
1. Introduction
Vegetation fires can have a very large impact not only on ecosystems but also on atmospheric composition and 
therefore on air quality (e.g., Voulgarakis & Field, 2015) with associated adverse consequences on health (Grant 
& Runkle, 2022). Fires directly emit large amounts of aerosols and gases, including carbon dioxide (CO2), carbon 
monoxide (CO), nitrogen oxides (NOx), volatile organic compounds (VOCs) and many other species. Subse-
quently, photochemical processing of these emissions often leads to enhanced levels of ozone and secondary 
organic aerosols (SOAs) (Majdi et al., 2019; Palm et al., 2020), thereby affecting the global radiative balance 
(Chang et al., 2021; Jiang et al., 2016). This environmental issue is becoming more acute as the intensity and 
frequency of wildfires are increasing due to hotter and drier conditions (di Virgilio et  al.,  2019; Pausas & 
Keeley, 2021; Senande-Rivera et al., 2022; Xu et al., 2020). Furthermore, the large number of megafires injecting 
material in the upper layers of the atmosphere raises concerns on their impact on the stratospheric composition 
and the ozone layer in particular (Das et al., 2021; Schwartz et al., 2020; Solomon et al., 2022).

Satellite measurements provide invaluable information on the global distribution of atmospheric trace gases 
and aerosols on a daily basis. Therefore, they are well-suited to characterize the spatial and temporal evolution 
of biomass burning plumes. In this context, the Tropospheric Monitoring Instrument (TROPOMI) in operation 
since October 2017 on board of the Sentinel-5 precursor platform (Veefkind et al., 2012) is of particular interest 
as it allows measuring column densities of a suite of key trace gases present during fire events, such as nitrogen 
dioxide (NO2), carbon monoxide (CO), nitrous acid (HONO), formaldehyde (HCHO), glyoxal (CHOCHO), in 
addition to the absorbing aerosol index (AAI) (e.g., Alvarado et al., 2020; Theys et al., 2020; van der Velde, van 
der Werf, Houweling, Eskes, et al., 2021; van der Velde, van der Werf, Houweling, Maasakkers, et al., 2021). 
Compared to past atmospheric composition instruments, the high spatial resolution and better signal-to-noise 
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Plain Language Summary Wildfires have a strong impact on air quality and climate owing to their 
associated large emissions of aerosols and gases. For very intense events, the injected material can reach high 
altitudes, in particular when the fires induce formation of convective pyrocumulonimbus clouds. Using the high 
spatial resolution observations from the spaceborne Tropospheric Monitoring Instrument, we investigate the 
respective distributions of formaldehyde and glyoxal, two proxys for volatile organic compounds emissions, 
at close proximity of intense fire sources. Typically, the glyoxal signal is maximum near the fire source and 
decreases downwind, while the formaldehyde distribution is more extended and shows weaker spatial gradient. 
However, we have identified a significant glyoxal depletion, not seen for formaldehyde, in case of injection at 
high altitudes, typically above the freezing level, suggesting its retention in ice particles or its outgassing in a 
hydrated form.
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ratio of TROPOMI provide an unprecedented capability to sample biomass burning plumes near the fires but 
also further downwind. The improved level of details allows to better track fire plumes and to detect more local-
ized or weaker sources. For example, it has been recently shown that TROPOMI is able to detect short-lived 
species such as HONO in fresh wildfire plumes (Theys et al., 2020). So far, most fire-related studies based on 
TROPOMI observations were based on the aerosol, CO and NO2 atmospheric data products, with a focus on 
inferring information on plume transport (Johnson et al., 2021), NOx emissions and lifetime (Griffin et al., 2021; 
Jin et al., 2021), and on the impact of fires on the carbon cycle and the radiative budget (e.g., Byrne et al., 2021; 
Li et al., 2020; Magro et al., 2021; van der Velde, van der Werf, Houweling, Eskes, et al., 2021; van der Velde, 
van der Werf, Houweling, Maasakkers, et al., 2021). In contrast, little has been done to exploit the TROPOMI 
HCHO and CHOCHO observations in the context of fires, despite their potential to inform on VOC emissions 
(e.g., Cao et al., 2018; Fu et al., 2008; Stavrakou et al., 2009). In addition, the spaceborne observations of glyoxal 
have attracted special attention due to the potentially significant contribution of this compound to the production 
of SOA, for which large uncertainties exist as evidenced by the high disparity between the predictions of differ-
ent model schemes (Miao et al., 2021; Oak et al., 2022; Pai et al., 2020). The high solubility of glyoxal in water 
indeed favors its uptake on aerosols and cloud droplets, followed by aqueous chemistry processes leading to SOA 
(Hallquist et al., 2009; Knote et al., 2014; Pennington et al., 2021; Volkamer et al., 2007). However, the SOA 
production yields from glyoxal depend strongly on the atmospheric conditions, such as salt and water concentra-
tions and the nature of the ambient aerosols (Galloway et al., 2011; Knote et al., 2014; Li et al., 2016). In wildfire 
plumes, the SOA production from glyoxal is even more uncertain. In this context, the fine-scale distribution 
of glyoxal and other compounds in and around fire plumes as observed by TROPOMI might provide valuable 
insights to better understand the fate and role of fire-generated glyoxal in atmospheric chemistry.

To our knowledge, only one study (Alvarado et al., 2020) conducted a joint exploitation of TROPOMI glyoxal 
and formaldehyde data, aiming to investigate the long-range transport of fire plumes during the 2018 Canadian 
wildfires. They concluded that, provided the short lifetimes of those species, oxidation of longer-lived precur-
sors within the fire plumes was necessary to explain the observed spatial patterns at long distances from the 
fire sources. Here, we systematically investigate the glyoxal signal observed by TROPOMI at close proximity 
of intense fire sources during the period July 2018–December 2021. We compare its spatial distribution to that 
of formaldehyde via the computation of glyoxal/formaldehyde ratio (Rgf), a metric often proposed to distinguish 
NMVOC emission type and highlight differences caused by their different production/destruction mechanisms 
(Kaiser et al., 2015; Vrekoussis et al., 2010). We find outstanding differences under specific conditions, namely 
for elevated plumes associated to megafires as detailed further below. In particular, northeastern Australia faced 
an exceptional 2019/2020 season of wildfires with an unprecedented burnt area estimated at about 7.2  Mha 
(Nolan et  al.,  2021). These fires produced enormous amounts of smoke, pollutants and aerosols, sometimes 
injected at very high altitudes, which favored their long range transport (Hirsch & Koren, 2021; Kloss et al., 2021; 
Ryan et al., 2021; van der Velde, van der Werf, Houweling, Eskes, et al., 2021; van der Velde, van der Werf, 
Houweling, Maasakkers, et al., 2021). This has been reinforced by the formation of a record-breaking number 
of Pyrocumulus (PyroCu) and Pyrocumulonimbus (PyroCb) clouds in late December 2019/early January 2020 
(Nolan et al., 2021; Peterson et al., 2021). Those clouds are fire-induced and smoke-infused convective storms, 
and their composition is dominated by smoke particles (besides water). Although their exact formation processes 
are complex and remain uncertain (Fromm et al., 2022), their impact on the atmosphere can be significant as 
they lead to rapid vertical transport and are direct injection pathways of trace gases and aerosols into the upper 
atmosphere. For example, the 2019/2020 Australian fires-related emissions have perturbed the recovery of the 
Antarctic ozone hole (Damany-Pearce et al., 2022; Solomon et al., 2022).

In Section 2, we describe the TROPOMI observations and the different data sets used in this study; in Section 3, 
we present a detailed analysis of the glyoxal variability near the intense fire sources during specific events, and 
finally we generalize and discuss our results in Section 4.

2. TROPOMI Observations and Other Data Sets
TROPOMI is a push-broom nadir-viewing instrument measuring light backscattered and reflected by the atmos-
phere and the ground in the ultraviolet, visible and short-infrared spectral ranges. With a swath width of about 
2,600 km, it covers the entire atmosphere on a daily basis with a equator crossing local time of 13:30 and a spatial 
resolution of 5.5 × 3.5 km 2 (7 × 3.5 km 2 before August 2019) (Veefkind et al., 2012). The exploitation of those 
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radiance measurements allows retrieving information on key atmospheric species such as NO2, O3, SO2, CO, 
CH4, HCHO, CHOCHO, aerosols, and clouds, all relevant to the monitoring of the ozone layer, air quality and 
climate studies.

In the context of fires, the spatial distributions of the different species probed by TROPOMI differ significantly 
since they have all different production mechanisms (direct emissions or secondary production processes) and 
different lifetimes. For example, the spatial extent of NO2, directly emitted by fires, is much more limited than 
for other species like HCHO, largely produced via secondary processes, while CHOCHO generally shows an 
intermediate distribution extent, since it has both direct and secondary sources.

Here, we use TROPOMI measurements of CHOCHO supported by NO2, HCHO, AAI data and cloud parameters 
for the period July 2018–December 2021. The operational NO2 and HCHO products as well as the scientific 
CHOCHO product are generated using a Differential Optical Absorption Spectroscopy (DOAS) approach (Platt 
& Stutz, 2008). The latter consists in retrieving in an appropriate wavelength range a slant column density (SCD, 
the atmospheric concentrations integrated along the effective atmospheric light path), which is then converted 
into a vertical column density (VCD) (i.e., atmospheric concentrations integrated from the bottom to the top of 
the atmosphere) using radiative transfer modeling, generally carried out assuming aerosol-free conditions and by 
using a priori vertical distributions of the trace gases from global model simulations. Those assumptions are far 
from being verified for the particular conditions associated with intense fires, making the SCD to VCD conver-
sion highly uncertain. For this reason, this study relies on the analysis of the slant column densities only.

The glyoxal SCDs are extracted from the TROPOMI product based on the exploitation of absorption bands in 
the visible spectral range (435–460 nm) (Lerot et al., 2021). Formaldehyde slant columns are derived in the UV 
range (328.5–359 nm) and extracted from the operational product (De Smedt et al., 2021). Since NO2 absorbs in 
the UV and visible ranges, its absorption cross-sections need to be included in the spectral fits of both HCHO 
and CHOCHO products. NO2 slant columns are consequently available from those two products with systematic 
differences related to the different effective light paths in the respective spectral ranges. As suggested by Theys 
et al. (2020), this can be advantageously exploited to remove any bias in the Rgf values caused by radiative transfer 
differences between the UV and visible regions, including the effect of aerosols. To this end, Rgf is calculated as 
the CHOCHO/HCHO SCD ratio multiplied by the ratio of the NO2 SCDs respectively fitted in the HCHO and 
CHOCHO fitting windows. This pragmatic approach assumes that the three gases have similar vertical distribu-
tions and requires large NO2 columns to be accurate. These two assumptions are reasonable for freshly emitted 
plumes.

The TROPOMI AAI product is used here as a proxy for the presence of absorbing aerosols (Stein Zweers, 2022). 
In the following, we also use as proxy for the plume altitude an effective scene pressure provided by the O2-O2 
cloud algorithm (Veefkind et al., 2016) and available in the latest version of the TROPOMI operational NO2 prod-
uct (van Geffen et al., 2022). In fire conditions with high aerosol loadings, discriminating clouds from aerosols 
is challenging and it has been shown that the effective scene pressure corresponds to the aerosol layer pressure 
(Wang et al., 2012). It has also been shown that the O2-O2 cloud product generated in the visible spectral range 
has an enhanced sensitivity for high aerosol loading cases compared to other products based on the O2-A band 
in the near-infrared (Chimot et al., 2019). Finally, we use the Suomi-NPP Visible Infrared Imaging Radiometer 
Suite (VIIRS) Fire Radiative Power (FRP) product to locate and map the fire sources (Csiszar et al., 2014).

3. Glyoxal Variability Near Fire Sources
First, we examine the CHOCHO and HCHO spatial distributions for a typical case of intense fires without strong 
elevation of the plumes (effective scene pressures >500 hPa). Glyoxal signals measured during the 2019/2020 
fire season in Southeastern Australia are often so strong that random uncertainties on the retrievals are not consid-
ered as a limiting factor for the interpretation of the data. Figure 1a shows enhanced glyoxal slant columns of up 
to 1.5 × 10 16 mol.cm −2 near fire sources on 5 December 2019, well above the noise level of 6–10 × 10 14 mol.
cm −2 (Lerot et al., 2021). A strong reduction of the columns is observed downwind, as a result of atmospheric 
dispersion and physico-chemical destruction. As mentioned above, glyoxal and formaldehyde have relatively 
similar production mechanisms, namely, they are primarily formed from the chemical oxidation of NMVOCs, 
and they are also directly emitted by fires. The HCHO SCDs are also large (∼4 × 10 16 mol.cm −2) and have a larger 
spatial extent with a limited gradient downwind of the source area (Figure 1b). To further examine this aspect, 
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the glyoxal/formaldehyde ratio (Rgf) is also displayed in Figure 1c. The large detected columns allow estimating 
reliably the Rgf values which, similarly to CHOCHO, decrease downwind, suggesting a larger contribution of 
direct pyrogenic emissions of glyoxal relative to formaldehyde (Fu et al., 2008; Stavrakou et al., 2009) and/or 
differences in chemical lifetime. This is even clearer in the inset panel showing the median Rgf as a function of 
the distance (i.e., the longitude difference in degrees) from the five mapped fire sources. The values of Rgf in 
the vicinity of the source are of the order of 0.1, in good agreement with previous studies (Alvarado et al., 2020; 
Chan Miller et al., 2014; Kluge et al., 2020; Zarzana et al., 2018). Consistently with Alvarado et al. (2020), our 
results show that Rgf decreases with the plume age, to values as low as 0.02 at a distance of about 200 km from 
the source area for this particular case.

Later during the 2019/2020 Australian fire season, an unprecedented number of PyroCb formed, in particular 
during 29–31 December 2019 and on 4 January 2020 (Peterson et al., 2021). For those fires, the Rgf displays 
a very different pattern. In Figure 2, we focus on the large-scale smoke plumes of 4 January as visible in the 
VIIRS/Suomi-NPP True color images (panel d). On that day, very large values of AAI were measured (>10, see 
panel e) and massive amounts of absorbing aerosols were injected at high altitudes in the atmosphere. Peterson 
et al. (2021) report that two PyroCb events injected particles up to about 16.5 km in the late afternoon of that 
day. O2-O2 effective scene pressures (panel f) derived from TROPOMI in the early afternoon, show several 
localized minima with values lower than 250 hPa, indicating PyroCb developments. The spatial distribution of 
Rgf (panel c) shows an unusual pattern with pronounced local minima co-located with the lower pressure scenes. 
As can be seen in panels a and b, the glyoxal SCD field also displays such local minima, while the HCHO spatial 
distribution shows little variation. Such behavior is unexpected given the high Rgf of fresh pyrogenic emissions 
(see discussion above). We have also examined the spatial distribution of SCDs of the other trace gases fitted 
simultaneously to glyoxal in the DOAS analysis. None of them shows spatial structures near the fire sources 
resembling those of glyoxal (see Figure S1 in Supporting Information S1). A spectral fit cross-correlation effect 
is thus unlikely. As mentioned above, Rgf is computed while taking into account the different effective light 
paths in the respective spectral ranges of HCHO and CHOCHO retrievals, thereby eliminating radiative transfer 
effects. A similar CHOCHO depletion has been observed for other elevated fire plumes in Australia (e.g., on 
30–31 December 2019 and 5 March 2019) and in California during intense fire episodes with reported PyroCb 
formation (Lareau et al., 2022). This is illustrated in Figure S2 in Supporting Information S1 for the Creek fire of 
5 September 2020. A decrease of the glyoxal SCD and Rgf values in excellent spatial correlation with the scenes 
with low effective pressures and high AAI is clearly observed.

4. Discussion and Outlook
In order to determine whether the identified CHOCHO depletion process occurs systematically for large fires, and 
under which conditions, we analyze all TROPOMI observations at the global scale from July 2018 to December 
2021. We restrict the analysis to intense fires by requesting the NO2 SCDs retrieved in the visible range to exceed 

Figure 1. Spatial distribution of TROPOMI CHOCHO (a) and HCHO (b) SCDs observed on 5 December 2019 in Southeastern Australia. Panel (c) shows their ratio 
Rgf for scenes with AAI > 3 and NO2 SCD > 1 × 10 16 mol.cm −2 after correction for the different effective light paths in the UV and visible spectral ranges (see text). 
The inset figure depicts the Rgf as a function of the distance from the fire source. Fires with radiative power larger than 100 MW as detected by the Visible Infrared 
Imaging Radiometer Suite are indicated by the black dots.
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2 × 10 16 mol.cm −2 and AAI > 3 for a total number of scenes of 60,000. Owing to its short lifetime, the high 
NO2 condition ensures that the retained observations are located near intense emission sources while the AAI 
condition aims at excluding most of the anthropogenic pollution cases. In Figure 3, we examine the dependences 
of the CHOCHO and HCHO SCDs as well as Rgf on both the AAI and the injection height, using the effective 
scene pressure as a proxy. Panels (a) and (b) clearly show strong reductions of the CHOCHO SCD and Rgf for 
plumes located at higher altitudes (low pressures), while the dependence on AAI appears to be limited. The Rgf 
dependence closely follows the CHOCHO SCDs patterns, whereas the HCHO SCDs (panel c) slightly increase 
for low effective scene pressures. This small increase might be attributed to the expected increased sensitivity at 
higher altitudes. In addition, it indicates that the glyoxal depletion is not caused by a shielding effect as it can be 
reasonably assumed that different short-lived trace gases emitted by the same fires are located at approximately 
the same  altitude. Panel (d) shows the overall dependence of the Rgf values on effective scene pressure. As indi-
cated by the error bars representing the median absolute deviations, there is a large Rgf variability within each 
scene pressure bin related to the large range of sampled conditions. Nevertheless, the Rgf ratio shows a sharp 
decrease by a factor of 2–3 for scene pressures lower than 400 hPa compared to effective scenes closer to the 
ground. Note that this reduction derived from the global analysis is consistent with the corresponding reductions 
for the specific cases addressed in Section 3, as illustrated in Figure S3 in Supporting Information S1. In addition 
to Australia and California where the largest PyroCb events occurred, other world regions facing important fire 
events (e.g., Amazonia, Africa, Southeastern Asia, Siberia) contribute to the analysis (see Figure S4 in Support-
ing Information S1).

The strong reduction of Rgf over elevated fire plumes is not related to gas-phase sink processes (photolysis and 
reaction with OH), since the chemical lifetimes of HCHO and CHOCHO are similar, respectively about 4.6 and 
3 hr on global average according to model simulations (Fu et al., 2008; Stavrakou et al., 2015). Furthermore, 
those losses are almost negligible within the time scale of the updraft (a few minutes), due to the extremely 
fast vertical velocities (>30 m s −1) characterizing PyroCb clouds (Peterson et al., 2021). The observed glyoxal 
depletion is therefore likely caused by heterogeneous processes on aerosols or cloud droplets. Below the cloud 
base, the reactive uptake of glyoxal by aerosols is not expected to play an important role, in spite of the heavy 
smoke released by the fires, because the typical time scale for this sink exceeds 30 min, even for very large 
aerosol loadings (Kim et  al.,  2022). The negligible direct impact of aerosols is confirmed by the very weak 

Figure 2. Spatial distribution of TROPOMI glyoxal (a) and formaldehyde (b) SCDs and their ratio Rgf for scenes with AAI > 3 and NO2 SCD > 1 × 10 16 mol.cm −2 
(c) on 4 January 2020 in Southeastern Australia. Panels (d–f) showing the Visible Infrared Imaging Radiometer Suite (VIIRS) true color, and the TROPOMI absorbing 
aerosol index and effective scene pressures illustrate the presence of massive amounts of particles at high altitudes caused by the formation of several PyroCbs. The 
white arrows point to the locations where CHOCHO SCDs and Rgf minima are measured. Fires with radiative power larger than 100 MW as detected by VIIRS are 
indicated by the black dots. The VIIRS/NPP True color picture has been obtained via the NASA interactive platform EOSDIS Worldview (https://worldview.earthdata.
nasa.gov/).
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dependence of Rgf on AAI for elevated plumes shown in Figure 3b. Above the cloud base, both formaldehyde 
and glyoxal partition between the gas and aqueous phases, owing to their Henry's law constant, respectively 
∼3.2 × 10 3 M atm −1 and ∼4 × 10 5 M atm −1 at 298 K (Sander, 2015). In principle, both compounds can be 
washed out by precipitation. For example, scavenging efficiencies of the order of 50% were reported for HCHO 
during strong convection events at mid-latitudes (e.g., Fried et al., 2016), whereas lower values were estimated 
over West Africa (Borbon et al., 2012). Similar, or higher, scavenging efficiency is expected for glyoxal than for 
formaldehyde, due to its higher Henry's law constant. However, precipitation is strongly suppressed in PyroCb 
clouds, due to the unusually small droplet sizes caused by the massive presence of smoke particles, which are 
known to be very good cloud condensation nuclei (Andreae et  al.,  2004). The near-absence of precipitation 
precludes a significant role of wet scavenging and implies vigorous and efficient transport of water and pyrogenic 
emissions to upper levels. Another consequence of the small droplet sizes caused by the presence of smoke is 
that the PyroCb droplets remain mostly liquid up to the homogeneous freezing level (at about −38°C) (Rosenfeld 
et al., 2007), that is, in the upper troposphere. This might leave some room to aqueous chemistry in the PyroCb 
droplets, as (hydrated) glyoxal is known to react with OH in liquid water, producing organic acids and contrib-
uting to SOA formation (Ervens et al., 2004). However, this glyoxal sink is too slow, given current estimates of 
the OH-reaction rate constant (∼10 9 M −1 s −1) and the typical OH concentrations in cloud droplets (∼10 −13 M) 
(Ervens & Volkamer, 2010), corresponding to aqueous chemical lifetimes of several hours, much longer than the 
time required to reach the upper troposphere.

The absence of a noticeable depletion of formaldehyde slant columns for elevated plumes is consistent with 
previous observations of substantial enhancements of upper tropospheric HCHO due to deep convection (Fried 

Figure 3. CHOCHO and HCHO SCDs (panels a–c) and derived glyoxal/formaldehyde ratio (panel b) as a function of the absorbing aerosol index (AAI) and effective 
scene pressure for all TROPOMI observations for which AAI > 3 and NO2 SCD > 2 × 10 16 mol.cm −2, during July 2018–December 2021. Panel (d) shows the median 
Rgf as a function of the effective scene pressure, with the error bars representing the median absolute deviations. The dashed gray line indicates the typical freezing 
level.
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et al., 2016; Mari et al., 2000). The efficient upward transport of HCHO by deep convective clouds suggests that 
the irreversible sink of formaldehyde by outgassing of its hydrated form (methanediol - CH2(OH)2) from liquid 
cloud droplets, as proposed by Franco et al. (2021), does not play a very large role for such clouds, despite their 
large liquid water content, of the order of 2 g m −3 (Rosenfeld et al., 2007). At 280 K, ∼40% of the HCHO would 
be present as (mostly aqueous-phase) methanediol in the warm part of the cloud, given its estimated Henry's 
law constant of 1.5 × 10 4 M atm −1 at that temperature (Sander, 2015). Whereas the remainder can reach the 
upper troposphere and contribute to the TROPOMI signal, the 40% loss of formaldehyde through methanediol 
formation is difficult to reconcile with the analysis of aircraft measurements by Fried et al. (2016) which required 
complete outgassing of formaldehyde from cloud droplets in order to explain the observations. Note that repeated 
cycles of evaporation/condensation would have the potential effect to further enhance the conversion of HCHO 
to methanediol. However, droplet evaporation was assumed by Franco et al. (2021) to be fast (<100 s), based on 
a modeling study of shallow convective clouds (Jarecka et al., 2013) characterized by very low cloud fractions 
(<8%). For large cloud systems such as PyroCb, extending typically over tens of km (e.g., Peterson et al., 2021), 
the droplet lifetime is usually much longer (Zung, 1967) and possibly exceeds the time required to reach the upper 
troposphere.

Regarding glyoxal, however, its pronounced depletion for cold clouds indicates that ice formation plays a key role, 
that is, either glyoxal remains largely in the condensed phase upon droplet freezing, or it is outgassed in hydrated 
form. Hydrated glyoxal does not have the characteristic absorption features of glyoxal and would not contribute 
to the glyoxal signal measured by the satellite. For plumes at lower altitudes, below the homogeneous freezing 
levels (−38°C/∼340 hPa), Rgf is much less dependent on effective pressure. The large scatter associated to the Rgf 
estimates in those conditions makes the observed variability uncertain.

It is likely, but not certain, that the observed depletion of glyoxal occurs for other Cb types, for which droplet 
freezing starts at higher temperatures than in PyroCb clouds. Note that models generally assume zero reten-
tion efficiency for glyoxal, as for HCHO (Fu et al., 2008), despite the fact that high retention efficiencies were 
reported for other oxygenated VOCs such as methylhydroperoxide, CH3OOH (Barth et al., 2016).

The direct consequences of these findings on the global budget of glyoxal are likely small. The low fraction 
(3%–5%) of the glyoxal global sink contributed by wet removal (Fu et al., 2008; Stavrakou et al., 2009) would be 
increased by a higher retention efficiency, since it would result in higher scavenging efficiencies in convective 
updrafts. On the other hand, hydrated glyoxal, if released, could be oxidized by OH or be taken up by clouds or 
aerosols, thereby enhancing SOA growth. Further research will be required to assess its potential impact in the 
atmosphere. A crucial question that warrants attention is the fate of methanediol trapped in liquid clouds, since its 
evaporation as either formaldehyde or its hydrate has very different consequences for the budget of formaldehyde 
and formic acid, which is the main product of methanediol oxidation by OH radicals (Franco et al., 2021). Further 
work will be needed to examine those processes in detail.

Data Availability Statement
TROPOMI CHOCHO data can be obtained via the GLYRETRO website (https://glyretro.aeronomie.be/index.
php/data-menu-item/request-data-test). TROPOMI operational products used in this study (L2__HCHO__, L2__
AER_AI, L2__NO2_) are publicly available via the ESA's S5P Pre-Ops interface (https://scihub.copernicus.eu/) 
using the credentials given there. The O2-O2 cloud parameters are contained in the NO2 operational product. 
VIIRS FRP data have been retrieved from the Fire Information for Resource Management System (FIRMS) at 
https://firms.modaps.eosdis.nasa.gov/download/.
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