of in situ and ground-based
remote sensing measurements to draw the error distributions of daily TROPOMI and OMI tropospheric NO2
and HCHO columns. At a 68 % confidence interval (1σ ), errors pertaining to daily TROPOMI observations,
either HCHO or tropospheric NO2 columns, should be above 1.2–1.5× 1016 molec. cm−2 to attain a 20 %–30 %
standard error in the ratio. This level of error is almost non-achievable with the OMI given its large error in
HCHO.

The satellite column retrieval error is the largest contributor to the total error (40 %–90 %) in the FNRs. Due
to a stronger signal in cities, the total relative error (< 50 %) tends to be mild, whereas areas with low vegetation
and anthropogenic sources (e.g., the Rocky Mountains) are markedly uncertain (> 100 %). Our study suggests
that continuing development in the retrieval algorithm and sensor design and calibration is essential to be able to
advance the application of FNRs beyond a qualitative metric.

1 Introduction

Accurately representing the near-surface ozone (O3) sensi-
tivity to its two major precursors, nitrogen oxides (NOx) and
volatile organic compounds (VOCs), is an imperative step in
understanding the nonlinear chemistry associated with ozone
production rates in the atmosphere. While it is often tempt-
ing to characterize an air shed as NOx- or VOC-sensitive,
both conditions are expected as VOC-sensitive (ozone pro-
duction rates sensitive to VOC) conditions near NOx sources
transition to NOx-sensitive (ozone production rates sensitive
to NOx) conditions downwind as NOx dilutes. Thus, reduc-
ing the footprint of ozone production can mostly be achieved
through NOx reductions. VOCs are key to determining both
the location and peak in ozone production, which varies non-

linearly with the NOx abundance. Thus, knowledge of the
relative levels of NOx and VOCs informs the trajectory of
ozone production and expectations of where peak ozone will
occur as emissions change. While a large number of surface
stations regularly monitor the near-surface ambient nitrogen
dioxide (NO2) concentrations, the measurements of several
VOCs with different reactivity rates with respect to hydroxyl
(OH) are not routinely available. As such, our knowledge of
where and when ozone production rates are elevated and their
quantitative dependence on a long list of ozone precursors is
fairly limited, except for observationally rich air quality cam-
paigns. This limitation has prompted several studies, such as
Sillman et al. (1990), Tonnesen and Dennis (2000a, b), and
Sillman and He (2002), to investigate whether the ratio of
certain measurable compounds can diagnose ozone regime
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meaning if the ozone production rate is sensitive to NOx (i.e.,
NOx-sensitive) or VOC (i.e., VOC-sensitive). Sillman and
He (2002) suggested that H2O2/HNO3 was a robust, mea-
surable ozone indicator as this ratio could well describe the
chemical loss of HO2+RO2 (LROx) to the chemical loss
of NOx (LNOx) controlling the O3–NOx–VOC chemistry
(Kleinman et al., 2001). Nonetheless, both H2O2 and HNO3
measurements are limited to a few spatially sparse air quality
campaigns.

Formaldehyde (HCHO) is an oxidation product of VOCs,
and its relatively short lifetime (∼ 1–9 h) makes the loca-
tion of its primary and secondary sources rather identifiable
(Seinfield and Pandis, 2006; Fried et al., 2020). Fortunately,
monitoring HCHO abundance in the atmosphere has been a
key goal of many ultraviolet–visible (UV–Vis)-viewing satel-
lites for decades (Chance et al., 1991, 1997, 2000; González
Abad et al., 2015; De Smedt et al., 2008, 2010, 2012, 2015,
2018, 2021) with reasonable spatial coverage. Additionally,
the strong absorption of NO2 in the UV–Vis range has per-
mitted measurements of NO2 columns from space (Martin et
al., 2002; Boersma et al., 2004, 2007, 2018).

Advancements in satellite remote sensing of these two
key compounds have encouraged many studies to elucidate
whether the ratio of HCHO/NO2 (hereafter FNR) could be a
robust ozone indicator (Tonnensen and Dennis, 2000b; Mar-
tin et al., 2004; Duncan et al., 2010). Most studies using the
satellite-based FNR columns attempted to provide a quali-
tative view of the underlying chemical regimes (e.g., Choi
et al., 2012; Choi and Souri, 2015a, b; Jin and Holloway,
2015; Souri et al., 2017; Jeon et al., 2018; Lee et al., 2022).
Relatively few studies (Duncan et al., 2010; Jin et al., 2017;
Schroeder et al., 2017; Souri et al., 2020) have carefully tried
to provide a quantitative view of the usefulness of the ratio.
For the most part, the inhomogeneous vertical distribution
of FNRs in columns has been emphasized. Jin et al. (2017)
and Schroeder et al. (2017) showed that differing vertical
shapes of HCHO and NO2 can cause the vertical shapes of
FNRs to be inconsistent throughout the troposphere, lead-
ing to a variable relationship between what is being ob-
served from the satellite and what is actually occurring in
the lower troposphere. Jin et al. (2017) calculated an adjust-
ment factor to translate the column to the surface using a rel-
atively coarse global chemical transport model. The adjust-
ment factor showed a clear seasonal cycle stemming from
spatial and temporal variability associated with the vertical
sources and sinks of HCHO and NO2 in addition to the atmo-
spheric dynamics. In a more data-driven approach, Schroeder
et al. (2017) found that the detailed differences in the bound-
ary layer vertical distributions of HCHO and NO2 lead to
a wide range of ambiguous ratios. Additionally, ratios were
shown to shift on high ozone days, raising questions regard-
ing the value of satellite averages over longer timescales. Our
research aims to put together an integrated and data-driven
mathematical formula to translate the tropospheric column to

the planetary boundary layer (PBL), exploiting the abundant
aircraft measurements available during ozone seasons.

Using observationally constrained box models, Souri et
al. (2020) demonstrated that there was a fundamentally inher-
ent uncertainty related to the ratio originating from the chem-
ical dependency of HCHO on NOx (Wolfe et al., 2016a).
In VOC-rich (VOC-poor) environments, the transitioning ra-
tios from NOx-sensitive to VOC-sensitive occurred in larger
(smaller) values than the conventional thresholds defined in
Duncan et al. (2010) due to an increased (dampened) HCHO
production induced by NOx . To account for the chemical
feedback and to prevent a wide range of thresholds from seg-
regating NOx-sensitive and VOC-sensitive regions, Souri et
al. (2020) suggested using a first-order polynomial matched
to the ridgeline in P (O3) isopleths. Their study illuminated
the fact that the ratio suffers from an inherent chemical com-
plication. However, Souri et al. (2020) did not quantify the
error, and their work was limited to a subset of atmospheric
conditions. To challenge the predictive power of FNRs from
a chemistry perspective, we will take advantage of a large
suite of datasets to make maximum use of varying meteoro-
logical and chemical conditions.

Not only are satellite-based column measurements unable
to resolve the vertical information of chemical species in the
tropospheric column, but they are also unable to resolve the
horizontal spatial variability due to their spatial footprint.
The larger the footprint is, the more horizontal information
is blurred out. For instance, Souri et al. (2020) observed a
substantial spatial variance (information) in FNR columns at
the spatial resolution of 250× 250 m2 observed by an air-
borne sensor over Seoul, South Korea. It is intuitively clear
that a coarse-resolution sensor would lose a large degree of
spatial variance (information). This error, known as the spa-
tial representation error, has not been studied with respect to
FNRs. We will leverage what we have learned from Souri et
al. (2022), which modeled the spatial heterogeneity in dis-
crete data using geostatistics, to quantify the spatial repre-
sentation error in the ratio over an urban environment.

A longstanding challenge is to have a reliable estimate
of the satellite retrieval errors of tropospheric column NO2
and HCHO. Significant efforts have been made recently to
assemble, analyze, and estimate the retrieval errors for two
key satellite sensors, the TROPOspheric Monitoring Instru-
ment (TROPOMI) and the Ozone Monitoring Instrument
(OMI), using various in situ measurements (Verhoelst et al.,
2021; Vigouroux et al., 2020; Choi et al., 2020; Laughner
et al., 2019; Zhu et al., 2020). This study will exploit paired
comparisons from some of these new studies to propagate in-
dividual uncertainties in HCHO and NO2 to the FNR errors.

The overarching science goal of this study is to address
the fact that the accurate diagnosis of surface O3 photochem-
ical regimes is impeded by numerous uncertainty compo-
nents, which will be addressed in the current paper and which
can be classified into four major categories: (i) inherent un-
certainties associated with the approach of FNRs to diag-
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nose local O3 production and sensitivity regimes, (ii) trans-
lation of tropospheric column satellite retrievals to represent
PBL- or surface-level chemistry, (iii) spatial representativity
of ground pixels of satellite sensors, and (iv) uncertainties
associated with satellite-retrieved column-integrated concen-
trations of HCHO and NO2. We will address all of these
sources of uncertainty using a broad spectrum of data and
tools.

Our paper is organized into the following sections. Sec-
tion 2 describes the chemical box model setup and data ap-
plied. Section 3.1 to 3.4 deal with the chemistry aspects of
FNRs and show the results from a box model. Section 3.5
introduces a data-driven framework to transform the FNR
tropospheric columns to the PBL region. Section 3.6 offers
a new way of quantifying the spatial representation error in
satellites. Section 3.7 deals with the satellite error character-
ization and its impacts on the ratio. Section 3.8 summarizes
the fractional contribution of each error to the combined er-
ror. Finally, Sect. 4 provides a summary and conclusions of
the study.

2 Photochemical box modeling and aircraft data
used

To quantify the uncertainty of FNRs from a chemistry per-
spective and to obtain several imperative parameters, includ-
ing the calculated ozone production rates and the loss of NOx
(LNOx) and ROx (LROx), we utilize the Framework for 0-
D Atmospheric Modeling (F0AM) v4 (Wolfe et al., 2016b).
We adopt the Carbon Bond 6 (CB06, r2) chemical mecha-
nism, and heterogenous chemistry is not considered in our
simulations. The model is initialized with the measurements
of several compounds, many of which constrain the model
by being held constant for each time step (see Table 1).

Figure 1 shows the map of data points from De-
riving Information on Surface Conditions from Column
and Vertically Resolved Observations Relevant to Air
Quality (DISCOVER-AQ) Baltimore-Washington (2011),
DISCOVER-AQ Houston-Texas (2013), DISCOVER-AQ
Colorado (2014), and the Korea United States Air Qual-
ity Study (KORUS-AQ) (2016). Meteorological inputs come
from the observed pressure, temperature, and relative hu-
midity. The measurements of photolysis rates are not avail-
able for all photolysis reactions; therefore, our initial guess
of those rates comes from a look-up table populated by the
National Center for Atmospheric Research (NCAR) Tropo-
spheric Ultraviolet And Visible (TUV) model calculations.
These values are a function of solar zenith angle, total ozone
column density, surface albedo, and altitude. We set the to-
tal ozone column and the surface albedo to fixed numbers
of 325 DU (Dobson units) and 0.15, respectively. The ini-
tial guess is then corrected by applying the ratio of observed
photolysis rates of NO2+hv (jNO2) and/or O3+hv (jO1D)
to the calculated ones for all j values (i.e., wavelength-

independent). If both observations of jNO2 and jO1D are
available, the correction factor is averaged. The KORUS-AQ
campaign is the only one that provides jO1D measurements;
therefore, the use of the wavelength-independent correction
factor based on the ratio of observed to calculated jNO2 val-
ues for all j values is a potential source of error in the model,
especially when aerosols are present. The model calculations
are based on the observations merged to a temporal resolu-
tion varying from 10 to 15 s. Each calculation was run for 5
consecutive days with an integration time of 1 h to approach
the diel steady state. We test the number of solar cycles
against 10 d on the KORUS-AQ setup and observe no notice-
able difference in simulated OH and HCHO (Fig. S1 in the
Supplement), indicating that five solar cycles suffice. Some
secondarily formed species must be unconstrained for the
purpose of model validation. Therefore, the concentrations
of several secondarily formed compounds, such as HCHO
and peroxyacetyl nitrate (PAN), are unconstrained. Nitric ox-
ide (NO) and NO2 are also allowed to cycle, while their sum
(i.e., NOx) is constrained. Because the model does not con-
sider various physical loss pathways, including deposition
and transport, which vary by time and space, we oversim-
plify their physical loss through a first-order dilution rate set
to 1/86 400–1/43 200 s−1 (i.e., 24 or 12 h lifetime), which in
turn prevents relatively long-lived species from accumulating
over time. Our decision on unconstraining HCHO, a pivotal
compound impacting the simulation of HOx , may introduce
some systematic biases into the simulation of radicals deter-
mining ozone chemistry (Schroeder et al., 2020). Therefore,
to mitigate the potential bias in HCHO, we set the dilution
factor to maintain the campaign-averaged bias in the simu-
lated HCHO with respect to observations of less than 5 %.
However, it is essential to recognize that HCHO can fluctu-
ate freely for each point measurement because the dilution
constraint is set to a fixed value for an individual campaign.
Each time tag is independently simulated, meaning we do
not initialize the next run using the simulated values from
the previous one; this in turn permits parallel computation.
Regarding the KORUS-AQ campaign where HOx observa-
tions were available, we only ran the model for data points
with HOx measurements. Similarly to Souri et al. (2020), we
filled gaps in VOC observations with a bilinear interpolation
method with no extrapolation allowed. In complex polluted
atmospheric conditions such as that over Seoul, South Ko-
rea, Souri et al. (2020) observed that this simple treatment
yielded comparable results with respect to the NASA LaRC
model (Schroeder et al., 2020), which incorporated a more
comprehensive data harmonization. Table 1 lists the major
configurations along with the observations used for the box
model.

Several parameters are calculated based on the box model
outputs. LROx is defined through the sum of primarily
radical–radical reactions:

Atmos. Chem. Phys., 23, 1963–1986, 2023 https://doi.org/10.5194/acp-23-1963-2023



A. H. Souri et al.: Errors in HCHO/NO2 1967

Table 1. The box model configurations and inputs.

Temporal resolution of samples 10–15 s

Time steps 1 h

Number of solar cycles 5

Dilution constant 1/86 400–1/43 200 (s−1)

Meteorological inputs Pressure, temperature, and relative humidity

Photolysis frequency estimates LUT based on the NCAR TUV model calculations

Photolysis frequency constraints (campaign no.b) Measured jNO2 (1–4) and jO1D (4)

Compounds (instrument no.a, campaign no.b) used for con-
straining the box model

H2(1, 4)c, CO (4, 1–4), NOx (2, 1–4), O3 (2, 1–4), SO2 (6,
4), CH4 (4, 1–4), HNO3 (10, 1–4), isoprene (9, 1–4), monoter-
penes (9, 1–4), acetone (9, 1–4), ethylene (1, 4), ethane (1, 4),
methanol (9, 1–4), propane (1, 4), benzene (1 or 9, 2–4), xylene
(1 or 9, 1 and 4), toluene (1 or 9, 1–4), glyoxal (8, 4), acetalde-
hyde (9, 1–4), methyl vinyl ketone (9, 1–4), methyl ethyl ketone
(9, 2–4), propene (1 or 9, 2 and 4), acetic acid (9, 2–4), glyco-
laldehyde (5, 4), H2O2 (5, 4)

Unconstrained compounds (instrument no.a, campaign no.b)
used for validation

HO2 (3, 4), OH (3, 4), NO (2, 1–4), NO2 (2, 1–4), PAN (10,
1–4), HCHO (7, 1–4)

Chemical mechanism CB06

a (1) UC Irvine’s Whole Air Sampler (WAS), (2) NCAR’s 4-Channel Chemiluminescence, (3) Penn State’s Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS), (4)
NASA Langley’s DACOM tunable diode laser spectrometer, (5) Caltech’s single mass analyzer, (6) Georgia Tech’s ionization mass spectrometer, (7) the University of
Colorado at Boulder’s Compact Atmospheric Multi-species Spectrometer (CAMS), (8) Korean Airborne Cavity Enhanced Spectrometer, (9) University of Innsbruck’s
PTR-TOF-MS instrument, and (10) UC Berkeley’s TD-LIF. b (1) DISCOVER-Baltimore-Washington, (2) DISCOVER-Texas-Houston, (3) DISCOVER-Colorado, and (4)
KORUS-AQ. c In the absence of measurements, a default value of 550 ppbv is specified.

LROx = kHO2+HO2 [HO2]2

+

∑
kRO2i+HO2 [RO2i] [HO2]

+

∑
kRO2i+RO2i [RO2i]

2, (1)

where k is the reaction rate constant. LNOx mainly occurs
via the NO2+OH reaction:

LNOx = kOH+NO2+M [OH][NO2] [M] , (2)

where M is a third body. We calculate P (O3) by subtract-
ing the ozone loss pathways dictated by HOx (HO+HO2),
NO2+OH, O3 photolysis, ozonolysis, and the reaction
of O(1D) with water vapor from the formation pathways
through the removal of NO via HO2 and RO2:

P (O3)= kHO2+NO [HO2] [NO]

+

∑
kRO2i+NO[RO2i] [NO]

− kOH+NO2+M [OH][NO2] [M]−P (RONO2)
− kHO2+O3 [HO2] [O3]− kOH+O3 [OH][O3]

− kO(1D)+H2O

[
O
(

1D
)]

[H2O]

−L(O3+ alkenes). (3)

3 Results and discussion

3.1 Box model validation

There are uncertainties associated with the box model (e.g.,
Brune et al., 2022; Zhang et al., 2021; Lee et al., 2021),
which can be attributed to (i) the lack of inclusion of phys-
ical processes such as entrainment/detrainment and diffu-
sion, (ii) discounting the heterogeneous chemistry, (iii) in-
valid assumption of the diel steady state in areas close to
large emission sources or in photochemically less active en-
vironments (Thornton et al., 2002; Souri et al., 2021), (iv) er-
rors in the chemical mechanism, and (v) errors in the mea-
surements. These limitations necessitate a thorough valida-
tion of the model using unconstrained observations. While
models have been known for a long time not to be 100 %
accurate (Box, 1976), it is important to characterize whether
the model can effectively represent reality. For instance, if
the simulated HCHO is poorly correlated with observations
and/or displayed large magnitude biases, it will be erroneous
to assume that the sources of HCHO, along with the rele-
vant chemical pathways, are appropriate. It is important to
acknowledge that the VOC constraints for these model cal-
culations are incomplete, especially for the DISCOVER-AQ
campaigns, which lacked comprehensive VOC observations.
Nevertheless, we will show that the selected VOCs are suf-
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Figure 1. The spatial distributions of aircraft measurements
collected during NASA’s (a) DISCOVER-AQ Houston-Texas,
(b) DISCOVER-AQ Baltimore-Washington, (c) DISCOVER-AQ
Colorado, and (d) KORUS-AQ. The duration of each campaign is
based on how long the aircraft was in the air.

ficient to reproduce a large variance (> 70 %) in observed
HCHO.

We diagnose the performance of the box model by com-
paring the simulated values of six compounds to observa-
tions: HCHO, NO, NO2, PAN, hydroperoxyl radical (HO2),
and OH. Figure 2 depicts the scatterplot of the comparisons
along with several statistics. HCHO observations are usually
constrained in box models to improve the representation of
HO2 (Schroeder et al., 2017; Souri et al., 2020; Brune et
al., 2022); however, this constraint may mask the realistic
characterization of the chemical mechanism with respect to
the treatment of VOCs. Additionally, it is important to know
whether the sources of HCHO are adequate. Therefore, we
detach the model from this constraint to perform a fairer and
more stringent validation.

Concerning HCHO, our model does have considerable
skill in reproducing the variability of observed HCHO (R2

=

0.73). To evaluate whether this agreement is accidentally
caused by the choice of the dilution factor and to identify
whether our VOC treatment is inferior compared to the one
adopted in the NASA LaRC (Schroeder et al., 2020), we con-
ducted three sets of sensitivity tests for the KORUS-AQ cam-
paign, including ones with and without considering a dilu-
tion factor and another one without HNO3 and H2O2 con-
straints (Fig. S2). The lack of consideration of a dilution fac-
tor results in no difference in the variance in HCHO cap-
tured by our model (R2

= 0.81). Our model without the di-
lution factor is still skillful in replicating the magnitude of

HCHO with less than 12 % bias. This is why the optimal di-
lution factor for each campaign is within 12 to 24 h, which
is not different from other box modeling studies (e.g., Brune
et al., 2022; Miller and Brune, 2022). We observe no differ-
ence in the simulated HCHO when HNO3 and H2O2 values
are not constrained. The unconstrained NASA LaRC setup
oversampled at 10 s frequency captures 86 % variance in the
measurements, only slightly (6 %) outperforming our result.
However, the unconstrained NASA LaRC setup greatly un-
derestimates the magnitude of HCHO compared to our model
results.

The model performs well with regard to the simulation
of NO (R2

= 0.89) and NO2 (R2
= 0.99) on the logarith-

mic scale. Immediately evident is the underestimation of NO
in highly polluted regions, in contrast to an overestimation
in clean ones. This discrepancy leads to an underestimation
(overestimation) of NO/NO2 in polluted (clean) regions. The
primary drivers of NO/NO2 are jNO2 and O3, both of which
are constrained in the model. What can essentially deviate the
partitioning between NO and NO2 from that of observations
in polluted areas is the assumption of the diel steady state,
which is rarely strictly valid where measurements are close
to large emitters. The overestimation of NO in low-NOx ar-
eas is often blamed on the lack of chemical sink pathways
of NO in chemical mechanisms (e.g., Newland et al., 2021).
The relatively reasonable performance of PAN (R2

= 0.63) is
possibly due to constraining some of the oxygenated VOCs,
such as acetaldehyde. Xu et al. (2021) observed a strong de-
pendency of PAN concentrations on NO/NO2 ratios. Smaller
NO/NO2 ratios are usually associated with larger PAN mix-
ing ratios because NO can effectively remove peroxyacetyl
radicals. We observe an overestimated PAN (0.27 ppbv), pos-
sibly due to an underestimation of NO/NO2. Moreover, we
should not rule out the impact of the first-order dilution fac-
tor, which was only empirically set in this study. For in-
stance, if we ignore the dilution process for the KORUS-AQ
campaign, the bias of the model in terms of PAN will in-
crease by 33 %, resulting in poor performance (R2

= 0.40)
(Fig. S3). We notice that this poor performance primarily oc-
curs for high-altitude measurements where PAN is thermally
stable (Fig. S4); therefore, this does not impact the major-
ity of rapid atmospheric chemistry occurring in the lower
troposphere, such as the formation of HCHO. Schroeder et
al. (2020) found that proper simulation of PAN in the pol-
luted PBL during KORUS-AQ required a first-order loss rate
based on thermal decomposition at the average PBL temper-
ature, which was more realistic than the widely varying lo-
cal PAN lifetimes associated with temperature gradients be-
tween the surface and the top of the PBL. This solution is
computationally equivalent to the dilution rate used in this
study.

KORUS-AQ was the only field campaign providing OH
and HO2 measurements. Concerning HO2, former studies
such as Schroeder et al. (2017), Souri et al. (2020), and Brune
et al. (2022) managed to reproduce HO2 mixing ratios with
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Figure 2. The comparisons of the observed concentrations of several critical compounds to those simulated by our F0AM box model. Each
subplot contains the mean bias (MB), mean absolute bias (MAB), and root mean square error (RMSE). The least-squares fit to the paired data
and the coefficient of determination (R2) are also individually shown for each compound. Note that we do not account for the observation
errors on the x axis. The concentrations of NO and NO2 are log-transformed.

R2 ranging from 0.6 to 0.7. The performance of our model
(R2
= 0.66) is similar to these past studies, with nearly neg-

ligible biases (< 1 %). One may argue that the absence of
the HO2 uptake by aerosols is contributing to some of the
discrepancies we observe in the HO2 comparison. Brune et
al. (2022) provided compelling evidence showing that con-
sidering the HO2 uptake made their results significantly in-
consistent with the observations, suggesting that the HO2 up-
take might have been inconsequential during the campaign.
Our model manages to reproduce 64 % of the variance of
observed OH, outperforming the simulations presented in
Souri et al. (2020) and Brune et al. (2022) by > 10 %. The
slope (= 1.03) is not too far from the identity line, indicat-
ing that our box model systematically overestimates OH by
0.62× 106 cm−3. This may be attributed to a missing OH
sink in the mechanism or the lack of inclusion of some
VOCs. A sensitivity test involving removing the first-order
dilution process demonstrates that the simulation of HOx
is rather insensitive to this parameter (Fig. S5). In general,
the model performance is consistent, or outperforms, results
from recent box modeling studies, indicating that it is at least
roughly representative of the real-world ozone chemistry and
sensitivity regimes.

3.2 Can HCHO/NO2 ratios fully describe the
HOx–ROx cycle?

Kleinman et al. (2001) demonstrated that LROx/LNOx is
the most robust ozone regime indicator. Thus, the predic-
tive power of FNRs in detecting the underlying chemi-

cal conditions can be challenged by comparing FNRs to
LROx/LNOx . Ideally, if they show a strong degree of
correspondence (i.e., R2

= 1.0), we can confidently say
that FNRs can realistically portray the chemical regimes.
Any divergence of these two quantities indicates the in-
adequacy of the FNR indicator. Souri et al. (2020) ob-
served a strong linear relationship between the logarithmic-
transformed FNRs and those of LROx/LNOx . Our analy-
sis in this study will be based on the simulated values to
ensure that the relationship is coherent based on a real-
ization from the well-characterized box model. As pointed
out by Schroeder et al. (2017) and Souri et al. (2020), a
natural logarithm of LROx/LNOx roughly equal to −1.0
(i.e., LROx/LNOx = 0.35–0.37) perceptibly separates VOC-
sensitive from NOx-sensitive regimes, which would make
this threshold the baseline of our analysis.

Figure 3 demonstrates the log–log relationship of
LROx/LNOx , FNRs, and P (O3) from all four air qual-
ity campaigns. The log–log relationships from each indi-
vidual campaign are shown in Figs. S6–S9. We overlay
the LROx/LNOx baseline threshold along with two com-
monly used thresholds for FNRs suggested by Duncan et
al. (2010); they defined VOC-sensitive regimes if FNR< 1
and NOx-sensitive ones if FNR> 2. Any region undergo-
ing a value between these thresholds is unlabeled and con-
sidered to be in a transitional regime. The size of each
data point is proportional to the HCHO×NO2 concentra-
tion magnitude. One striking finding from this plot is that
there is indeed a strong linear relationship between the
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logarithmic-transformed LROx/LNOx and the FNR (R2
=

0.91). A strong linear relationship between the two quanti-
ties in the log–log scale indicates a power law dependence
(i.e., y = axb). A strong power law dependence means that
these two quantities have a poor correlation at their low
and high values. This is mainly caused by the fact that
HCHO does not fully describe VOC reactivity rates in en-
vironments with high and low VOC concentrations (Souri et
al., 2020). The question is what range of FNRs will fall in
ln(LROx/LNOx)=−1.0± 0.2. Following the baseline, the
transitioning ratios follow a normal distribution with a mean
of 1.8, a standard deviation of 0.4, and a range from 1 to
4 (Fig. S10). We define the chemical error in the applica-
tion of FNRs to separate the chemical regimes as the relative
error standard deviation (i.e., σ/µ) of the transitioning ra-
tios leading to ∼ 20 %. These numbers are based on a single
model realization and can change if a different mechanism
is used; nonetheless, the model has considerable skill in re-
producing many different unconstrained compounds, espe-
cially OH, suggesting that it is a rather reliable realization.
Comparing the transitioning FNRs to the NO2 concentrations
suggests no correlation (r = 0.02), whereas there is a linear
correlation between the transitioning ratios and the HCHO
concentrations (r = 0.56). This tendency reinforces the study
of Souri et al. (2020), who, primarily due to the HCHO–NO2
feedback, observed a larger FNR threshold in VOC-rich en-
vironments to be able to detect the chemical regimes.

3.3 Large PO3 rates occur in regions with large
HCHO×NO2 concentrations when moving towards
NOx-sensitive regions

A striking and perhaps intuitive tendency observed from
Fig. 3 is that large PO3 rates are mostly tied to higher
HCHO×NO2. However, this relationship gradually weak-
ens as we move towards VOC-sensitive regions (smaller
LROx/LNOx ratios). This is a textbook example of non-
linear ozone chemistry. In VOC-sensitive areas, PO3 can
be strongly inhibited by NO2+OH and the formation of
organic nitrates despite the abundance of the precursors.
In the application of remote sensing of ozone precur-
sors, the greatest unused metric describing the mass of
the ozone precursors is HCHO×NO2. However, this met-
ric should only be used in conjunction with FNRs. To
demonstrate this, based on what the baseline (LROx/LNOx)
suggests against thresholds on FNRs defined by Duncan
et al. (2010), we group the data into four regions: NOx-
sensitive–NOx-sensitive, NOx-sensitive–transitional, VOC-
sensitive–transitional, and VOC-sensitive–VOC-sensitive. A
different perspective on this categorization is that the tran-
sitional regimes are a weaker characterization of the main
regime; for instance, NOx-sensitive–transitional regions are
less NOx-sensitive than NOx-sensitive–NOx-sensitive. Sub-
sequently, the cumulative distribution functions (CDFs) of
PO3 and HCHO×NO2 with respect to the aforementioned

Figure 3. The scatterplot of natural logarithm-transformed
HCHO/NO2 versus LROx/LNOx based on the simulated values
performed by the F0AM box model. The heat color indicates the
calculated ozone production rates (PO3). The size of each data point
is proportional to HCHO×NO2. The black line is the baseline sep-
arator of NOx -sensitive (above the line) and VOC-sensitive (below
the line) regimes. We overlay HCHO/NO2 = 1 and HCHO/NO2 =
2 as red and purple lines, respectively. The dashed dark green line
indicates the least-squares fit to the paired data. The HCHO/NO2 =
1.8 with a 20 % error is the optimal transitioning point based on this
result.

groups are calculated, which is shown in Fig. 4. Regarding
NOx-sensitive–NOx-sensitive regions, we see the PO3 CDF
very quickly converging to the probability of 100 %, indi-
cating that the distribution of PO3 is skewed towards very
low values. The median of PO3 for this particular regime
(where CDF = 50 %) is only 0.25 ppbv h−1. This agrees
with previous studies such as Martin et al. (2002), Choi et
al. (2012), Jin et al. (2017), and Souri et al. (2017) reporting
that NOx-sensitive regimes dominate in pristine areas. The
PO3 CDFs between NOx-sensitive–transitional and VOC-
sensitive–VOC-sensitive are not too distinct, whereas their
HCHO×NO2 CDFs are substantially different. The nonlin-
ear ozone chemistry suppresses PO3 in highly VOC-sensitive
areas such that those values are not too different from those
in mildly polluted areas (NOx-sensitive–transitional). Per-
haps the most interesting conclusion from this figure is that
elevated PO3 values (median= 4.6 ppbv h−1), a factor of 2
larger than two previous regimes, are mostly found in VOC-
sensitive–transitional. This is primarily due to two causes:
(i) this particular regime is not strongly inhibited by the
nonlinear chemistry, particularly NO2+OH, and (ii) it is
associated with abundant precursors evident in the median
of HCHO×NO2 being 3 times as large of those in NOx-
sensitive–transitional. This tendency illustrates the notion of
nonlinear chemistry and how this may affect regulations.
Simply knowing where the regimes are might not suffice to
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pinpoint the peak of PO3, as this analysis suggests that we
need to consider both the FNR and HCHO×NO2; both met-
rics are readily accessible from satellite remote-sensing sen-
sors.

3.4 Can we estimate PO3 using the information from
HCHO/NO2 and HCHO×NO2?

It may be advantageous to construct an empirical function
fitted to these two quantities and elucidate the maximum
variance (information) we can potentially gain to recreate
PO3. After several attempts, we found a bilinear function
(z= a0+ a1x+ a2y+ a3xy) to be a good fit without over-
parameterization. Due to the presence of extreme values in
both the FNR and HCHO×NO2, we use a weighted least-
squares method for the curve fitting based on the distance
of the fitted curve to the data points (known as bi-squares
weighting). The best fit with R2 equals 0.94, and an RMSE
of 0.60 ppbv h−1 is

PO3 = 0.74− 0.09x− 0.02y+ 0.25xy, (4)

where x and y are the FNR (unitless) and HCHO×NO2
(ppbv2), respectively. The residual of the fit is shown in
Fig. S11. The gradients of PO3 with respect to x and y are

dPO3

dx
= 0.25y− 0.09, (5)

dPO3

dy
= 0.25x− 0.02. (6)

An apparent observation arises from these equations: i.e., the
derivative of PO3 to each metric depends on the other one
underscoring their interconnectedness. For instance, Eq. (6)
suggests that larger FNRs (x) result in a larger gradient
of PO3 to the abundance of HCHO×NO2(y). In very low
FNRs, this gradient can become very small, rendering PO3
insensitive to (or in extreme cases, negatively correlated
with) HCHO×NO2. This analysis provides encouraging re-
sults about the future application of the satellite-derived
HCHO×NO2; however, the wide class of problems relating
to the application of satellite-derived FNR columns, such as
satellite errors in columns or the translation between columns
to the PBL, is also present in Eq. (4), even in a more pro-
nounced way due to HCHO×NO2 and HCHO2 (= xy). This
new perspective on PO3 estimation deserves a separate study.

3.5 Altitude dependency and its parametrization

A lingering concern over the application of satellite-based
FNR tropospheric columns is that the vertical distributions
of HCHO and NO2 are integrated into columns; thus, this
vertical information is permanently lost. Here, we provide
insights into the vertical distribution of FNRs within the tro-
pospheric column. This task requires information about the
differences between (i) the vertical shape of HCHO and that

of NO2 and (ii) the vertical shape in the sensitivity of the
retrievals to the different altitude layers (described as scat-
tering weights). Ideally, if both compounds show an iden-
tical relative shape, the FNR columns will be valid for ev-
ery air parcel along the vertical path (i.e., a straight line).
Previous studies such as Jin et al. (2017) and Schroeder et
al. (2017) observed a large degree of vertical inhomogeneity
in both HCHO and NO2 concentrations, suggesting that this
ideal condition cannot be met. We do not always have pre-
cise observations of HCHO and NO2 vertical distributions,
but we can constitute some degree of generalization by lever-
aging the measurements made during the aircraft campaigns.
As for the differences in the vertical shapes (i.e., the curva-
ture) of the sensitivity of the retrievals between HCHO and
NO2 channels (i.e., ∼ 340 and ∼ 440 nm), under normal at-
mospheric and viewing geometry conditions, several stud-
ies such as Nowlan et al. (2018) and Lorente et al. (2017)
showed small differences in the vertical shapes of the scat-
tering weights in the first few kilometers in altitude above
the surface, where the significant fluctuations in FNRs usu-
ally take place. Therefore, our analysis does not consider the
varying vertical shapes in the scattering weights. However,
this assumption might not hold for excessive aerosol load-
ing with variable extinction efficiency between ∼ 340 and
∼ 440 nm wavelengths or extreme solar zenith angles.

Figure 5 demonstrates the violin plot of the afternoon
(> 12:00 LT) vertical distribution of HCHO, NO2, and FNRs
observed by NASA’s aircraft during the four field campaigns
analyzed in this study superimposed by the simulated PO3
rates. The vertical layers are grouped into 16 altitudes rang-
ing from 0.25 to 7.75 km. Each vertical layer incorporates
measurements ±0.25 km of the mid-layer height. The obser-
vations do not follow a normal distribution, particularly in the
lower parts of the atmosphere; thus, medians are preferred to
represent the central tendency. While the largest PO3 rates
tend to occur in areas close to the surface (< 2 km a.g.l.),
non-negligible fractions of the elevated PO3 rates are also
observed in other parts of the atmosphere, such as in the free
troposphere.

Several intriguing features are observed in Fig. 5. First, up
to the 5.75 km range, which encompasses the PBL area and
a large portion of the free troposphere, NO2 concentrations
tend to decrease more quickly than those of HCHO, in line
with previous studies such as Schroeder et al. (2017), Jin et
al. (2017), Chan et al. (2019), and Ren et al. (2022). Second,
above 5.75 km, HCHO levels off, whereas NO2 shows an in-
creasing trend. Finally, due to their different vertical shapes,
we observe non-uniformities in the vertical distribution of
FNRs: they become more NOx-sensitive with altitude up to
a turning point at 5.75 km and then shift back to the VOC-
sensitive direction.

It is attractive to model these shapes and apply parameter-
izations to understand how their shapes will complicate the
use of tropospheric column retrieval from satellites. First-
order rational functions are a good candidate to use. Con-
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Figure 4. Cumulative distribution functions of PO3 and HCHO×NO2 simulated by the box model constrained by NASA’s aircraft observa-
tions. Four regions are shown: NOx -sensitive–NOx -sensitive, NOx -sensitive–transitional, VOC-sensitive–transitional, and VOC-sensitive–
VOC-sensitive. The first name of the regime is based on the baseline (ln(LROx/LNOx )=−1.0), whereas the second one follows those de-
fined in Duncan et al. (2010): VOC-sensitive if HCHO/NO2< 1, transitional if 1<HCHO/NO2< 2, and NOx -sensitive if HCHO/NO2> 2.

Figure 5. The violin plots of the afternoon vertical distribution of HCHO, NO2, and HCHO/NO2 observations collected during the
DISCOVER-AQ Texas, Colorado, Maryland, and KORUS-AQ campaigns. The violin plots demonstrate the distribution of data (i.e., a wider
width means a higher frequency). White dots show the median. A solid black line shows both the 25th and 75th percentiles. The heatmap
denotes the simulated ozone production rates.

cerning the vertical dependency of HCHO and NO2, we find
a reasonable fit (R2

= 0.73) as

HCHO,NO2 =
a0z+ a1

z+ a2
, (7)

where z is altitude in kilometers. ai (i = 0,1,2) are fitting
parameters. From this equation it is determined that FNRs
follow a second-order rational function:

f (z)=
HCHO
NO2

=
b0z

2
+ b1z+ b2

b3z2+ b4z+ b5
, (8)

where bi (i = 0, . . .,5) are fitting parameters. One can effort-
lessly fit this function to different bounds of the vertical dis-
tribution of FNRs such as the 25th and 75th percentiles and
subsequently estimate the first moment of the resultant poly-
gon along z divided by the total area bounded to the polygon
(the centroid G) via

G(z1z2)=
1

2A

z2∫
z1

f 2(z)75th− f
2(z)25thdz, (9)

where A is the area of the polygon bounded by the 75th per-
centiles, f (z)75th, and 25th percentiles (f (z)25th) of FNRs
(shown in Fig. 5 as solid black lines). We define an alti-
tude adjustment factor (fadj) such that one can translate ob-
served FNR tropospheric column ratios, such as those re-
trieved from satellites, to a defined altitude and below that
point (zt ) through

fadj =
G(0,zt )
G(0,8km)

, (10)

where zt can be interchanged to match the planetary bound-
ary layer height (PBLH). This definition is more beneficial
than using the entire tropospheric column to surface conver-
sion (e.g., Jin et al., 2017) because ozone can form in various
vertical layers. Using the observations collected during the
campaign, we estimate Eq. (10) along with ±1σ boundaries
shown in Fig. 6. To determine the adjustment factor error,
we reestimate Eq. (9) with the ±1σ level in the coefficients
obtained from Eq. (8). The resultant error is shown in the
dashed red line in Fig. 6. This error results from uncertain-
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Figure 6. The adjustment factor is the ratio of the centroid of
the polygon-bounding 25th and 75th percentiles of the observed
HCHO/NO2 columns by NASA’s aircraft between the surface and
8 km to the ones between the surface and the desired altitude. This
factor can be easily applied to the observed HCHO/NO2 columns
to translate the value to the desired altitude stretching down to the
surface (i.e., PBLH). The optimal curve follows a quadratic function
formulated in Eq. (11).

ties associated with assuming that the second-order rational
function can explain the vertical distribution of FNRs. The
shape of the resulting adjustment factor is in line with the
vertical distribution of FNRs (see Fig. 5): the adjustment fac-
tor curve closer to the surface has values smaller than 1, in-
creases to values larger than 1 in the mid-troposphere, and
finally converges to 1 near the top of measured concentra-
tions. If one picks out an altitude pertaining to a PBLH,
one can easily apply fadj to the observed FNR columns to
estimate the corresponding ratio for that specific PBLH. A
more evolved PBLH (i.e., a large zt) results in stronger ver-
tical mixing, rendering fadj closer to 1. The standard error
deviation of this conversion is around 19 %. The relatively
low fluctuations in the adjustment factor around 1 suggest
that under the observed atmospheric conditions (clear-sky af-
ternoon summers), the columnar tropospheric ratios do not
poorly represent the chemical conditions in the PBL region.

It is beneficial to model this curve to make this data-
driven conversion easier for future applications. A second-
order polynomial can well describe (R2

= 0.97) this curve:

fadj = az
2
t +bzt+c, a =−0.01, b = 0.15, c = 0.78. (11)

Although Eq. (11) does not include observations above
8 km, the area bounded between f (z)75th and f (z)25th at
higher altitudes is too small to make a noticeable impact on
this adjustment factor.

One may object that since we estimated the adjustment
factor based on two boundaries (25th and 75th percentiles) of
the data, we are no longer really dealing with 50 % of features
observed in the vertical shapes of FNRs. This valid critique

can be overcome by gradually relaxing the lower and upper
limits and examining the resulting change in fadj. When we
reduce the lower limit in Eq. (9) from the 25th to 1st per-
centiles, the optimal curve is similar to the one shown in
Fig. 6 (Fig. S12). However, when we extend the upper limit
from the 75th percentile to greater values, we see the fit be-
coming less robust above the 80th percentile, indicating that
the formulation applies to∼ 80 % of the data. The reason be-
hind the poor representation of the adjustment factor for the
upper tail of the population is the extremely steep turning
point between 5.5 and 6.0 km, necessitating a higher-order
rational function to be used for Eqs. (7) and (8). We prefer to
limit this analysis to both boundaries and the order defined
in Eqs. (8) and (9) because extreme value predictions usually
lack robustness.

A caveat with these results is that our analysis is limited to
afternoon observations because we focus on afternoon low-
orbiting sensors such as OMI and TROPOMI. Nonetheless,
Schroeder et al. (2017) and Crawford et al. (2021) observed
large diurnal variability in these profiles due to diurnal vari-
ability in sinks and sources of NO2 and HCHO and atmo-
spheric dynamics. The diurnal cycle has an important impli-
cation for geostationary satellites such as Tropospheric Emis-
sions indeed: Monitoring of Pollution (TEMPO) (Chance
et al., 2019). Limiting the observations to morning time
results in a smaller adjustment factor for altitudes close
to the surface resulting from steeper vertical gradients of
HCHO/NO2 (Figs. S13 and S14). This tendency agrees with
Jin et al. (2017), who observed a larger deviation from 1 in
an adjustment factor used for the column–surface conversion
in winter.

Another important caveat with our analysis is that it is
based upon four air quality campaigns in warm seasons that
avoid times/areas with convective transport; as such, our
analysis needs to be made aware of the vertical shapes of
FNRs during convective activities and cold seasons. How-
ever, a few compelling assumptions can minimize these over-
sights: first, it is very atypical to encounter elevated ozone
production rates during cold seasons, with few exceptions
(Ahmadov et al., 2015; Rappenglück et al., 2014); second,
the notion of ozone regimes is only appropriate in photo-
chemically active environments where the ROx–HOx cycle is
active. An example of this can be found in Souri et al. (2021),
who observed an enhancement of surface ozone in central
Europe during a lockdown in April 2020 (up to 5 ppbv) com-
pared to a baseline which was explainable by the reduced O3
titration through NO in place of the photochemically induced
production. An exaggerated extension to this example is the
nighttime chemistry where NO–O3–NO2 partitioning is the
primary driver of negative ozone production rates; at night,
the definition of NOx-sensitive or VOC-sensitive is mean-
ingless, so it is in photochemically less active environments.
Third, it is rarely advisable to use cloudy scenes in satel-
lite UV–Vis gas retrievals due to the arguable assumption
about Lambertian clouds and a highly uncertain cloud op-
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tical centroid and albedo. Accordingly, atmospheric convec-
tion occurring during storms or fires is commonly masked in
satellite-based studies. Therefore, the limitations associated
with the adjustment factor are mild compared to the advan-
tages.

3.6 Spatial heterogeneity

The spatial representation error resulting from unresolved
processes and scales (Janjić et al., 2018; Valin et al., 2011;
Souri et al., 2022) refers to the amount of information lost
due to satellite footprint or unresolved inputs used in satel-
lite retrieval algorithms. Unfortunately, this source of error
cannot be determined when we do not know the true state of
the spatial variability. There is, however, a practical way of
resolving this by conducting multi-scale intercomparisons of
a coarse spatial resolution output against a finer one. Yet de-
spite the absence of the truth in this approach, we tend to find
their comparisons useful in giving us an appreciation of the
error.

We build the reference data on qualified pixels
(qa_value> 0.75) of the offline TROPOMI tropospheric
NO2 version 2.2.0 (van Geffen et al., 2022; Boersma et al.,
2018) and total HCHO columns version 2.02.01 (De Smedt
et al., 2018) oversampled at 3× 3 km2 in summer 2021
over the US. Figure 7 shows the map of those tropospheric
columns as well as FNRs. Encouragingly, the small footprint
and relatively low detection limit of TROPOMI compared
to its predecessor satellite sensors (e.g., OMI) enable us to
have possibly one of the finest maps of HCHO over the US
to date. Large values of HCHO columns are found in the
southeast due to strong isoprene emissions (e.g., Zhu et al.,
2016; Wells et al., 2020). Cities like Houston (Boeke et al.,
2011; Zhu et al., 2014; Pan et al., 2015; Diao et al., 2016),
Kansas City, Phoenix (Nunnermacker et al., 2004), and
Los Angeles (de Gouw et al., 2018) also show pronounced
enhancements of HCHO possibly due to anthropogenic
sources. Expectedly, large tropospheric NO2 columns are
often confined to cities and some coal-fired power plants
along the Ohio River basin. Concerning FNRs, low values
dominate cities, whereas high values are found in remote
regions. An immediate tendency observed from these maps
is that the length scale of HCHO columns is longer than
that of NO2. This indicates that NO2 columns are more
heterogeneous. Because of this, we observe a large degree of
spatial heterogeneity with respect to FNRs.

Here we limit our analysis to Los Angeles due to com-
putational costs imposed by the subsequent experiment. To
quantify the spatial representation errors caused by satellite
footprint size, we upscale the FNRs by convolving the values
with four low-pass box filters with sizes of 13× 24, 36× 36,
108× 108, and 216× 216 km2, shown in the first column of
Fig. 8. Subsequently, to extract the spatial variance (informa-
tion), we follow the definition of the experimental semivari-

Figure 7. Oversampled TROPOMI total HCHO columns (a), tro-
pospheric NO2 columns (b), and the ratio (c) at 3× 3 km2 from
June till August 2021 over the US. The ratio map is derived from
the averaged maps shown in panels (a) and (b).

ogram (Matheron, 1963):

γ (h)=
1

2N (h)

∑
|xi−xj |−|h|≤ε

[Z (xi)−Z(xj )]2, (12)

where Z (xi) and Z
(
xj
)

are discrete pixels of FNRs, and
N (h) is the number of paired pixels separated by the vec-
tor of h. The |.| operator indicates the length of a vector. The
condition of

∣∣xi − xj ∣∣−|h| ≤ ε is to permit a certain tolerance
for differences in the length of the vector. Here, we ignore the
directional dependence in γ (h) which makes the vector of h

a scalar (h= |h|). Moreover, we bin γ values in 100 evenly
spaced intervals ranging from 0 to 5◦. To remove potential
outliers (such as noise), it is wise to model the semivariogram
using an empirical regression model. To model the semivari-
ogram, we follow the stable Gaussian function used by Souri
et al. (2022):

γ (h)= s
(

1− e−( h
r

)c0
)
: c0 = 1.5, (13)

where r and s are fitting parameters. For the most part, geo-
physical quantities become spatially uncorrelated at a certain
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Figure 8. The first column represents the spatial map of
HCHO/NO2 ratios over Los Angeles from June till August 2021
at different spatial resolutions. To upscale each map to a coarser
footprint, we use an ideal box filter tailored to the target resolution.
The second column shows the semivariograms corresponding to the
left map along with the fitted curve (red line). The sill and the range
are computed based on the fitted curve. The x axis in the semivari-
ogram is in degrees (1◦∼ 110 km).

distance called the range, and the variance associated with
that distance is called the sill. The fitting parameters, r , and
s, describe these two quantities as long as the stable Gaus-
sian function can well fit the shape of a semivariogram. The
semivariograms and the fits associated with each map are de-
picted in the second column of Fig. 8.

The modeled semivariograms suggest that a coarser field
comes with a smaller sill, implying a loss in the spatial in-
formation (variance). The length scale (i.e., the range) only
sharply increases at coarser footprints (> 36× 36 km2). This
indicates that several coarse-resolution satellite sensors, such
as OMI (13× 24 km2), are rather able to determine the length
scales of FNRs over a major city such as Los Angeles. By
leveraging the modeled semivariograms, we can effortlessly
determine the spatial representation error for a specific scale
(e.g., h= 10 km) through

e2 (h)= 1−
γ (h)
γref (h)

, (14)

Figure 9. The spatial representation errors quantified based on the
proposed method in this study. The error explains the spatial loss
(or variance) due to the footprint of a hypothetical sensor at dif-
ferent length scales. To put this error into perspective, a grid box
with 216× 216 km2 will naturally lose 65 % of the spatial variance
existing in the ratio at the scale of Los Angeles, which is roughly
50 km wide. All of these numbers are in reference to the TROPOMI
3× 3 km2.

where γ (h) and γref (h) are the modeled semivariogram of
the target and the reference fields (3× 3 km2). This equation
articulates the amount of information lost in the target field
compared to the reference. Accordingly, the proposed formu-
lation of the spatial representation error is relative. Figure 9
depicts the representation errors for various footprints. For
the most part, the OMI nadir pixel (13× 24 km2) only has a
∼ 12 % loss of spatial variance. By contrast, a grid box with a
size of 216× 216 km2 fails at capturing∼ 65 % of the spatial
information in FNRs with a 50 km length scale comparable
to the extent of Los Angeles. The advantage of our method
is that we can mathematically describe the spatial represen-
tation error as a function of the length of our target. The
present method can be easily applied to other atmospheric
compounds and locations. We have named this method the
SpaTial Representation Error EstimaTor (STREET), which is
publicly available as an open-source package (Souri, 2022).

An oversight in the above experiment lies in its lack of
appreciation of unresolved physical processes in the satellite
measurements: a weak sensitivity of some retrievals to the
near-surface pollution due to the choice of spectral windows
used for fitting (Yang et al., 2014), using 1-D air mass factor
calculation instead of 3-D (Schwaerzel et al., 2020), and ne-
glecting the aerosol effect on the light path are just a few ex-
amples to point out. To account for the unresolved processes,
one can recalculate Eqs. (12)–(14) using outputs from differ-
ent retrieval frameworks, which is beyond the scope of this
study.
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3.7 Satellite errors

3.7.1 Concept

Two types of retrieval errors can affect our analysis: system-
atic errors (bias) and unsystematic ones (random errors). In
theory, it is very compelling to understand their differences.
In reality, the distinction between random and systematic er-
rors is not as clear-cut as it seems. For example, one may
wish to establish the credibility of a satellite retrieval by com-
paring it to a sky-radiance measurement over time. Because
each measurement is made at a different time, their compar-
ison is not a repetition of the same experiment; each time,
the atmosphere differs in some aspects, so each comparison
is unique. Adding more sky-radiance measurements will add
new experiments. For each paired data point, many unique
issues contribute differently to errors; as such, our problem
is grossly underdetermined (i.e., more unknowns for a given
observation). Here, we do not attempt to separate random
from systematic errors in the subsequent analysis, thereby
limiting this study to the total uncertainty.

We focus on analyzing the statistical errors drawn from
the differences between the benchmark and the retrievals
on a daily basis. Two sensors are used for this analysis:
TROPOMI and OMI. To propagate individual uncertainties
in HCHO and NO2 to FNRs, we follow an analytical ap-
proach involving Jacobians of the ratio to HCHO and NO2.
Assuming that errors in HCHO and NO2 are uncorrelated,
the relative error of the ratio can be estimated by

σ

ratio
=

√( σHCHO

HCHO

)2
+

(
σNO2

NO2

)2

, (15)

where σHCHO and σNO2 are total uncertainties of HCHO and
NO2 observations. It is important to recognize that the er-
rors in HCHO and NO2 are not strictly uncorrelated due to
assumptions made in their air mass factor calculations.

3.7.2 Error distributions in TROPOMI and OMI

We begin our analysis with the error distribution of daily
TROPOMI tropospheric NO2 columns (v1.02.02) against 22
MAX-DOAS instruments from May to September in 2018–
2021. The data are paired based on the criteria defined in
Verhoelst et al. (2021). The spatial locations of the stations
are mapped in Fig. S15. Figure 10a shows the histogram
of the TROPOMI minus MAX-DOAS instruments. The first
observation from this distribution is that it is skewed to-
wards lower differences, evident in the skewness parame-
ter around −4.6. As a result of the skewness, the median
should better represent the central tendency, which is around
−1× 1015 molec. cm−2. In general, TROPOMI tropospheric
NO2 columns show a low bias. We fit a normal distribution to
the data using the nonlinear Levenberg–Marquardt method.
This fitted normal distribution (R2

= 0.94) is used to approx-
imate σNO2 for different confidence intervals and to mini-

mize blunders. To understand how many of these disagree-
ments are caused by systematic errors as opposed to random
errors, we redo the histogram using monthly-based obser-
vations (Fig. S16). A slight change in the dispersions be-
tween the daily and monthly-basis analyses indicates the sig-
nificance of unresolved systematic (or relative) biases. This
tendency suggests that when conducting the analysis on a
monthly basis, the relative bias cannot be mitigated by av-
eraging. Verhoelst et al. (2021) rigorously studied the poten-
tial root cause of some discrepancies between MAX-DOAS
and TROPOMI. An important source of error stems from the
fundamental differences in the vertical sensitivities of MAX-
DOAS (more sensitive to the lower-tropospheric region) and
TROPOMI (more sensitive to the upper-tropospheric area).
This systematic error can only be mitigated using reliably
high-resolution vertical shape factors instead of spatiotem-
poral averaging of the satellite data.

The error analysis for OMI follows the same methods ap-
plied for TROPOMI, however with different benchmarks. We
follow the comparisons made between the operational prod-
uct version 3.1 and measured columns derived from NCAR’s
NO2 measurements integrated along aircraft spirals during
four NASA air quality campaigns. More information regard-
ing this data comparison can be found in Choi et al. (2020).
Figure 10b shows the histogram of OMI minus the integrated
spirals. Compared to TROPOMI, the OMI bias is worse by a
factor of 2. The standard deviation calculated from a Gaus-
sian fit (2.31× 1015 molec. cm−2) is not substantially differ-
ent from that of TROPOMI (2.11× 1015 molec. cm−2).

As for the error distribution of TROPOMI HCHO
columns, version 1.1.(5–7), we use 24 FTIR measurements
during the same time period based on the criteria specified in
Vigouroux et al. (2020). The stations are mapped in Fig. S15.
The frequency of the paired data is daily. Figure 11a depicts
the error distribution. The distribution is slightly broader
compared to that of NO2, manifested in a larger standard de-
viation of 4.32× 1015 molec. cm−2. This is primarily due to
two facts: (i) HCHO optical depths generally peak in the UV
range (< 380 nm), where the large optical depths of ozone
and Rayleigh scattering result in weaker and noisier sig-
nals (González Abad et al., 2019), and (ii) the broader and
stronger NO2 optical depths in the Vis range (400–500 nm),
where the signal-to-noise ratio is typically more outstanding,
permitting better-quality retrievals. Similarly to the NO2, we
fit a normal distribution (R2

= 0.90) to specify σHCHO for
different confidence intervals.

Concerning OMI HCHO columns from SAO version 3
(González Abad et al., 2015), we follow the intercomparison
approach proposed in Zhu et al. (2020). Based on this ap-
proach, the benchmarks come from GEOS-Chem-simulated
HCHO columns corrected by in situ aircraft measurements.
The measurements were made during ozone seasons from
the KORUS-AQ, DISCOVERs, FRAPPE, NOMADSS, and
SENEX campaigns (see Table 1 in Zhu et al., 2020). OMI
values ranging from −0.5× 1015 to 1.0× 1017 molec. cm−2
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Figure 10. The histogram of the differences between TROPOMI and OMI and benchmarks. MAX-DOAS and integrated aircraft spirals
are the TROPOMI and OMI benchmarks, respectively. The data curation and relevant criteria on how they have been paired can be found
in Verholest et al. (2021) and Choi et al. (2020). The statistics in green are based on all data, whereas those in pink are based on the fitted
Gaussian function.

with an effective cloud fraction between 0.0 and 0.3 and
solar zenith angle between 0 and 60◦ are only considered
in the comparison. Any pixels from OMI and grid boxes
from the corrected GEOS-Chem simulation that fall into a
polygon enclosing the campaign domain are used to cre-
ate the error distribution shown in Fig. 11b. The distribu-
tion has much denser data because the model output covers
a large portion of the satellite swath. The error distribution
suggests that OMI HCHO is inferior to TROPOMI, evident
in the larger bias and standard deviation. The OMI bias is
twice as large as that of TROPOMI. De Smedt et al. (2021)
observed the same level of bias from their comparisons of
OMI/TROPOMI with MAX-DOAS instruments (see Table 3
in their paper). Moreover, their OMI versus MAX-DOAS
comparisons were severely scattered. Likewise, we observe
the standard deviation of OMI from the fitted Gaussian func-
tion to be roughly 5 times as large as that of TROPOMI.
This can be primarily due to a weaker signal-to-noise ratio
(and sensor degradation) in OMI. It is for this reason that
OMI HCHO should be averaged over several months. An-
other possible reason for the large standard deviation is the
fact that the benchmark arises from a modeling experiment
whose ability to resolve spatiotemporal variations in HCHO
may be uncertain. This partly leads to the performance of
OMI looking poor.

3.7.3 The impact of retrieval error on the ratio

Following Eq. (15), we calculate the standard error for a
wide range of NO2 and HCHO columns at a 68 % confi-
dence interval (1σ ) for both TROPOMI and OMI derived
from the fitted Gaussian function to the histograms; the stan-
dard errors are shown in Fig. 12. We observe smaller errors
to be associated with larger tropospheric column concentra-
tions. As for TROPOMI, either daily HCHO or tropospheric
NO2 columns should be above 1.2–1.5× 1016 molec. cm−2

to achieve 20 %–30 % standard error. The TROPOMI er-
rors start diminishing the application of FNRs when both
measurements are below this threshold. Regarding OMI, it
is nearly impossible to get the standard error below 20 %–
30 % given its problematically large HCHO standard devi-
ation. For 50 % error, the daily HCHO columns should be
above 3.2× 1016 molec. cm−2. This range of error can also
be achieved if OMI tropospheric NO2 columns are above
8× 1015 molec. cm−2.

3.8 The fractional errors to the combined error

The ultimate task is to compile the aforementioned errors to
gauge how each individual source of error contributes to the
overall error. Although each error is different in nature, com-
bined they explain the uncertainties of one quantity (FNR)
and can be roughly considered independent; therefore, the
combined error is given by

σtotal =

√
σ 2

Col2PBL+ σ
2
SpatialRep+ σ

2
Retreival. (16)

σCol2PBL is the error in the adjustment factor defined in this
study. We calculated a 19 % standard error for a wide range
of PBLHs. Therefore, σCol2PBL equals 19 % of the observed
ratio (i.e., magnitude-dependent). σSpatialRep is more com-
plex. It is a function of the footprint of the satellite (or a
model), the spatial variability of the reference field, which
varies from environment to environment, and the length scale
of our target (e.g., a district, a city, or a state). Equation (14)
explicitly quantifies this error. The product of the square root
of that value and the observed ratio defines σSpatialRep. The
last error depends on the magnitude of HCHO and NO2 tro-
pospheric columns. It can be estimated from Eq. (15) times
the observed ratio. We did not include the chemistry error
in Eq. (16) because it was suited only for segregating the
chemical conditions; it does not describe the level of uncer-
tainty that comes with the observed columnar ratio. Figure 13
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Figure 11. The histogram of the differences between TROPOMI and OMI and benchmarks. FTIR and corrected GEOS-Chem simulations
are the TROPOMI and OMI benchmarks. The data curation and relevant criteria on how they have been paired can be found in Vigouroux
et al. (2021) and Zhu et al. (2020). The statistics in green color are based on all data, whereas those in pink are based on the fitted Gaussian
function.

Figure 12. The contour plots of the relative errors in TROPOMI (a) and OMI (b) based on dispersions derived from Figs. 10 and 11. The
errors used for these estimates are based on daily observations.

shows the total relative error given the observed TROPOMI
ratio seen in Fig. 7. We consider the OMI spatial represen-
tation error (13 % variance loss) for this case that was com-
puted in a city environment. The retrieval errors are based
on TROPOMI sigma values. Areas associated with relatively
small errors (< 50 %) are mostly seen in cities due to a
stronger signal (smaller σRetreival). Places with low vegeta-
tion and anthropogenic sources (i.e., the Rocky Mountains)
possess the largest errors (> 100 %).

To produce some examples of the fractional errors and the
combined error, we focus on two different environments with
two different sets of HCHO and NO2 columns. One repre-
sents a heavily polluted area, and the other one is a moder-
ately polluted region. We also include two footprints: OMI
(13× 24 km2) and a 108× 108 km2 pixel. Finally, we calcu-
late the percentage of each error component for both OMI
and TROPOMI sensors. Figure 14 shows the pie charts de-
scribing the percentage of each individual error in the to-
tal error for TROPOMI. Unless the footprint of the sensor
is coarse enough (e.g., 108 km2) to give rise to the spa-

Figure 13. The total relative error for observed TROPOMI
HCHO/NO2 ratios considering the daily TROPOMI re-
trieval errors (σNO2 = 2.11× 1015 molec. cm−2 and σHCHO =

2.97× 1015 molec. cm−2), the spatial representation pertaining to
the OMI footprint over a city environment (13 % loss in the spatial
variance), and the column-to-PBL translation parameterization
(19 %) proposed in this study. Please note that the observed FNR
is based on mean values from June to August 2021, while the
uncertainties used for error calculation are on a daily basis.
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tial representation error dominance, the retrieval error stands
out. New satellites are not expected to have very large foot-
prints; as such, retrieval errors appear to be the major ob-
stacle to using FNRs in a robust manner. Figure 15 shows
the same calculation but using OMI errors; the retrieval er-
rors massively surpass other errors. This motivates us to do
one more experiment: we recalculate the HCHO error distri-
bution in OMI using monthly-averaged data instead of daily
data (Fig. S17). This experiment suggests a standard devia-
tion of 9.4× 1015 molec. cm−2, with which we again observe
the retrieval error to be the largest contributor (> 80 %) to the
combined error (Fig. S18). A recent study (Johnson et al.,
2022) also suggests that retrieval errors can result in consid-
erable disagreement between FNRs from various sensors and
retrieval frameworks.

4 Summary

The main goal of this study was to characterize the errors
associated with the ratio of satellite-based HCHO to NO2
columns, which has been widely used for ozone sensitivity
studies. From the realization of the complexity of the prob-
lem, we now know that four major errors should be care-
fully quantified so that we can reliably represent the under-
lying ozone regimes. The errors are broken down into (i) the
chemistry error, (ii) the column-to-PBL translation, (iii) the
spatial representation error, and (iv) the retrieval error. Each
error has its own dynamics and has been tackled differently
by leveraging a broad spectrum of tools and data.

The chemistry error refers to the predictive power of the
HCHO/NO2 ratio (hereafter FNR) in describing the HOx–
ROx cycle, which can be well explained by the ratio of the
chemical loss of HO2+RO2 (LROx) to the chemical loss
of NOx (LNOx). Because those chemical reactions are not
directly observable, we set up a chemical box model con-
strained with a large suite of in situ aircraft measurements
collected during the DISCOVER-AQ and KORUS-AQ cam-
paigns (∼ 500 h of flight). Our box model showed a reason-
able performance in recreating some unconstrained key com-
pounds such as OH (R2

= 0.64, bias= 17 %), HO2 (R2
=

0.66, bias< 1 %), and HCHO (R2
= 0.73). Subsequently,

we compared the simulated FNRs to LROx/LNOx . They
showed a high degree of correspondence (R2

= 0.93), but
only on the logarithmic scale; this indicated that FNRs do
not fully describe the HOx–ROx cycle (i.e., the sensitivity
of ozone production rates to NOx and VOC) for heavily
polluted environments and pristine ones. Following a robust
baseline indicator (ln(LROx/LNOx)=−1.0± 0.2) segregat-
ing NOx-sensitive from VOC-sensitive regimes, we observed
a diverse range of FNRs ranging from 1 to 4. These transi-
tioning ratios had a Gaussian distribution with a mean of 1.8
and a standard deviation of 0.4. This implied that the relative
standard error associated with the ratio from the chemistry
perspective at a 68 % confidence interval was 20 %. Although

this threshold with its error was based on a single model re-
alization and can be different for a different chemical mech-
anism, it provided a useful universal baseline derived from
various chemical and meteorological conditions. At a 68 %
confidence level, any uncertainty beyond 20 % in the ozone
regime identification from FNRs likely originates from other
sources of error, such as the retrieval error.

Results from the box model showed that ozone production
rates in extremely polluted regions (VOC-sensitive) were
not significantly different from those in pristine ones (NOx-
sensitive) due to nonlinear chemical feedback mostly im-
posed by NO2+OH. Indeed, the largest PO3 rates (me-
dian= 4.6 ppbv h−1) were predominantly seen in VOC-
sensitive regimes tending towards the transitional regime.
This was primarily caused by the abundance of ozone precur-
sors (i.e., HCHO×NO2) and the diminished negative chem-
ical feedback. We also revealed that HCHO×NO2 could be
used as a sensible proxy for the ozone precursors’ abundance.
In theory, this metric, in conjunction with the ratio, provided
reasonable estimates of PO3 rates (RMSE= 0.60 ppbv h−1).

We then analyzed the afternoon vertical distribution of
HCHO, NO2, and their ratio observed from aircraft dur-
ing the air quality campaigns binned from the near surface
to 8 km. For altitudes below 5.75 km, HCHO concentration
steadily decreased with altitude but at a lower rate than
NO2. Above that altitude, NO2 concentrations stabilized and
slightly increased due to lightning and stratospheric sources.
The dissimilarity between the vertical shape of NO2 versus
HCHO resulted in a rather nonlinear shape of FNRs. This
nonlinear shape necessitated a mathematical formulation to
transform an observed columnar ratio to a ratio at a desired
vertical height expanding from the surface. We fit a second-
order rational function to the profile and formulated the alti-
tude adjustment factor, which followed a second-order poly-
nomial function starting from values below 1 for lower al-
titudes, following values above 1 for some high altitudes,
and finally converging to 1 at 8 km. This behavior means
that the ozone regime tends to get pushed slightly towards
the VOC-sensitive regime near the surface for a given tropo-
spheric columnar ratio. This tendency was more pronounced
in morning times when the nonlinear shape of FNRs was
stronger. This data-driven adjustment factor exclusively de-
rived from afternoon aircraft profiles during warm seasons
under nonconvective conditions had a standard error of 19 %.

An important error in the satellite-based observations
stemmed from unresolved spatial variability in trace gas con-
centrations within a satellite pixel (Souri et al., 2022; Tang
et al., 2021). The amount of unresolved spatial variability
(the spatial representation error) can in principle be mod-
eled if we base our reference on a distribution map made
from a high spatial resolution dataset. We modeled semivari-
ograms (or spatial autocorrelation) computed for a reference
map of FNRs observed by TROPOMI at 3× 3 km2 over Los
Angeles. Subsequently, we coarsened the map to 13× 24,
36× 36, 108× 108, and 216× 216 km2 and modeled their
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Figure 14. The fractional errors of retrieval (blue), column-to-PBL translation (green), and spatial representation (yellow) of the total error
budget for different concentrations and footprints based on TROPOMI sigma values. The retrieval error used for the error budget is on a daily
basis.

Figure 15. Same as Fig. 14 but based on OMI sigma values.

semivariograms. As for 13× 24 km2, which is equivalent to
the OMI nadir spatial resolution, around 12 % of spatial in-
formation (variance) was lost due to its footprint. The larger
the footprint, the bigger the spatial representation error. For
instance, a grid box with a size of 216× 216 km2 lost 65 %
of the spatial information in the ratio at a 50 km length scale.
Our method is compelling to understand and easy to ap-

ply for other products and different atmospheric environ-
ments. Based on this approach, we developed an open-source
package called the SpaTial Representation Error EstimaTor
(STREET) (Souri, 2022).

We presented estimates of retrieval errors associated with
daily TROPOMI and OMI tropospheric NO2 columns by
comparing them against a large suite of MAX-DOAS (Ver-
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hoelst et al., 2021) and vertically integrated measurements
from aircraft spirals (Choi et al., 2020). Both products
were smaller than the benchmark. Furthermore, they show
a relatively consistent dispersion at a 68 % confidence level
(∼ 2× 1015 molec. cm−2) suggested by fitting a normal func-
tion (R2> 0.9) to their error distributions. As for daily
TROPOMI and OMI HCHO products, we used global FTIR
observations (Vigouroux et al., 2020) and data-constrained
GEOS-Chem outputs from multiple campaigns (Zhu et al.,
2020), respectively. TROPOMI HCHO indeed outperforms
OMI HCHO with respect to bias and dispersion on a daily
basis. The standard deviation of OMI HCHO was found to
be roughly 5 times as large compared to TROPOMI. While
this error can be partly reduced by oversampling over a span
of a month or a season, it is critical to recognize that ozone
events are episodic; thus, daily observations should be the
standard mean for understanding the chemical pathways for
the formation of tropospheric ozone. After combining the
daily biases from both HCHO and NO2 TROPOMI compar-
isons, we concluded that either daily HCHO or tropospheric
NO2 columns should be above 1.2–1.5× 1016 molec. cm−2

to achieve 20 %–30 % standard error in the ratio. Due to the
large error in daily OMI HCHO, it was nearly impossible to
achieve 20 %–30 % standard error given the observable range
of HCHO and NO2 columns over our planet. To reach 50 %
error using daily OMI data, HCHO columns should be above
3.2× 1016 molec. cm−2 or tropospheric NO2 columns should
be above 8× 1015 molec. cm−2.

To build intuition in the significance of the errors above,
we finally calculated the combined error in the ratio by
linearly combining the root sum of the squares of the
TROPOMI retrieval errors, the spatial representation error
pertaining to the OMI nadir footprint over a city-like envi-
ronment, and the altitude adjustment error for a wide range
of observed HCHO and NO2 columns over the US. These
observations were based on TROPOMI in the summertime of
2021. The total errors were relatively mild (< 50 %) in cities
due to a stronger signal, whereas they easily exceeded 100 %
in regions with low vegetation and anthropogenic sources
(i.e., the Rocky Mountains). The retrieval error was the dom-
inant source of the combined error (40 %–90 %).

All of these aspects highlight the necessity of improving
the trace gas satellite retrieval algorithms in conjunction with
sensor calibration, although with the realization that a better
retrieval is somewhat limited by the advancements made in
other disciplines, such as atmospheric modeling and molec-
ular spectroscopy.
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this publication were partly obtained from the Network for
the Detection of Atmospheric Composition Change (NDACC)
and are available through the NDACC (2022) website at
http://www.ndacc.org. The spatial representation error is estimated
based on a publicly available package, the SpaTial Representation

Error EstimaTor (STREET) (https://github.com/ahsouri/STREET,
last access: 10 January, https://doi.org/10.5281/zenodo.7497106,
Souri, 2022). DISCOVER-AQ and KORUS-AQ aircraft data
can be downloaded from https://www-air.larc.nasa.gov/missions/
discover-aq/discover-aq.html (DISCOVER-AQ, 2022) and
https://www-air.larc.nasa.gov/missions/korus-aq/ (KORUS-
AQ, 2022). TROPOMI NO2 and HCHO data can be down-
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Nederlands Meteorologisch Instituut (KNMI), 2018) and
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Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-23-1963-2023-supplement.

Author contributions. AHS designed the research, analyzed the
data, conducted the simulations, made all the figures, and wrote the
paper. MSJ, SP, XL, and KC helped with conceptualization, fund
raising, and analysis. GMW helped with configuring the box model.
AF, AW, WB, DRB, AJW, RCC, KM, and CC measured various
compounds during the air quality campaigns. JHC orchestrated all
these campaigns and contributed to the model interpretation. TV,
SC, and GP provided paired MAX-DOAS and TROPOMI tropo-
spheric NO2 observations. CV and BL provided paired FTIR and
TROPOMI HCHO observations. SC and LL provided paired in-
tegrated aircraft spirals and OMI tropospheric NO2 observations.
LZ and SS provided the paired observations between the corrected
GEOS-Chem HCHO and OMI HCHO columns. All the authors
contributed to the discussion and edited the paper.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The PTR-MS instrument team (Philipp
Eichler, Lisa Kaser, Tomas Mikoviny, and Markus Müller) are
thanked for their support with field work and data processing. We
thank the FTIR HCHO measurement team of Thomas Blumen-
stock, Martine De Mazière, Michel Grutter, James W. Hannigan,
Nicholas Jones, Rigel Kivi, Erik Lutsch, Emmanuel Mahieu, Maria
Makarova, Isamu Morino, Isao Murata, Tomoo Nagahama, Jus-
tus Notholt, Ivan Ortega, Mathias Palm, Amelie Röhling, Matthias
Schneider, Dan Smale, Wolfgang Stremme, Kim String, Youwen
Sun, Ralf Sussmann, Yao Té, and Pucai Wang. We thank the Mete-
orological Service Suriname and Cornelis Becker for their support.
The MAX-DOAS data used in this publication were obtained from
Alkis Bais, John Burrows, Ka Lok Chan, Michel Grutter, Cheng
Liu, Hitoshi Irie, Vinod Kumar, Yugo Kanaya, Ankie Piters, Claudia
Rivera-Cárdenas, Andreas Richter, Michel Van Roozendael, Robert
Ryan, Vinayak Sinha, and Thomas Wagner. Fast delivery of MAX-

https://doi.org/10.5194/acp-23-1963-2023 Atmos. Chem. Phys., 23, 1963–1986, 2023

http://www.ndacc.org
https://github.com/ahsouri/STREET
https://doi.org/10.5281/zenodo.7497106
https://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html
https://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html
https://www-air.larc.nasa.gov/missions/korus-aq/
https://doi.org/10.5270/S5P-s4ljg54
https://doi.org/10.5270/S5P-tjlxfd2
https://doi.org/10.5194/acp-23-1963-2023-supplement


1982 A. H. Souri et al.: Errors in HCHO/NO2

DOAS data tailored to the S5P validation was organized through
S5PVT AO project NID-FORVAL. We thank the IISER Mohali at-
mospheric chemistry facility for supporting the MAX-DOAS mea-
surements at Mohali, India. We thank Glenn Diskin for providing
CO, CO2, and CH4 measurements. We thank Paul Wennberg for
H2O2 and HNO3 measurements.

Financial support. This study was funded by NASA’s Aura Sci-
ence Team (grant no. 80NSSC21K1333). PTR-MS measurements
were supported by the Austrian Federal Ministry for Transport, In-
novation, and Technology (bmvit, FFG-ALR-ASAP). The measure-
ments at Paramaribo have been supported by the BMBF (German
Ministry of Education and Research) in project ROMIC-II’s sub-
project TroStra (01LG1904A). The NDACC FTIR stations Bremen,
Garmisch, Izaña, Ny-Ålesund, Paramaribo, and Karlsruhe have
been supported by the German Bundesministerium für Wirtschaft
und Energie (BMWi) via DLR5 under grants 50EE1711A, B, and
D. The measurements and data analysis at Bremen are supported
by the Senate of Bremen. The NCAR FTS observation programs at
Thule, GR, Boulder, CO, and Mauna Loa, HI, are supported un-
der contract by the National Aeronautics and Space Administra-
tion (NASA). The National Center for Atmospheric Research is
sponsored by the National Science Foundation. The Thule effort is
also supported by the NSF Office of Polar Programs (OPP). Op-
erations at the Rikubetsu and Tsukuba FTIR sites are supported
in part by the GOSAT series project. The Paris TCCON site has
received funding from Sorbonne Université, the French research
center CNRS, and the French space agency CNES. The Jungfrau-
joch FTIR data are primarily available thanks to the support pro-
vided by the F.R.S. FNRS (Brussels), the GAW-CH program of
MeteoSwiss (Zürich), and the HFSJG.ch Foundation (Bern). IUP-
Bremen ground-based measurements are funded by DLR-Bonn and
received through project 50EE1709A. KNMI ground-based mea-
surements in De Bilt and Cabauw are partly supported by the Ruis-
dael Observatory project, Dutch Research Council (NWO) con-
tract 184.034.015, by the Netherlands Space Office (NSO) for
Sentinel-5p/TROPOMI validation, and by ESA via the EU CAMS
project. Lei Zhu and Shuai Sun were supported by grants from
the Guangdong Basic and Applied Basic Research Foundation
(2021A1515110713) and Shenzhen Science and Technology Pro-
gram (JCYJ20210324104604012). The TROPOMI validation work
was supported by BELSPO/ESA through ProDEx project TROVA-
E2 (grant no. PEA 4000116692). Tijl Verhoelst was supported by
BELSPO through BRAIN-BE 2.0 project LEGO-BEL-AQ (con-
tract B2/191/P1/LEGO-BEL-AQ).

Review statement. This paper was edited by Andreas Richter and
reviewed by two anonymous referees.

References

Ahmadov, R., McKeen, S., Trainer, M., Banta, R., Brewer, A.,
Brown, S., Edwards, P. M., de Gouw, J. A., Frost, G. J., Gilman,
J., Helmig, D., Johnson, B., Karion, A., Koss, A., Langford,
A., Lerner, B., Olson, J., Oltmans, S., Peischl, J., Pétron, G.,
Pichugina, Y., Roberts, J. M., Ryerson, T., Schnell, R., Senff, C.,

Sweeney, C., Thompson, C., Veres, P. R., Warneke, C., Wild, R.,
Williams, E. J., Yuan, B., and Zamora, R.: Understanding high
wintertime ozone pollution events in an oil- and natural gas-
producing region of the western US, Atmos. Chem. Phys., 15,
411–429, https://doi.org/10.5194/acp-15-411-2015, 2015.

Boeke, N. L., Marshall, J. D., Alvarez, S., Chance, K. V.,
Fried, A., Kurosu, T. P., Rappenglück, B., Richter, D.,
Walega, J., Weibring, P., and Millet, D. B.: Formalde-
hyde columns from the Ozone Monitoring Instrument: Ur-
ban versus background levels and evaluation using aircraft
data and a global model, J. Geophys. Res., 116, D05303,
https://doi.org/10.1029/2010JD014870, 2011.

Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for
tropospheric NO2 retrieval from space, J. Geophys. Res., 109,
D04311, https://doi.org/10.1029/2003JD003962, 2004.

Boersma, K. F., Eskes, H. J., Veefkind, J. P., Brinksma, E. J., van
der A, R. J., Sneep, M., van den Oord, G. H. J., Levelt, P. F.,
Stammes, P., Gleason, J. F., and Bucsela, E. J.: Near-real time
retrieval of tropospheric NO2 from OMI, Atmos. Chem. Phys.,
7, 2103–2118, https://doi.org/10.5194/acp-7-2103-2007, 2007.

Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente,
A., Beirle, S., van Geffen, J. H. G. M., Zara, M., Peters, E.,
Van Roozendael, M., Wagner, T., Maasakkers, J. D., van der
A, R. J., Nightingale, J., De Rudder, A., Irie, H., Pinardi,
G., Lambert, J.-C., and Compernolle, S. C.: Improving algo-
rithms and uncertainty estimates for satellite NO2 retrievals: re-
sults from the quality assurance for the essential climate vari-
ables (QA4ECV) project, Atmos. Meas. Tech., 11, 6651–6678,
https://doi.org/10.5194/amt-11-6651-2018, 2018.

Box, G. E. P.: Science and Statistics, J. Am. Stat. Assoc., 71, 791–
799, https://doi.org/10.1080/01621459.1976.10480949, 1976.

Brune, W. H., Miller, D. O., Thames, A. B., Brosius, A. L., Bar-
letta, B., Blake, D. R., Blake, N. J., Chen, G., Choi, Y., Craw-
ford, J. H., Digangi, J. P., Diskin, G., Fried, A., Hall, S. R.,
Hanisco, T. F., Huey, G. L., Hughes, S. C., Kim, M., Meinardi, S.,
Montzka, D. D., Pusede, S. E., Schroeder, J. R., Teng, A., Tanner,
D. J., Ullmann, K., Walega, J., Weinheimer, A., Wisthaler, A.,
and Wennberg, P. O.: Observations of atmospheric oxidation and
ozone production in South Korea, Atmos. Environ., 269, 118854,
https://doi.org/10.1016/j.atmosenv.2021.118854, 2022.

Chan, K. L., Wang, Z., Ding, A., Heue, K.-P., Shen, Y.,
Wang, J., Zhang, F., Shi, Y., Hao, N., and Wenig, M.:
MAX-DOAS measurements of tropospheric NO2 and HCHO
in Nanjing and a comparison to ozone monitoring instru-
ment observations, Atmos. Chem. Phys., 19, 10051–10071,
https://doi.org/10.5194/acp-19-10051-2019, 2019.

Chance, K., Palmer, P. I., Spurr, R. J. D., Martin, R. V., Kurosu, T.
P., and Jacob, D. J.: Satellite observations of formaldehyde over
North America from GOME, Geophys. Res. Lett., 27, 3461–
3464, https://doi.org/10.1029/2000GL011857, 2000.

Chance, K., Liu, X., Miller, C. C., Abad, G. G., Huang, G., Nowlan,
C., Souri, A., Suleiman, R., Sun, K., Wang, H., Zhu, L., Zoog-
man, P., Al-Saadi, J., Antuña-Marrero, J.-C., Carr, J., Chat-
field, R., Chin, M., Cohen, R., Edwards, D., Fishman, J., Flit-
tner, D., Geddes, J., Grutter, M., Herman, J. R., Jacob, D. J.,
Janz, S., Joiner, J., Kim, J., Krotkov, N. A., Lefer, B., Mar-
tin, R. V., Mayol-Bracero, O. L., Naeger, A., Newchurch, M.,
Pfister, G. G., Pickering, K., Pierce, R. B., Cárdenas, C. R.,
Saiz-Lopez, A., Simpson, W., Spinei, E., Spurr, R. J. D., Szyk-

Atmos. Chem. Phys., 23, 1963–1986, 2023 https://doi.org/10.5194/acp-23-1963-2023

https://doi.org/10.5194/acp-15-411-2015
https://doi.org/10.1029/2010JD014870
https://doi.org/10.1029/2003JD003962
https://doi.org/10.5194/acp-7-2103-2007
https://doi.org/10.5194/amt-11-6651-2018
https://doi.org/10.1080/01621459.1976.10480949
https://doi.org/10.1016/j.atmosenv.2021.118854
https://doi.org/10.5194/acp-19-10051-2019
https://doi.org/10.1029/2000GL011857


A. H. Souri et al.: Errors in HCHO/NO2 1983

man, J. J., Torres, O., and Wang, J.: TEMPO Green Paper:
Chemistry, physics, and meteorology experiments with the Tro-
pospheric Emissions: monitoring of pollution instrument, in:
Sensors, Systems, and Next-Generation Satellites XXIII, Sen-
sors, Systems, and Next-Generation Satellites XXIII, 56–67,
https://doi.org/10.1117/12.2534883, 2019.

Chance, K. V., Burrows, J. P., and Schneider, W.: Retrieval and
molecule sensitivity studies for the global ozone monitoring
experiment and the scanning imaging absorption spectrometer
for atmospheric chartography, in: Remote Sensing of Atmo-
spheric Chemistry, Remote Sens. Atmos. Chem., 1491, 151–165,
https://doi.org/10.1117/12.46657, 1991.

Chance, K. V., Burrows, J. P., Perner, D., and Schneider, W.:
Satellite measurements of atmospheric ozone profiles, in-
cluding tropospheric ozone, from ultraviolet/visible measure-
ments in the nadir geometry: a potential method to retrieve
tropospheric ozone, J. Quant. Spectrosc. Ra., 57, 467–476,
https://doi.org/10.1016/S0022-4073(96)00157-4, 1997.

Choi, S., Lamsal, L. N., Follette-Cook, M., Joiner, J., Krotkov, N.
A., Swartz, W. H., Pickering, K. E., Loughner, C. P., Appel, W.,
Pfister, G., Saide, P. E., Cohen, R. C., Weinheimer, A. J., and Her-
man, J. R.: Assessment of NO2 observations during DISCOVER-
AQ and KORUS-AQ field campaigns, Atmos. Meas. Tech., 13,
2523–2546, https://doi.org/10.5194/amt-13-2523-2020, 2020.

Choi, Y. and Souri, A. H.: Chemical condition and surface ozone
in large cities of Texas during the last decade: Observational evi-
dence from OMI, CAMS, and model analysis, Remote Sens. En-
viron., 168, 90–101, https://doi.org/10.1016/j.rse.2015.06.026,
2015a.

Choi, Y. and Souri, A. H.: Seasonal behavior and long-term trends
of tropospheric ozone, its precursors and chemical conditions
over Iran: A view from space, Atmos. Environ., 106, 232–240,
https://doi.org/10.1016/j.atmosenv.2015.02.012, 2015b.

Choi, Y., Kim, H., Tong, D., and Lee, P.: Summertime weekly
cycles of observed and modeled NOx and O3 concentrations
as a function of satellite-derived ozone production sensitivity
and land use types over the Continental United States, At-
mos. Chem. Phys., 12, 6291–6307, https://doi.org/10.5194/acp-
12-6291-2012, 2012.

Crawford, J. H., Ahn, J.-Y., Al-Saadi, J., Chang, L., Emmons, L. K.,
Kim, J., Lee, G., Park, J.-H., Park, R. J., Woo, J. H., Song, C.-K.,
Hong, J.-H., Hong, Y.-D., Lefer, B. L., Lee, M., Lee, T., Kim, S.,
Min, K.-E., Yum, S. S., Shin, H. J., Kim, Y.-W., Choi, J.-S., Park,
J.-S., Szykman, J. J., Long, R. W., Jordan, C. E., Simpson, I. J.,
Fried, A., Dibb, J. E., Cho, S., and Kim, Y. P.: The Korea–United
States Air Quality (KORUS-AQ) field study, Elem. Sci. Anth., 9,
00163, https://doi.org/10.1525/elementa.2020.00163, 2021.

de Gouw, J. A., Gilman, J. B., Kim, S.-W., Alvarez, S. L., Dusanter,
S., Graus, M., Griffith, S. M., Isaacman-VanWertz, G., Kuster, W.
C., Lefer, B. L., Lerner, B. M., McDonald, B. C., Rappenglück,
B., Roberts, J. M., Stevens, P. S., Stutz, J., Thalman, R., Veres, P.
R., Volkamer, R., Warneke, C., Washenfelder, R. A., and Young,
C. J.: Chemistry of Volatile Organic Compounds in the Los An-
geles Basin: Formation of Oxygenated Compounds and Determi-
nation of Emission Ratios, J. Geophys. Res.-Atmos., 123, 2298–
2319, https://doi.org/10.1002/2017JD027976, 2018.

De Smedt, I., Müller, J.-F., Stavrakou, T., van der A, R., Eskes,
H., and Van Roozendael, M.: Twelve years of global obser-
vations of formaldehyde in the troposphere using GOME and

SCIAMACHY sensors, Atmos. Chem. Phys., 8, 4947–4963,
https://doi.org/10.5194/acp-8-4947-2008, 2008.

De Smedt, I., Stavrakou, T., Müller, J.-F., van der A, R. J., and
Van Roozendael, M.: Trend detection in satellite observations
of formaldehyde tropospheric columns, Geophys. Res. Lett., 37,
L18808, https://doi.org/10.1029/2010GL044245, 2010.

De Smedt, I., Stavrakou, T., Hendrick, F., Danckaert, T., Vlem-
mix, T., Pinardi, G., Theys, N., Lerot, C., Gielen, C., Vigouroux,
C., Hermans, C., Fayt, C., Veefkind, P., Müller, J.-F., and Van
Roozendael, M.: Diurnal, seasonal and long-term variations of
global formaldehyde columns inferred from combined OMI and
GOME-2 observations, Atmos. Chem. Phys., 15, 12519–12545,
https://doi.org/10.5194/acp-15-12519-2015, 2015.

De Smedt, I., Theys, N., Yu, H., Danckaert, T., Lerot, C., Comper-
nolle, S., Van Roozendael, M., Richter, A., Hilboll, A., Peters,
E., Pedergnana, M., Loyola, D., Beirle, S., Wagner, T., Eskes, H.,
van Geffen, J., Boersma, K. F., and Veefkind, P.: Algorithm theo-
retical baseline for formaldehyde retrievals from S5P TROPOMI
and from the QA4ECV project, Atmos. Meas. Tech., 11, 2395–
2426, https://doi.org/10.5194/amt-11-2395-2018, 2018.

De Smedt, I., Pinardi, G., Vigouroux, C., Compernolle, S., Bais,
A., Benavent, N., Boersma, F., Chan, K.-L., Donner, S., Eich-
mann, K.-U., Hedelt, P., Hendrick, F., Irie, H., Kumar, V., Lam-
bert, J.-C., Langerock, B., Lerot, C., Liu, C., Loyola, D., Piters,
A., Richter, A., Rivera Cárdenas, C., Romahn, F., Ryan, R.
G., Sinha, V., Theys, N., Vlietinck, J., Wagner, T., Wang, T.,
Yu, H., and Van Roozendael, M.: Comparative assessment of
TROPOMI and OMI formaldehyde observations and validation
against MAX-DOAS network column measurements, Atmos.
Chem. Phys., 21, 12561–12593, https://doi.org/10.5194/acp-21-
12561-2021, 2021.

Diao, L., Choi, Y., Czader, B., Li, X., Pan, S., Roy, A., Souri, A. H.,
Estes, M., and Jeon, W.: Discrepancies between modeled and ob-
served nocturnal isoprene in an urban environment and the possi-
ble causes: A case study in Houston, Atmos. Res., 181, 257–264,
https://doi.org/10.1016/j.atmosres.2016.07.009, 2016.

DISCOVER-AQ: Deriving Information on Surface Conditions from
COlumn and VERtically Resolved Observations Relevant to
Air Quality (DISCOVER-AQ), NASA Langley Research Cen-
ter, VA, USA [data set], https://www-air.larc.nasa.gov/missions/
discover-aq/discover-aq.html, last of access: 5 June 2022.

Duncan, B. N., Yoshida, Y., Olson, J. R., Sillman, S., Martin,
R. V., Lamsal, L., Hu, Y., Pickering, K. E., Retscher, C.,
Allen, D. J., and Crawford, J. H.: Application of OMI obser-
vations to a space-based indicator of NOx and VOC controls
on surface ozone formation, Atmos. Environ., 44, 2213–2223,
https://doi.org/10.1016/j.atmosenv.2010.03.010, 2010.

Fried, A., Walega, J., Weibring, P., Richter, D., Simpson, I. J.,
Blake, D. R., Blake, N. J., Meinardi, S., Barletta, B., Hughes,
S. C., Crawford, J. H., Diskin, G., Barrick, J., Hair, J., Fenn,
M., Wisthaler, A., Mikoviny, T., Woo, J.-H., Park, M., Kim, J.,
Min, K.-E., Jeong, S., Wennberg, P. O., Kim, M. J., Crounse,
J. D., Teng, A. P., Bennett, R., Yang-Martin, M., Shook, M. A.,
Huey, G., Tanner, D., Knote, C., Kim, J., Park, R., and Brune, W.:
Airborne formaldehyde and volatile organic compound measure-
ments over the Daesan petrochemical complex on Korea’s north-
west coast during the Korea-United States Air Quality study: Es-
timation of emission fluxes and effects on air quality, Elem. Sci.
Anth., 8, 121, https://doi.org/10.1525/elementa.2020.121, 2020.

https://doi.org/10.5194/acp-23-1963-2023 Atmos. Chem. Phys., 23, 1963–1986, 2023

https://doi.org/10.1117/12.2534883
https://doi.org/10.1117/12.46657
https://doi.org/10.1016/S0022-4073(96)00157-4
https://doi.org/10.5194/amt-13-2523-2020
https://doi.org/10.1016/j.rse.2015.06.026
https://doi.org/10.1016/j.atmosenv.2015.02.012
https://doi.org/10.5194/acp-12-6291-2012
https://doi.org/10.5194/acp-12-6291-2012
https://doi.org/10.1525/elementa.2020.00163
https://doi.org/10.1002/2017JD027976
https://doi.org/10.5194/acp-8-4947-2008
https://doi.org/10.1029/2010GL044245
https://doi.org/10.5194/acp-15-12519-2015
https://doi.org/10.5194/amt-11-2395-2018
https://doi.org/10.5194/acp-21-12561-2021
https://doi.org/10.5194/acp-21-12561-2021
https://doi.org/10.1016/j.atmosres.2016.07.009
https://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html
https://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html
https://doi.org/10.1016/j.atmosenv.2010.03.010
https://doi.org/10.1525/elementa.2020.121


1984 A. H. Souri et al.: Errors in HCHO/NO2

German Aerospace Center (DLR): Copernicus Sentinel data pro-
cessed by ESA, Sentinel-5P TROPOMI Tropospheric Formalde-
hyde HCHO 1-Orbit L2 7km x 3.5km, Greenbelt, MD, USA,
Goddard Earth Sciences Data and Information Services Cen-
ter (GES DISC) [data set], https://doi.org/10.5270/S5P-tjlxfd2,
2019.

González Abad, G., Liu, X., Chance, K., Wang, H., Kurosu,
T. P., and Suleiman, R.: Updated Smithsonian Astrophysi-
cal Observatory Ozone Monitoring Instrument (SAO OMI)
formaldehyde retrieval, Atmos. Meas. Tech., 8, 19–32,
https://doi.org/10.5194/amt-8-19-2015, 2015.

González Abad, G., Souri, A. H., Bak, J., Chance, K., Flynn, L.
E., Krotkov, N. A., Lamsal, L., Li, C., Liu, X., Miller, C. C.,
Nowlan, C. R., Suleiman, R., and Wang, H.: Five decades observ-
ing Earth’s atmospheric trace gases using ultraviolet and visible
backscatter solar radiation from space, J. Quant. Spectrosc. Ra.,
238, 106478, https://doi.org/10.1016/j.jqsrt.2019.04.030, 2019.
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