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ABSTRACT

Context. Computational astrophysics nowadays routinely combines grid-adaptive capabilities with modern shock-capturing, high
resolution spatio-temporal integration schemes in challenging multidimensional hydrodynamic and magnetohydrodynamic (MHD)
simulations. A large, and still growing, body of community software exists, and we provide an update on recent developments within
the open-source MPI-AMRVAC code.
Aims. Complete with online documentation, the MPI-AMRVAC 3.0 release includes several recently added equation sets and offers
many options to explore and quantify the influence of implementation details. While showcasing this flexibility on a variety of hydro-
dynamic and MHD tests, we document new modules of direct interest for state-of-the-art solar applications.
Methods. Test cases address how higher-order reconstruction strategies impact long-term simulations of shear layers, with and with-
out gas-dust coupling effects, how runaway radiative losses can transit to intricate multi-temperature, multiphase dynamics, and how
different flavors of spatio-temporal schemes and/or magnetic monopole control produce overall consistent MHD results in combina-
tion with adaptive meshes. We demonstrate the use of super-time-stepping strategies for specific parabolic terms and give details on
all the implemented implicit-explicit integrators. A new magneto-frictional module can be used to compute force-free magnetic field
configurations or for data-driven time-dependent evolutions, while the regularized-Biot-Savart-law approach can insert flux ropes in
3D domains. Synthetic observations of 3D MHD simulations can now be rendered on the fly, or in post-processing, in many spectral
wavebands.
Results. A particle module as well as a generic field line tracing module, fully compatible with the hierarchical meshes, can be used
to do anything from sampling information at prescribed locations, to following the dynamics of charged particles and realizing fully
two-way coupled simulations between MHD setups and field-aligned nonthermal processes. We provide reproducible, fully demon-
strated tests of all code functionalities.
Conclusions. While highlighting the latest additions and various technical aspects (e.g., reading in datacubes for initial or boundary
conditions), our open-source strategy welcomes any further code usage, contribution, or spin-off development.
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1. Introduction

Adaptive mesh refinement (AMR) is currently routinely avail-
able in many open-source, community-driven software efforts.
The challenges associated with shock-dominated hydrodynamic
(HD) simulations on hierarchically refined grids were already
identified in the pioneering work by Berger & Colella (1989)
and have since been carried over to generic frameworks targeting
the handling of multiple systems of partial differential equations
(PDEs). One such framework is the PARAMESH (MacNeice et al.
2000) package, which offers support for parallelized AMR on
logically Cartesian meshes. Codes that inherited the PARAMESH
AMR flexibility include the FLASH code, which started
as pure hydro-AMR software for astrophysical applications
(Fryxell et al. 2000). FLASH has since been used in countless
studies, and a recent example includes its favorable compari-
son with an independent simulation study (Orban et al. 2022)
⋆Movies associated to Figs. 1, 3–5, 8, 9, 11, 19, 20 are available at
https://www.aanda.org

that focused on modeling the challenging radiative-hydro behav-
ior of a laboratory, laser-produced jet. PARAMESH has also
been used in space-weather-related simulations in 3D ideal
magnetohydrodynamics (MHD; Feng et al. 2012). For space
weather applications, a similarly noteworthy forecasting frame-
work employing AMR is discussed in Narechania et al. (2021),
where Sun-to-Earth solar wind simulations in ideal MHD are
validated. Another AMR package in active development is the
CHOMBO library1, and this is how the PLUTO code (Mignone
et al. 2012) inherits AMR functionality. Recent PLUTO addi-
tions showcase how dust particles can be handled using a hybrid
particle-gas treatment (Mignone et al. 2019) and detail how novel
nonlocal thermal equilibrium radiation hydro is performing
(Colombo et al. 2019).

Various public-domain codes employ a native AMR imple-
mentation, such as the ENZO code (Bryan et al. 2014) or the
RAMSES code, which started as an AMR-cosmological HD code

1 https://commons.lbl.gov/display/chombo/
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(Teyssier 2002). In Astrobear (Cunningham et al. 2009), which
is capable of using AMR on MHD simulations using constrained
transport on the induction equation, the AMR functionality is
known as the BEARCLAW package. Radiative MHD functional-
ity for Astrobear, with a cooling function extending below
10000 K, was demonstrated in Hansen et al. (2018), who studied
magnetized radiative shock waves. The AMR-MHD possibili-
ties of NIRVANA have also been successfully increased (Ziegler
2005, 2008), and it has more recently added a chemistry-cooling
module, described in Ziegler (2018). Another AMR-MHD code
that pioneered the field was introduced as the BATS-R-US code
(Powell et al. 1999), which is currently the main solver engine
used in the space weather modeling framework described in Tóth
et al. (2012). Its AMR functionality has been implemented in
the block-adaptive-tree library (BATL), a Fortran-AMR imple-
mentation. This library shares various algorithmic details with
the AMR implementation in MPI-AMRVAC, described in Keppens
et al. (2012), whose 3.0 update forms the topic of this paper.

Meanwhile, various coding efforts anticipate the challenges
posed by modern exascale high performance computing systems,
such as that realized by the task-based parallelism now available
in the Athena++ (Stone et al. 2020) effort. This code is in active
use and development, with, for example, a recently added gas-
dust module (Huang & Bai 2022) that is similar to the gas-dust
functionality available for MPI-AMRVAC (Porth et al. 2014). This
paper documents the code’s novel options for implicit-explicit
(IMEX) handling of various PDE systems and demonstrates its
use for gas-dust coupling. GAMER-2, as presented in Schive et al.
(2018), is yet another community effort that offers AMR and
many physics modules, where graphics processing unit (GPU)
acceleration in addition to hybrid OpenMP/MPI allows effective
resolutions on the order of 10 0003. Even more visionary efforts
in terms of adaptive simulations, where multiple physics mod-
ules may also be run concurrently on adaptive grid hierarchies,
include the DISPATCH (Nordlund et al. 2018) and PATCHWORK
(Shiokawa et al. 2018) frameworks. This paper serves to provide
an updated account of the MPI-AMRVAC functionality. Future
directions and potential links to ongoing new developments are
provided in our closing discussion.

2. Open-source strategy with MPI-AMRVAC

With MPI-AMRVAC, we provide an open-source framework writ-
ten in Fortran where parallelization is achieved by a (possibly
hybrid OpenMP-) MPI implementation, where the block adap-
tive refinement strategy has evolved to the standard block-based
quadtree-octree (2D-3D) organization. While originally used to
evaluate efficiency gains affordable through AMR for multidi-
mensional HD and MHD (Keppens et al. 2003), later applica-
tions focused on special relativistic HD and MHD settings (van
der Holst et al. 2008; Keppens et al. 2012). Currently, the GitHub
source version2 is deliberately handling Newtonian dynamics
throughout, and we refer to its MPI-AMRVAC 1.0 version as doc-
umented in Porth et al. (2014), while an update to MPI-AMRVAC
2.0 is provided in Xia et al. (2018). A more recent guideline
on the code usability to solve generic PDE systems (including
reaction-diffusion models) is found in Keppens et al. (2021).
Since MPI-AMRVAC 2.0, we have a modern library organization
(using the code for 1D, 2D or 3D applications), have a grow-
ing number of automated regression tests in place, and provide a
large number of tests or actual applications from published work
under, for example, the tests/hd subfolder for all simulations

2 https://github.com/amrvac

using the hydro module src/hd. This ensures full compliance
with all modern requirements on data reproducibility and data
sharing.

Our open-source strategy already led to various notewor-
thy off-spins, where, for example, the AMR framework and its
overall code organization got inherited to create completely new
functionality: the Black Hole Accretion Code (BHAC3) from
Porth et al. (2017; and its extensions; see, e.g., Bacchini et al.
2019; Olivares et al. 2019; Weih et al. 2020) realizes a modern
general-relativistic MHD (GR-MHD) code, which was used in
the GR-MHD code comparison project from Porth et al. (2019).
In Ripperda et al. (2019a) the GR-MHD code BHAC got extended
to handle GR-resistive MHD (GR-RMHD) where IMEX strate-
gies handled stiff resistive source terms. We here document
how various IMEX strategies can be used in Newtonian settings
for MPI-AMRVAC 3.0. The hybrid OpenMP-MPI parallelization
strategy was optimized for BHAC in Cielo et al. (2022), and we
inherited much of this functionality within MPI-AMRVAC 3.0.
Other, completely independent GR-MHD software efforts that
derived from earlier MPI-AMRVAC variants include GR-AMRVAC
by Meliani et al. (2016), the Gmunu code introduced in Cheong
et al. (2021, 2022), or the NOVAs effort presented in Varniere
et al. (2022).

The code is also used in the most recent update to the space
weather modeling effort EUHFORIA4, introduced in Pomoell &
Poedts (2018). In the ICARUS5 variant presented by Verbeke
et al. (2022), the most time-consuming aspect of the predic-
tion pipeline is the 3D ideal MHD solver that uses extrapolated
magnetogram data for solar coronal activity at 0.1 AU, to then
advance the MHD equations till 2 AU, covering all 360◦ longi-
tudes, within a ±60◦ latitude band. This represents a typical use-
case of MPI-AMRVAC functionality, where the user can choose a
preferred flux scheme, the limiters, the many ways to automati-
cally (de)refine on weighted, user-chosen (derived) plasma quan-
tities, while adopting the radial grid stretching introduced in Xia
et al. (2018) in spherical coordinates. In what follows, we provide
an overview of current MPI-AMRVAC 3.0 functionality that may
be useful for future users, or for further spin-off developments.

3. Available PDE systems

The various PDE systems available in MPI-AMRVAC 3.0 are
listed in Table 1. These cover a fair variety of PDE types (ellip-
tic, parabolic, but with an emphasis toward hyperbolic PDEs),
and it is noteworthy that almost all modules can be exploited
in 1D to 3D setups. They are all fully compatible with AMR
and can be combined with modules that can meaningfully be
shared between the many PDE systems. Examples of such shared
modules include

– the particle module in src/particle, which we briefly
discuss in Sect. 7.1,

– the streamline and/or field line tracing module in
src/modules/mod_trace_field.t as demonstrated in
Sect. 7.2,

– additional physics in the form of source terms
for the governing equations, such as src/physics/
mod_radiative_cooling.t to handle optically thin
radiative cooling effects (see also Sect. 4.1.3), or
src/physics/mod_thermal_conduction.t for thermal

3 http://bhac.science
4 http://euhforia.com
5 See the https://github.com/amrvac/amrvac/tree/master/
tests/mhd/icarus test case in the master branch.
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Table 1. Equation sets available in MPI-AMRVAC 3.0.

Module name Purpose Equations or reference

rho linear scalar advection ∂tρ + v · ∇ρ = 0
constant velocity vector v

rd reaction-diffusion systems ∂tu = diag(Di)∇2u + f(u)
8 different PDE systems, 1 to 3 u components Keppens et al. (2021)

doc/reaction_diffusion.md

ard advection-reaction-diffusion systems ∂tu + (v/p) · ∇up = diag(Di)∇2u + f(u)
8 different PDE systems, 1 to 3 u components
nonlinear advection for integer p > 1 doc/advection_reaction_diffusion.md

nonlinear scalar nonlinear advection ∂tρ + ∇ · F(ρ, x, t) = g
inviscid Burgers or non-convex equation, Korteweg-De Vries Keppens & Porth (2014)

hd Euler to Navier-Stokes equations for gas dynamics Porth et al. (2014)
with or without tracer quantities
with or without added dust species see Sect. 4.1.2 and doc/dust.md

mhd Ideal to (visco-)resistive (+Hall) MHD equations Porth et al. (2014)
semi-relativistic MHD equations as in Gombosi et al. (2002)
with or without tracer quantities
splitting strategies for B = B0 + B1 Xia et al. (2018)
split-off magneto-hydrostatic −∇p0 + ρ0g + J0 × B0 = 0 Yadav et al. (2022)

rhd radiation hydrodynamics Moens et al. (2022)
Flux-limited-diffusion approximation

mf magneto-frictional module Sect. 6.1
2D, 2.5D, and 3D magnetic field simulations

twofl plasma-neutral 2-fluid module Popescu Braileanu & Keppens (2022)
chromospheric to coronal physics doc/twofluid.md

conduction effects, src/physics/mod_viscosity.t for
viscous problems.

Table 1 provides references related to module usage, while
some general guidelines for adding new modules can be found in
Keppens et al. (2021). These modules share the code-parallelism,
the grid-adaptive capacities and the various time-stepping strate-
gies, for example the IMEX schemes mentioned below in Sect. 5.
In the next sections, we highlight novel additions to the frame-
work, with an emphasis on multidimensional (M)HD settings.
Adding a physics module to our open-source effort can fol-
low the instructions in doc/addmodule.md and the info in
doc/contributing.md to ensure that auto-testing is enforced.
The code’s documentation has two components: (1) the markup
documents collected in the doc folder, which appear as html
files on the code website6; and (2) the inline source code doc-
umentation, which gets processed by Doxygen7 to deliver full
dependency trees and documented online source code.

4. Schemes and limiters for HD and MHD

Most MPI-AMRVAC applications employ a conservative finite vol-
ume type discretization, used in each sub-step of a multistage
time-stepping scheme. This finite volume treatment, combined
with suitable (e.g., doubly periodic or closed box) boundary
conditions ensures conservation properties of mass, momen-
tum and energy as demanded in pure HD or ideal MHD

6 http://amrvac.org
7 http://doxygen.nl

runs. Available explicit time-stepping schemes include (1) a
one-step forward Euler, (2) two-step variants such as predictor-
corrector (midpoint) and trapezoidal (Heun) schemes, and (3)
higher-order, multistep schemes. Our default three-, four- and
five-step time integration schemes fall into the strong stability
preserving (SSP) Runge-Kutta schemes (Gottlieb 2005), indi-
cated as SSPRK(s, p), which involve s stages while reaching
temporal order p. In that sense, the two-step Heun variant is
SSPRK(2,2). In Porth et al. (2014), we provided all details of the
three-step SSPRK(3,3), four-step SSPRK(4,3) and the five-step
SSPRK(5,4) schemes, ensuring third-, third-, and fourth-order
temporal accuracy, respectively. Tables 2 and 3 provide an
overview of the choices in time integrators as well as the avail-
able shock-capturing spatial discretization schemes for the HD
and MHD systems. The IMEX schemes are further discussed
in Sect. 5. We note that Porth et al. (2014) emphasized that,
instead of the standard finite volume approach, MPI-AMRVAC also
allows for high-order conservative finite difference strategies (in
the mod_finite_difference.t module), but these will not
be considered explicitly here. Having many choices for spatio-
temporal discretization strategies allows one to select optimal
combinations depending on available computation resources,
or on robustness aspects when handling extreme differences
in (magneto-)thermodynamical properties. The code allows a
higher than second-order accuracy to be achieved on smooth
problems. In Porth et al. (2014), where MPI-AMRVAC 1.0 was
presented, we reported on setups that formally achieved up to
fourth-order accuracy in space and time. Figure 7 in that paper
quantifies this for a 3D circularly polarized Alfvén wave test,
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Table 2. Time integration methods in MPI-AMRVAC 3.0, as implemented in mod_advance.t.

Step Explicit IMEX

one-step Forward Euler IMEX-Euler or IMEX-SP

two-step Predictor-Corrector (explicit midpoint) IMEX-Midpoint
SSPRK(2,2) (Heun’s method) IMEX-Trapezoidal
RK2(α) IMEX222(λ)

three-step SSPRK(3,3) or SSP(3,2) IMEX-ARK(2,3,2) or IMEX-SSP(2,3,2)
RK3 (Butcher Table: Ralston3, RK-Wray3, Heun3, Nystrom3) IMEX-ARS3

IMEX-CB3a

four-step SSPRK(4,3) or SSP(4,2) –
RK(4,4)

five-step SSPRK(5,4) (Gottlieb 2005 or Spiteri & Ruuth 2002) –

Table 3. Choices for the numerical flux functions in MPI-AMRVAC 3.0, as implemented in mod_finite_volume.t.

Module name Flux scheme

hd TVD-Lax-Friedrichs, HLL, HLLC, Roe (TVD/TVD-Muscl) (a)

mhd TVD-Lax-Friedrichs, HLL, HLLC, HLLD, Roe (TVD/TVD-Muscl) (a)

Notes. The full Roe-solver-based schemes (a) are discussed in Tóth & Odstrčil (1996).

while in the present paper, Fig. 10 shows third-order accu-
racy on a 1.75D MHD problem involving ambipolar diffusion.
The combined spatio-temporal order of accuracy reachable will
very much depend on the problem at hand (discontinuity dom-
inated or not), and on the chosen combination of flux schemes,
reconstructions, and source term treatments.

The finite-volume spatial discretization approach in each
sub-step computes fluxes at cell volume interfaces, updating con-
servative variables stored as cell-centered quantities representing
volume averages; however, when using constrained transport
for MHD, we also have cell-face magnetic field variables. We
list in Table 3 the most common flux scheme choices for the
HD and MHD systems. In the process where fluxes are eval-
uated at cell edges, a limited reconstruction strategy is used –
usually on the primitive variables – where two sets of cell inter-
face values are computed for each interface: one employing a
reconstruction involving mostly left, and one involving mostly
right cell neighbors. In what follows, we demonstrate some of
the large variety of higher-order reconstruction strategies that
have meanwhile been implemented in MPI-AMRVAC. For explicit
time integration schemes applied to hyperbolic conservation
laws, temporal and spatial steps are intricately linked by the
Courant-Friedrichs-Lewy (CFL) stability constraint. Therefore,
combining high-order time-stepping and higher-order spatial
reconstructions is clearly of interest to resolve subtle details.
Thereby, different flux scheme and reconstruction choices may
be used on different AMR levels. We note that our AMR imple-
mentation is such that the maximum total number of cells that an
AMR run can achieve is exactly equal to the maximum effective
grid resolution, if the refinement criteria enforce the use of the
finest level grid on the entire domain. Even when a transition to
domain-filling turbulence occurs – where triggering finest level
grids all over is likely to happen, a gain in using AMR versus a
fixed resolution grid can be important, by cost-effectively com-
puting a transient phase. In Keppens et al. (2003), we quantified

these gains for typical HD and MHD problems, and reported on
efficiency gains by factors of 5 to 20, with limited overhead by
AMR. Timings related to AMR overhead, boundary conditions,
I/O, and actual computing are reported by MPI-AMRVAC in the
standard output channel. For the tests discussed below, this effi-
ciency aspect can hence be verified by rerunning the demo setups
provided.

4.1. Hydrodynamic tests and applications

The three sections below contain a 1D Euler test case highlight-
ing differences due to the employed reconstructions (Sect. 4.1.1),
a 2D hydro test without and with gas-dust coupling (Sect. 4.1.2),
and a 2D hydro test where optically thin radiative losses drive a
runaway condensation and fragmentation (Sect. 4.1.3). We note
that the hydrodynamic hd module of MPI-AMRVAC could also
be used without solving explicitly for the total (i.e., internal
plus kinetic) energy density evolution, in which case an isother-
mal or polytropic closure is assumed. Physical effects that can
be activated easily include solving the equations in a rotating
frame, adding viscosity, external gravity, thermal conduction and
optically thin radiative losses.

4.1.1. TVD versus WENO reconstructions

Many of the implemented reconstruction and/or limiter choices
in MPI-AMRVAC are briefly discussed in its online documenta-
tion8. These are used when doing reconstructions on (usually
primitive) variables from cell center to cell edge values, where
their reconstructed values quantify local fluxes (on both sides
of the cell face). They mostly differ in whether or not they
ensure (1) the total variation diminishing (TVD) property on

8 See http://amrvac.org/md_doc_limiter.html, note that we
use “limiter” and “reconstruction” in an interchangeable way.
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Table 4. Reconstructions with limiter choices in MPI-AMRVAC 3.0, as typically used in the cell-center-to-cell-face reconstructions.

Limiter type Limiter Order Ghost cells Reference

TVD limiter “minmod” 2 2 e.g. Tóth & Odstrčil (1996); LeVeque (2002)
“superbee” 2 2 Roe (1985); LeVeque (2002)
“woodward” 2 2 van Leer (1977); Woodward & Colella (1984)
“mcbeta” 2 2 van Leer (1977)
“vanleer” 2 2 van Leer (1974)
“albada” 2 2 van Albada et al. (1982)
“koren” 3 2 Koren (1993)
“ppm” 3 3 Colella & Woodward (1984); Mignone et al. (2005)

3 4 Miller & Colella (2002)

Beyond TVD “cada” 2 2 Čada & Torrilhon (2009)
“cada3” 3 2 Čada & Torrilhon (2009)
“schmid1” 3 2 Schmidtmann et al. (2016)
“schmid2” 3 2 Schmidtmann et al. (2016)
“venk” 2 2 Venkatakrishnan (1995)
“mp5” 5 3 Suresh & Huynh (1997)

ENO-based “weno3” 3 2 Jiang & Shu (1996)
“wenoyc3” 3 2 Yamaleev & Carpenter (2009); Aràndiga et al. (2014)
“weno5(nm)” 5 3 Jiang & Shu (1996); Shu (2009); Huang et al. (2018)
“wenoz5(nm)” 5 3 Borges et al. (2008); Huang et al. (2018)
“wenozp5(nm)” 5 3 Acker et al. (2016); Huang et al. (2018)
“weno5cu6” 6 3 Huang & Chen (2018)
“teno5ad” 5 3 Peng et al. (2021)
“weno7” 7 4 Balsara & Shu (2000)
“mpweno7” 7 4 Balsara & Shu (2000)

Notes. The formal order of accuracy (on smooth solutions), the needed number of ghost cells, and suitable references are indicated as well.

scalar hyperbolic problems or rather build on the essentially non-
oscillatory (ENO) paradigm, (2) encode symmetry preservation,
and (3) achieve a certain theoretical order of accuracy (second-
order or higher possibilities). Various reconstructions with lim-
iters are designed purely for uniform grids, others are compatible
with nonuniform grid stretching. In the mod_limiter.t mod-
ule, one currently distinguishes many types as given in Table 4.
The choice of limiter impacts the stencil of the method, and
hence the number of ghost cells used for each grid block in the
AMR structure, as listed in Table 4. In MPI-AMRVAC, the limiter
(as well as the discretization scheme) can differ between AMR
levels, where one may opt for a more diffusive (and usually more
robust) variant at the highest AMR levels.

The option to use higher-order weighted ENO (WENO)
reconstruction variants has been added recently, and here we
show their higher-order advantage using the standard 1D HD test
from Shu & Osher (1989). This was run on a 1D domain com-
prised between x = −4.5 and x = 4.5, and since it is 1D only,
we compared uniform grid high resolution (25600 points) with
low resolution (256 points) equivalents. This “low resolution” is
inspired by actual full 3D setups, where it is typical to use sev-
eral hundreds of grid cells per dimension. The initial condition
in density, pressure and velocity is shown in Fig. 1, along with
the final solution at t = 1.8. A shock initially situated at x = −4
impacts a sinusoidally varying density field with left and right
states as in

(ρ, v, p)L = (3.86, 2.63, 10.33) ,
(ρ, v, p)R = (1.0 + 0.2sin(5x), 0, 1.0) .

We used a Harten, Lax and van Leer (HLL) solver (Harten
et al. 1983) in a three-step time integration, had zero gradient

boundary conditions, and set the adiabatic index to γ = 1.4.
In Fig. 2 we zoom in on the compressed density variation
that trails the right-ward moving shock, where the fifth-order
“wenozp5” limiter from Acker et al. (2016) is exploited in both
high and low resolution. For comparison, low resolution third-
order “cada3” (Čada & Torrilhon 2009), third-order “weno3,”
and seventh-order “weno7” (Balsara & Shu 2000) results show
the expected behavior where higher-order variants improve the
numerical representation of the shock-compressed wave train9.

4.1.2. 2D Kelvin-Helmholtz: Gas and gas-dust coupling

The Kelvin-Helmholtz (KH) instability is ubiquitous in fluids,
gases, and plasmas, and can cause intricate mixing. We here
adopt a setup10 used in a recent study of KH-associated ion-
neutral de-couplings by Hillier (2019), where a reference high
resolution HD run was introduced as well. We emphasize the
effects of limiters in multidimensional hydro studies, by running
the same setup twice, switching only the limiter exploited. We
also demonstrate that MPI-AMRVAC can equally study the same
processes in gas-dust mixtures, which is relevant, for example,
in protoplanetary disk contexts.

2D KH and limiters. The domain (x, y) ∈ [−1.5, 1.5] ×
[−0.75, 0.75] uses a base resolution of 128×64 with 6 levels
of refinement, and hence we achieve 4096×2048 effective res-
olution. This should be compared to the uniform grids used

9 All files to reproduce this test are in the folder
tests/demo/Shu_Osher_1D_HD.
10 All files to reproduce these experiments are available at
tests/demo/KelvinHelmholtz_2D_HD+dust.
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Fig. 1. 1D Shu-Osher test. Shown are the density (solid blue line), veloc-
ity (dashed orange line), and pressure (dotted green line) for the initial
time (top panel) and the final time (bottom panel). This high resolution
numerical solution was obtained using the wenozp5 limiter. An anima-
tion is provided online.
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Fig. 2. 1D Shu-Osher test. Comparison at final time t = 1.8 between
different types of limiters at low resolution (LR) to the reference high
resolution (HR) using the wenozp5 limiter (solid black) is shown. We
zoom in on the density variation for x-axis values between 0.5 and 2.5
and ρ-values between 3 and 4.75.

in Hillier (2019), usually at 2048×1024, but with one extreme
run at 16384×8192. Their Fig. 1 shows the density field at a very
late time (t = 50) in the evolution where multiple mergers and
coalescence events between adjacent vortices led to large-scale
vortices of half the box width, accompanied by clearly turbu-
lent smaller-scale structures. The setup uses a sharp interface at
y = 0, with

y > 0 : ρ0 = 1.5, vx0 =
1

2.5
∆V, (1)

y ≤ 0 : ρ0 = 1, vx0 = −
1.5
2.5
∆V, (2)

where ∆V = 0.2, together with a uniform gas pressure p0 = 1/γ
where γ = 5/3. The vertical velocity is seeded by white noise
with amplitude 10−3. However, the two runs discussed here use
the exact same initial condition: the t = 0 data are first generated
using a noise realization and this is used for both simulations.
This demonstrates at the same time the code flexibility to restart
from previously generated data files, needed to, for example,
resume a run from a chosen snapshot, which can even be done
on a different platform, using a different compiler. We note that
the setup here uses a discontinuous interface at t = 0, which is
known to influence and preselect grid-scale fine-structure in the
overall nonlinear simulations. Lecoanet et al. (2016) discussed
how smooth initial variations can lead to reproducible KH behav-
ior (including viscosity), allowing convergence aspects to be
quantified. This is not possible with the current setup, but one
can adjust this setup to the Lecoanet et al. (2016) configuration
and activate viscosity source terms.

We use a three-step time integrator, with periodic sides and
closed up/down boundaries (the latter ensured by (a)symmetry
conditions). We use the HLLC scheme (see the review by Toro
2019), known to improve the baseline HLL scheme (Harten et al.
1983) in the numerical handling of density discontinuities. In
Fig. 3, we contrast two runs at times t = 20, 40 that only differ
in the limiter exploited, the left column again uses the wenozp5
limiter (Acker et al. 2016), while at right the Venkatakrishnan
(Venkatakrishnan 1995) limiter is used, which is a popular lim-
iter on unstructured meshes. While both runs start from the same
t = 0 data, it is clear how the nonlinear processes at play in
KH mixing ultimately lead to qualitatively similar, but quantita-
tively very different evolutions. The limiter is activated from the
very beginning due to the sharp interface setup, and the simula-
tion accumulates differences at each timestep. We note that the
wenozp5 run (left panels) clearly shows much more pronounced
finer-scale structure than the “venk” run (right panels). Since
the setup is using a discontinuous initial condition, some of the
fine-structure is not necessarily physical (Lecoanet et al. 2016).
If statistical properties specific to the turbulent substructures
are of interest, one should exploit the higher-order reconstruc-
tions, and perform multiple runs at varying effective resolution
to fully appreciate physical versus numerical effects. We note
that we did not (need to) include any hyper-diffusive terms or
treatments here.

Gas-Dust KH evolutions. The HD module of MPI-AMRVAC
provides the option to simulate drag-coupled gas-dust mixtures,
introducing a user-chosen added number of dust species nd that
differ in their “particle” size. In fact, every dust species is treated
as a pressureless fluid, adding its own continuity and momentum
equation for density ρdi and momentum ρdivdi, where interaction
from dust species i ∈ 1 . . . nd is typically proportionate to the
velocity difference (v − vdi), writing v for the gas velocity. This
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Fig. 3. Purely HD simulations of a 2D KH shear layer. The two runs start from the same initial condition and only deviate due to the use of two
different limiters in the center-to-face reconstructions: wenozp5 (left column) and venk (right column). We show density views at times t = 20
(top row) and t = 40 (bottom row). The flow streamlines plotted here are computed by MPI-AMRVAC with its internal field line tracing functionality
through the AMR hierarchy, as explained in Sect. 7.2. Insets show zoomed in views of the density variations in the red boxes, as indicated. An
animation is provided online.

was demonstrated and used in various gas-dust applications (van
Marle et al. 2011; Meheut et al. 2012; Hendrix & Keppens 2014;
Porth et al. 2014; Hendrix et al. 2015, 2016). The governing equa-
tions as implemented are found in Porth et al. (2014), along with
a suite of gas-dust test cases. We note that the dust species do not
interact with each other, they only interact with the gas.

We here showcase a new algorithmic improvement spe-
cific to the gas-dust system: the possibility to handle the
drag-collisional terms for the momentum equations through an
implicit update. Thus far, all previous MPI-AMRVAC gas-dust sim-
ulations used an explicit treatment for the coupling, implying
that the (sometimes very stringent and erratic) explicit stopping
time criterion could slow down a gas-dust simulation dramati-
cally. For Athena++, Huang & Bai (2022) recently demonstrated
the advantage of implicit solution strategies allowing extremely
short stopping time cases to be handled. In MPI-AMRVAC 3.0,
we now provide an implicit update option for the collisional
terms in the momentum equations:

(ρdivdi)n+1 = Tdi + ∆t (αiρρdi (v − vdi))n+1 ,

∀i = 1..nd,

(ρv)n+1 = T + ∆t

 nd∑
i=1

αiρρdi (vdi − v)

n+1

, (3)

where we denote the end result of any previous (explicit) sub-
stage with T,Tdi. Noting that when the collisional terms are
linear – that is, when we have the drag force fdi = αiρρdi (vdi − v)
with a constant αi – an analytic implicit update can be calculated
as follows:

(ρdivdi)n+1 − Tdi =
Ni

D
,∀i = 1..nd

(ρv)n+1 − T =
N
D
, (4)

where

D = 1 +
nd∑

k=1

dk(∆t)k,

Ni =

nd∑
k=1

nik(∆t)k,∀i = 1..nd,

N =
nd∑

k=1

nk(∆t)k. (5)

Although the above is exact for any number of dust species nd
when using proper expansions for dk, nk, and nik, in practice we
implemented all terms up to the second order in ∆t, implying
that the expressions used are exact for up to two species (and
approximate for higher numbers), where we have

d1 =

nd∑
i=1

αi(ρ + ρdi),

d2 =

nd∑
i=1

∑
j>i

αiα jρ(ρ + ρdi + ρd j), (6)

where ∀i = 1..nd we have

ni1 = αi(ρdiT − ρTdi);

ni2 =
∑
j,i

αiα jρ
[
ρdi(Td j + T ) − (ρ + ρd j)Tdi

]
, (7)

while

n1 =

nd∑
i=1

αi(ρTdi − ρdiT ),

n2 =

nd∑
i=1

∑
j>i

ραiα j

[
ρ(Tdi + Td j) − (ρdi + ρd j)T

]
. (8)
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Fig. 4. As in Fig. 3, but this time in a coupled gas-dust evolution, at time t = 40, with one species of dust experiencing linear drag. In the top row,
αdrag = 102, and the bottom row shows a much stronger drag coupling, αdrag = 1016. Left column: gas density. Right column: Dust density. The
limiter used was wenozp5. An animation is provided online.

Equations (3) can be written in a compact form, where
the already explicitly updated variables T enter the implicit
stage:

Un+1 = T + ∆tP(Un+1), (9)

where

U =


ρd1vd1
...

ρdnvdn
ρv

 , P(U) =


α1ρρd1 (v − vd1)

...
αnρρdn (v − vdn)∑nd
i=1 αiρρdi (vdi − v)

 . (10)

Following the point-implicit approach (see, e.g., Tóth et al.
2012), P(Un+1) is linearized in time after the explicit update,

P(Un+1) =
∂P
∂U

(T) · Un+1. (11)

The elements of the Jacobian matrix ∂P/∂U contain in our case
only elements of the form αiρdiρ. After the explicit update, the
densities have already the final values at stage n + 1. Therefore,
when αi is constant, the linearization is actually exact, but when
αi also depends on the velocity, the implicit update might be less
accurate.

The update of the gas energy density (being the sum of inter-
nal energy density eint and kinetic energy density) due to the
collisions is done in a similar way and includes the frictional
heating term,(
eint +

1
2
ρv2

)n+1

= T + ∆t

1
2

nd∑
i=1

αiρρdi

(
v2

di − v2
)n+1

. (12)

This is different from the previous implementation, which only
considered the work done by the momentum collisional terms
(see Eq. (21) in Porth et al. 2014), but this added frictional heat-
ing term is generally needed for energy conservation (Braginskii
1965). The implicit update strategy can then be exploited in any
multistage IMEX scheme.

As a demonstration of its use, we now repeat the
KH run from above with one added dust species, where
the dust fluid represents a binned dust particle size of
[5

(
b−1/2 − a−1/2

)
/
(
b−5/2 − a−5/2

)
]1/2 where a = 5 nm and b =

250 nm. We augment the initial condition for the gas with a dust
velocity set identical to that of the gas by vx0d = vx0, but no veloc-
ity perturbation in the y-direction. The dust density is smaller
than the gas density with a larger density contrast below and
above the interface, setting ρ0d = ∆ρd for y > 0, ρ0d = 0.1∆ρd for
y ≤ 0 where ∆ρd = 0.01. The time integrator used is a three-step
ARS3 IMEX scheme, described in Sect. 5.

Results are shown in Fig. 4, for two different coupling
regimes, which differ in the adopted constant coupling con-
stant α, namely 100 and 1016. The associated explicit stopping
time would scale with α−1, so larger α would imply very costly
explicit in time simulations. Shown in Fig. 4 are the AMR grid
structure in combination with the gas density variation at left
(note that we here used different noise realizations at t = 0), as
well as the single dust species density distribution at right, for
t = 40. The density field for the dust shows similarly intricate
fine-structure within the large-scale vortices that have evolved
from multiple mergers. We used the same wenozp5 limiter as in
the left panels of Fig. 3, and one may note how the gas dynamic
vortex centers show clearly evacuated dust regions, consistent
with the idealized KH gas-dust studies performed by Hendrix &
Keppens (2014). The top versus bottom panels from Fig. 4 show
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Fig. 5. 2D hydro runaway thermal condensation test. Density distributions are at times t = 6.45 (left) and t = 7 (right). The insets show zoomed-in
views with more detail. An animation of this 2D hydro test is provided online.

that the AMR properly traces the regions of interest, the AMR
criterion being based on density and temperature variables. The
highly coupled case with α = 1016 can be argued to show more
fine structure, as the collisions might have an effect similar to
the diffusion for the scales smaller than the collisional mean free
path (Popescu Braileanu et al. 2021). We note that Huang & Bai
(2022) used corresponding α factors of 100 − 108 on their 2D
KH test case, and did not investigate the very far nonlinear KH
evolution we address here.

4.1.3. Thermally unstable evolutions

In many astrophysical contexts, one encounters complex multi-
phase physics, where cold and hot material coexist and interact.
In solar physics, the million-degree hot corona is pervaded by
cold (order 10 000 K) condensations that appear as large-scale
prominences or as more transient, smaller-scale coronal rain.
Spontaneous in situ condensations can derive from optically
thin radiative losses, and Hermans & Keppens (2021) investi-
gated how the precise radiative loss prescription can influence
the thermal instability process and its further nonlinear evo-
lution in 2D magnetized settings. In practice, optically thin
radiative losses can be handled by the addition of a localized
energy sink term, depending on density and temperature, and
MPI-AMRVAC provides a choice among 20 implemented cooling
tables, as documented in the appendix of Hermans & Keppens
(2021). The very same process of thermal instability, with its
runaway condensation formation, is invoked for the so-called
chaotic cold accretion (Gaspari et al. 2013) scenario onto black
holes, or for the multiphase nature of winds and outflows in
Active Galactic Nuclei (Waters et al. 2021), or for some of the
fine-structure found in stellar wind-wind interaction zones (van
Marle & Keppens 2012). Here, we introduce a new and repro-
ducible test for handling thermal runaway in a 2D hydro setting.
In van Marle & Keppens (2011), we inter-compared explicit
to (semi)implicit ways for handling the localized source term,

and confirmed the exact integration method of Townsend (2009)
as a robust means to handle the extreme temperature-density
variations that can be encountered. Using this method in combi-
nation with the SPEX_DM cooling curve Λ(T ) (from Schure et al.
2009, combined with the low-temperature behavior as used by
Dalgarno & McCray 1972), we set up a double-periodic unit
square domain, resolved by a 64 × 64 base grid, and we allow
for an additional 6 AMR levels. We use a five-step SSPRK(5,4)
time integration, combined with the HLLC flux scheme, employ-
ing the wenozp5 limiter. We simulate until time t = 7, where the
initial condition is a static (no flow) medium, of uniform pres-
sure p = 1/γ throughout (with γ = 5/3). The density is initially
ρ = 1.1 inside, and ρ = 1 outside of a circle of radius r = 0.15.
To trigger this setup into a thermal runaway process, the energy
equation not only has the optically thin ∝ ρ2Λ(T ) sink term han-
dled by the Townsend (2009) method, but also adds a special
energy source term that balances exactly these radiative losses
corresponding to the exterior ρ = 1, p = 1/γ settings. A proper
implementation where ρ = 1 throughout would hence stay unal-
tered forever. Since the optically thin losses (and gains) require
us to introduce dimensional factors (asΛ(T ) requires the temper-
ature T in Kelvin), we introduce units for length Lu = 109 cm, for
temperature Tu = 106 K, and for number density nu = 109 cm−3.
All other dimensional factors can be derived from these three.

As losses overwhelm the constant heating term within
the circle r < 0.15, the setup naturally evolves to a largely
spherically symmetric, constantly shrinking central density
enhancement. This happens so rapidly that ultimately Rayleigh-
Taylor-driven substructures form on the “imploding” density.
Time t = 6.45 shown in Fig. 5 typifies this stage of the evolution,
where one notices the centrally shrunk density enhancement, and
fine structure along its entire edge. Up to this time, our imple-
mentation never encountered any faulty negative pressure, so no
artificial bootstrapping (briefly discussed in Sect. 8.4) was in
effect. However, to get beyond this stage, we did activate an aver-
aging procedure on density-pressure when an isolated grid cell
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did result in unphysical pressure values below p < 10−14. Doing
so, the simulation can be continued up to the stage where a more
erratically behaving, highly dynamical and filamentary conden-
sation forms, shown in the right panel of Fig. 5 at t = 7 (see
also the accompanying movie). A similar HD transition – due
to thermal instability and its radiative runaway – into a highly
fragmented, rapidly evolving condensation is discussed in the
appendix of Hermans & Keppens (2021), in that case as thermal
runaway happens after interacting sound waves damp away due
to radiative losses. An ongoing debate (e.g., McCourt et al. 2018;
Gronke & Oh 2020) on whether this process is best described
as “shattering” versus “splattering,” could perhaps benefit from
this simple benchmark test11 to separate possible numerical from
physical influences.

4.2. MHD tests and applications

The following three sections illustrate differences due to the
choice of the MHD flux scheme (see Table 3) in a 2D ideal
MHD shock-cloud setup (Sect. 4.2.1), differences due to varying
the magnetic monopole control in a 2D resistive MHD evolu-
tion (Sect. 4.2.2), as well as a 1D test showcasing ambipolar
MHD effects on wave propagation through a stratified magne-
tized atmosphere (Sect. 4.2.3). We used this test to evaluate
the behavior of the various super-time-stepping (STS) strate-
gies available in MPI-AMRVAC for handling specific parabolic
source additions. This test also employs the more generic split-
ting strategy usable in gravitationally stratified settings, also
adopted recently in Yadav et al. (2022). We note that the mhd
module offers many more possibilities than showcased here:
we can, for example, drop the energy evolution equation in
favor of an isothermal or polytropic closure, can ask to solve
for internal energy density instead of the full (magnetic plus
kinetic plus thermal) energy density, and have switches to
activate anisotropic thermal conduction, optically thin radia-
tive losses, viscosity, external gravity, as well as Hall and/or
ambipolar effects.

4.2.1. Shock-cloud in MHD: Alfvén hits Alfvén

Shock-cloud interactions, where a shock front moves toward and
interacts with a prescribed density variation, appear in many
standard (M)HD code tests or in actual astrophysical appli-
cations. Here, we introduce an MHD shock-cloud interaction
where an intermediate (also called Alfvén) shock impacts a
cloud region that has a picture of Alfvén himself imprinted
on it. This then simultaneously demonstrates how any multi-
dimensional (2D or 3D) setup can initialize certain variables
(in this case, the density at t = 0) in a user-selected area of
the domain by reading in a separate, structured data set: in this
case a vtk-file containing Alfvén’s image as a lookup table12

on a [0, 1] × [0, 1.5] rectangle. The 2D domain for the MHD
setup takes (x, y) ∈ [−0.5, 3] × [−1, 2.5], and the pre-shock static
medium is found where x > −0.3, setting ρ = 1 and p = 1/γ
(γ = 5/3). The data read in from the image file are then used
to change only the density in the subregion [0, 1] × [0, 1.5] to
ρ = 1 + fsI(x, y) where a scale factor fs = 0.5 reduces the image
I(x, y) range (containing values between 0 and 256, as usual for
image data). We note that the regularly spaced input image val-
ues will be properly interpolated to the hierarchical AMR grid,

11 The complete setup for this test is available under tests/demo/
thermal_instability_HD.
12 In tests/demo/AlfvenShock_MHD2D stored as alfven.vtk.

Fig. 6. Initial density variation for the 2D MHD Alfvén test: a planar
Alfvén shock interacts with a density variation set from Alfvén’s image.
The AMR block structure and magnetic field lines are overlaid in red
and blue, respectively.

and that this AMR hierarchy auto-adjusts to resolve the image
at the highest grid level in use. The square domain is covered
by a base grid of size 1282, but with a total of 6 grid levels, we
achieve a finest grid cell of size 0.0008545 (to be compared to
the 0.002 spacing of the original image).

To realize an Alfvén shock, a shock where the magnetic field
lines flip over the shock normal (i.e., the By component changes
sign across x = −0.3), we solved for the intermediate speed
solution of the shock adiabatic, parametrized by three input val-
ues: (1) the compression ratio δ (here quantifying the post-shock
density); (2) the plasma beta of the pre-shock region; and (3)
the angle between the shock normal and the pre-shock mag-
netic field. Ideal MHD theory constrains δ ∈ [1, (γ + 1)/(γ − 1)],
and these three parameters suffice to then compute the three
admissible roots of the shock adiabatic that correspond to slow,
intermediate and fast shocks (see, e.g., Gurnett & Bhattacharjee
2017). Selecting the intermediate root of the cubic equation then
quantifies the upstream flow speed in the shock frame for a static
intermediate shock. Shifting to the frame where the upstream
medium is at rest then provides us with values for all post-shock
quantities, fully consistent with the prevailing Rankine-Hugoniot
conditions. In practice, we took δ = 2.5, an upstream plasma beta
2p/B2 = 0.1, and set the upstream magnetic field using a θ = 40◦
angle in the pre-shock region, with Bx = −B cos(θ) and By =
B sin(θ). This initial condition is illustrated in Fig. 6, showing the
density as well as magnetic field lines. The shock-cloud impact
is then simulated in ideal MHD till t = 1. Boundary conditions
on all sides use continuous (zero gradient) extrapolation.

Since there is no actual (analytical) reference solution for this
test, we ran a uniform grid case at 81922 resolution (i.e., above
the effective 40962 achieved by the AMR settings). Figure 7
shows the density and the magnetic field structure at t = 1, where
the HLLD scheme was combined with a constrained transport
approach for handling magnetic monopole control. Our imple-
mentation of the HLLD solver follows Miyoshi & Kusano (2005)
and Guo et al. (2016a), while divergence control strategies are
discussed in the next section, Sect. 4.2.2. A noteworthy detail
of the setup involves the corrugated appearance of a rightward-
moving shock front that relates to a reflected shock front that
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Fig. 7. Reference t = 1 uniform grid result for the Alfvén test using HLLD and constrained transport. The grid is uniform and 8192× 8192. We
show density and magnetic field lines, zooming in on the corrugated reflected shock at the right.
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Fig. 8. Density view of the shock-cloud test, where an intermediate Alfvén shock impacts an “Alfvén” density field. Left: HLL and glm. Middle:
HLLC and multigrid. Right: HLLD and glm. Compare this figure to the reference run from Fig. 7. An animation is provided online.

forms at first impact. It connects to the original rightward moving
shock in a triple point still seen for t = 1 at the top right (x, y) ≈
(2.6, 2.2). This density variation, shown also in a zoomed view in
Fig. 7, results from a corrugation instability (that develops most
notably beyond t = 0.7).

Figure 8 shows the final density distribution obtained with
three different combinations of flux schemes, using AMR. We
always employed a SSPRK(3,3) three-step explicit time march-
ing with a “koren” limiter (Koren 1993), but varied the flux
scheme from HLL, over HHLC, to HLLD. The HLL and HLLD
variants used the hyperbolic generalized lagrange multiplier (or

“glm”) idea from Dedner et al. (2002), while the HLLC run
exploited the recently added multi-grid functionality for ellip-
tic cleaning (see the next section and Teunissen & Keppens
2019). The density views shown in Fig. 8 are consistent with
the reference result, and all combinations clearly demonstrate
the corrugation of the reflected shock. We note that all the runs
shown here did use a bootstrapping strategy (see Sect. 8.4) to
recover automatically from local negative pressure occurrences
(they occur far into the nonlinear evolution), where we used the
averaging approach whenever one encounters a small pressure
value below 10−7.
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4.2.2. Divergence control in MHD

Here, we simulate a 2D resistive MHD evolution that uses a
uniform resistivity value η = 0.0001. The simulation exploits
a (x, y) ∈ [−3, 3]2 domain, with base resolution 1282 but effec-
tive resolution 10242 (4 AMR levels). Always using a five-step
SSPRK(5,4) time integration, the HLLC flux scheme, and an
“mp5” limiter (Suresh & Huynh 1997), we simulate till t = 9
from an initial condition where an ideal MHD equilibrium is
unstable to the ideal tilt instability. We use this test to show
different strategies available for discrete magnetic monopole
control, and how they lead to overall consistent results in a highly
nonlinear, chaotic reconnection regime. This regime was used as
a challenging test for different spatial discretizations (finite vol-
ume or finite differences) in Keppens et al. (2013), and shown to
appear already at ten-fold higher η = 0.001 values.

The initial density is uniform ρ = 1, while the pressure and
magnetic field derive from a vector potential B = ∇ × A(r, θ)ez
where (r, θ) denote local polar coordinates. In particular,

A(r, θ) =
{

c J1(rr0) cos(θ) r ≤ 1,(
r − 1

r

)
cos(θ) r > 1, (13)

where r0 = 3.8317 denotes the first root of the Bessel function of
the first kind, J1. This makes the magnetic field potential exterior
to the unit circle, but non force-free within. An exact equilibrium
where pressure gradient is balanced by Lorentz forces can then
take the pressure as the constant value p0 = 1/γ outside the unit
circle, while choosing p = p0+0.5[r0A(r, θ)]2 within it. The con-
stant was set to c = 2/(r0J0(r0)). This setup produces two islands
corresponding to antiparallel current systems perpendicular to
the simulated plane, which repel. This induces a rotation and sep-
aration of the islands whenever a small perturbation is applied:
this is due to the ideal tilt instability (also studied in Keppens
et al. 2014). A t = 0 small perturbation is achieved by having an
incompressible velocity field that follows v = ∇ × ϵ exp(−r2)ez
with amplitude ϵ = 10−4.

This test case13 employs a special boundary treatment, where
we extrapolate the primitive set of density, velocity compo-
nents and pressure from the last interior grid cell, while both
magnetic field components adopt a zero normal gradient extrap-
olation (i.e., a discrete formula yi = (−yi+2 +4yi+1)/3 to fill ghost
cells at a minimal edge, i.e., a left or bottom edge, and some
analogous formula at maximal edges). This is done along all
4 domain edges (left, right, bottom, top). We note that ghost cells
must ultimately contain correspondingly consistent conservative
variables (density, momenta, total energy and magnetic field).

We use this test to highlight differences due to the magnetic
monopole control strategy, for which MPI-AMRVAC 3.0 offers a
choice between ten different options. These are listed in Table 5,
along with relevant references. We note that we provide options
to mix strategies (e.g., “lindeglm” both diffuses monopole errors
in a parabolic fashion and uses an added hyperbolic variable to
advect monopoles). There is a vast amount of literature related
to handling monopole errors in combination with shock cap-
turing schemes; for example, the seminal contribution by Tóth
(2000) discusses this at length for a series of stringent ideal
MHD problems. Here, we demonstrate the effect of three dif-
ferent treatments on a resistive MHD evolution where in the
far nonlinear regime of the ideal tilt process, secondary tear-
ing events can occur along the edges of the displaced magnetic
islands. These edges correspond to extremely thin current con-
centrations, and the η = 0.0001 value ensures we can get chaotic
13 Fully provided under tests/demo/Tilt_Instability_MHD2D.

Table 5. Options for ∇ · B control in MPI-AMRVAC 3.0.

Monopole control Reference

none –
powel Powell et al. (1999)
janhunen Janhunen (2000)
glm Dedner et al. (2002)
linde Keppens et al. (2003)
lindejanhunen –
lindepowel –
lindeglm –
ct as in BHAC, Olivares et al. (2019)
multigrid Teunissen & Keppens (2019)

Notes. Some of these come along with different options in terms of their
control parameters or their detailed algorithmic implementation.

island formation. We run the setup as explained above with three
different strategies, namely “linde,” “multigrid,” and “ct.” The
linde strategy was already compared on ideal MHD settings (a
standard 2D MHD rotor and Orszag-Tang problem) in Keppens
et al. (2003), while the constrained transport strategy is adopted
in analogy to its implementation in the related GR-RMHD BHAC
code (Olivares et al. 2019) with an additional option of using the
contact-mode upwind constrained transport method by Gardiner
& Stone (2005). We note that the use of ct requires us to han-
dle the initial condition, as well as the treatment of the special
boundary extrapolations, in a staggered-field tailored fashion, to
ensure no discrete monopoles are present from initialization or
boundary conditions. The multigrid method realizes the elliptic
cleaning strategy as mentioned originally in Brackbill & Barnes
(1980) on our hierarchical AMR grid. This uses a geometric
multigrid solver to handle Poisson’s equation, ∇2ϕ = ∇ · Bbefore,
followed by an update Bafter ← Bbefore − ∇ϕ, as described in
Teunissen & Keppens (2019).

The evolution of the two spontaneously separating islands
occurs identically for all three treatments, and it is notewor-
thy that all runs require no activation of a bootstrap strategy
at all (i.e., they always produce positive pressure and density
values). We carried out all three simulations up to t = 9, and
our end time is shown in Fig. 9. The top panels show the den-
sity variations (the density was uniform initially), and one can
see many shock fronts associated with the small-scale magnetic
islands that appear. Differences between the three runs mani-
fest themselves in where the first secondary islands appear, and
how they evolve with time. This indicates how the 10242 effec-
tive resolution, combined with the SSPRK(5,4)-HLLD-mp5
strategy still is influenced by numerical discretization errors
(numerical “resistivity”), although η = 0.0001. Relevant length
scales of interest are the cross-sectional size of the plasmoids
obtained, which should be resolved by at least several tens of
grid cells. A related study of 2D merging flux tubes showing
plasmoid formation (Ripperda et al. 2019b) in resistive, relativis-
tic MHD setting, noted that effective resolutions beyond 80002

were needed to confidently obtain strict convergence at high
Lundquist numbers.

We also plot the discrete divergence of the magnetic field in
the bottom panels. Obviously, the rightmost ct variant realizes
negligible (average absolute values at 10−12−10−11 through-
out the entire evolution) divergence in its pre-chosen dis-
crete monopole evaluation. Because of a slow accumulation of
roundoff errors due to the divergence-preserving nature of the
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Fig. 9. Snapshots at time t = 9 for the 2D (resistive) MHD tilt evolution using, from left to right, different magnetic field divergence cleaning
methods: linde, multigrid, and ct. First row: Density. The magnetic field lines are overplotted with blue lines, and, as in Fig. 3, they are computed
by MPI-AMRVAC by field line tracing (see Sect. 7.2). Second row: Divergence of the magnetic field. An animation is provided online.

constrained transport method, this divergence can become larger
than machine-precision zero, but remains very low. However,
in any other discrete evaluation for the divergence, also the ct
run displays monopole errors of similar magnitude and distribu-
tion as seen in both leftmost bottom panels of Fig. 9. Indeed,
truncation-related monopole errors may approach unity in the
thinning current sheets, at island edges, or at shock fronts.
We note that the field lines as shown in the top panels have
been computed by the code’s field-tracing module discussed in
Sect. 7.2.

4.2.3. Super-time-stepping and stratification splitting

In a system of PDEs, parabolic terms may impose a very small
timestep for an explicit time advance strategy, as ∆t ∝ ∆x2,
according to the CFL condition. In combination with AMR, this
can easily become too restrictive. This issue can be overcome in
practice by the STS technique, which allows the use of a rela-
tively large (beyond the ∆x2 restriction) explicit super-timestep
∆ts for the parabolic terms, by subdividing ∆ts into carefully cho-
sen smaller sub-steps. This ∆ts can, for example, follow from the
hyperbolic terms in the PDE alone, when parabolic and hyper-
bolic updates are handled in a split fashion. Super-time-stepping
across ∆ts involves an s-stage Runge-Kutta scheme, and its

number of stages s and the coefficients used in each stage
get adjusted to ensure stability and accuracy. With the s-stage
Runge-Kutta in a two-term recursive formulation, one can deter-
mine the sub-step length by writing the amplification factor
for each sub-step as one involving an orthogonal family of
polynomials that follow a similar two-term recursion. The free
parameters involved can be fixed by matching the Taylor expan-
sion of the solution to the desired accuracy. The use of either
Chebyshev or Legendre polynomials gives rise to two STS
techniques described in the literature: Runge-Kutta Chebyshev
(RKC; Alexiades et al. 1996) and Runge-Kutta Legendre (RKL;
Meyer et al. 2014). The second-order-accurate RKL2 variant
was demonstrated on stringent anisotropic thermal conduction
in multidimensional MHD settings by Meyer et al. (2014), and
in MPI-AMRVAC, the same strategy was first used in a 3D promi-
nence formation study (Xia & Keppens 2016) and a 3D coronal
rain setup (Xia et al. 2017). We detailed in Xia et al. (2018)
how the discretized parabolic term for anisotropic conduction
best uses the slope-limited symmetric scheme introduced by
Sharma & Hammett (2007), to preserve monotonicity. RKL1
and RKL2 variants are also implemented in Athena++ (Stone
et al. 2020). RKC variants were demonstrated on Hall MHD and
ambipolar effects by O’Sullivan & Downes (2006, 2007), and
used for handling ambipolar diffusion in MHD settings in the
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Fig. 10. 1.75D ambipolar MHD wave test, where fast waves move upward against gravity. Left: vertical velocity profile for the two STS and three
different splitting approaches and for an explicit reference run. Right: normalized error, E, from Eq. (14) as a function of the cell size, comparing
the numerical solution obtained using STS with a reference numerical solution obtained in an explicit implementation. All variants produce nearly
identical results, such that all curves seem to be overlapping.

codes MANCHA3D (González-Morales et al. 2018) and Bifrost
(Nóbrega-Siverio et al. 2020).

The STS method eliminates the timestep restriction of
explicit schemes and it is faster than standard sub-cycling. As
pointed out in Meyer et al. (2014), compared to the RKC meth-
ods, the RKL variant ensures stability during every sub-step
(instead of ensuring stability at the end of the super-time-step);
have a larger stability region; do not require adjusting the final
timestep (roundoff errors) and are more efficient (smaller num-
ber of sub-cycles). However, RKL methods require four times
more storage compared to the RKC methods.

Meanwhile, both STS methods have been implemented in
MPI-AMRVAC 3.0 and could be used for any parabolic source
term. We specifically use STS for (anisotropic) thermal conduc-
tivity and ambipolar effects in MHD. The strategy can also be
used for isotropic HD conduction or in the plasma component of
a plasma-neutral setup. There are three splitting strategies to add
the parabolic source term in MPI-AMRVAC: before the divergence
of fluxes are added (referred to as “before”), after (“after”), or in
a split (“split”) manner, meaning that the source is added for half
a timestep before and half a timestep after the fluxes.

As a demonstration of the now available STS-usage for
ambipolar effects, we perform a 1D MHD test of a fast wave
traveling upward in a gravitationally stratified atmosphere where
partial ionization effects are included through the ambipolar
term. Due to this term, such a wave can get damped as it travels
up. In the following, we tested both RKC and RKL methods com-
bined with the three strategies before, after, and split for adding
the source.

The setup is similar to that employed for a previous study of
the ambipolar effect on MHD waves in a 2D setup in Popescu
Braileanu & Keppens (2021). The MHD equations solved are
for (up to nonlinear) perturbations only, where the variables dis-
tinguish between equilibrium (a hydrostatically stratified atmo-
sphere with fixed pressure p0(z) and density ρ0(z)) and perturbed
variables, as described in Yadav et al. (2022, see Eqs. (4)–(9)).
The geometry adopted is 1.75 D (i.e., all three vector compo-
nents are included, but only 1D z-variation is allowed). The
background magnetic field is horizontal, with a small gradient

in the magnetic pressure that balances the gravitational equilib-
rium. It is important to note that the ambipolar diffusion terms
are essential in this test, in order to get wave damping, since a
pure MHD variant would see the fast wave amplitude increase,
in accord with the background stratification. Ambipolar damping
gets more important at higher layers, as the adopted ambipo-
lar diffusion coefficient varies inversely with density-squared.
Popescu Braileanu & Keppens (2021) studied cases with vary-
ing magnetic field orientation, and made comparisons between
simulated wave transformation behavior and approximate local
dispersion relations. Here, we use a purely horizontal field and
retrieve pure fast mode damping due to ambipolar diffusion.

We performed spatio-temporal convergence tests where
we ran the simulation using an explicit implementation and
3200 grid points, having this as a reference solution. Left panel
in Fig. 10 shows the reference numerical solution in its vertical
velocity profile vz(z) at t = 0.7. This panel also over-plots the
numerical solution for 3200 points for the six STS cases and we
see how the seven solutions overlap. The right panel of Fig. 10
shows the normalized error,

E =

√√√ N∑
i=1

(u [i] − r [i])2/

N∑
j=i

r [i]2, (14)

as a function of the cell size ∆z = {5 × 10−4, 2.5 × 10−4, 1.25 ×
10−4, 6.25 × 10−5}, where u is the numerical solution obtained
using STS and r is the reference numerical solution. Then we ran
simulations using all six STS combinations using 3200, 1600,
800, and 400 points. We can observe that in all six cases the
error curve is the same, and shows an order of convergence larger
than 3. We used HLL flux scheme with a cada3 limiter (Čada &
Torrilhon 2009). The temporal scheme was a SSPRK(3,3) three-
step explicit time.

Table 6 shows the computational cost of this simulation14,
run with the same number of cores using an explicit implemen-
tation and the two variants of the STS technique. We can observe

14 The test can be found in tests/demo/AmbipolarMHD_fastwave_1D.
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Table 6. Comparison of the computational times of explicit, RKL, and RKC methods (always exploiting eight cores).

Method Timestep Number of iterations Computational time

Explicit 3.38 × 10−6 295880 233933 s
RKL(split) 4.24 × 10−5 23589 17196 s
RKC (split) 4.24 × 10−5 23589 14367 s

that when the STS technique is employed, the computational
time drops by a factor of >10, being slightly smaller for RKC.

5. IMEX variants

The generic idea of IMEX time integrators is to separate off
all stiff parts for implicit evaluations, while handling all non-
stiff parts using standard explicit time advancement. If we adopt
the common (method-of-lines) approach where the spatial dis-
cretization is handled independently from the time dimension,
we must time-advance equations of the form

∂tu = F(u) = Fim(u) + Fex(u). (15)

5.1. Multistep IMEX choices

One-step IMEX schemes. When we combine a first-order,
single-step forward Euler (FE) scheme for the explicit part, with
a first-order backward Euler (BE) scheme for the implicit part
we arrive at an overall first-order accurate scheme, known as the
IMEX Euler scheme. We can write the general strategy of this
scheme as

un+1 = un + ∆t
[
Fex(un) + Fim(un+1)

]
, (16)

and we can denote it by a combination of two Butcher tableaus,
as follows:

IMEX Euler
FE

0
1 1

1 0

BE
0
1 0 1

0 1

. (17)

Instead, the IMEX SP combination (with SP denoting a splitting
approach), operates as follows: first do an implicit BE step, then
perform an explicit FE step, as in

u(1) = un + ∆tFim(u(1)),

un+1 = un + ∆t
[
Fex(un) + Fim(u(1))

]
. (18)

IMEX SP
FE

0
1

BE
1 1

1

. (19)

The above two schemes fall under the one-step strategy in
MPI-AMRVAC, since only a single explicit advance is needed in
each of them.

Two-step IMEX variants. A higher-order accurate IMEX
scheme, given in Hundsdorfer & Verwer (2003, Eq. (4.12) of
their chapter IV), is a combination of the implicit trapezoidal (or
Crank-Nicholson) scheme and the explicit trapezoidal (or Heun)
scheme, and writes as

u(n+1)∗ = un + ∆tFex(un) + 1
2∆t

[
Fim(un) + Fim(u(n+1)∗)

]
,

un+1 = un + 1
2∆t

[
F(un) + F(u(n+1)∗)

]
, (20)

IMEX trapezoidal
Heun

0
1 1

1/2 1/2

CN
0
1 1/2 1/2

1/2 1/2

. (21)

This scheme is known as the IMEX trapezoidal scheme (some-
times denoted as IMEX CN, as it uses an implicit Crank-
Nicholson step). Since it involves one implicit stage, and two
explicit stages, while achieving second-order accuracy, the
IMEX trapezoidal scheme is denoted as an IMEX(1,2,2) scheme.
The IMEX Euler and IMEX SP are both IMEX(1,1,1).

The three IMEX(sim, sex, p) schemes given by Eqs. (16)–
(18)-(20) differ in the number of stages used for the implicit
(sim) versus explicit (sex) parts, and in the overall order of accu-
racy p. Both IMEX(1,1,1) first-order schemes from Eqs. (16)–
(18) require one explicit stage, and one implicit one. The
IMEX(1,2,2) trapezoidal scheme from Eq. (20) has one implicit
stage, and two explicit ones. We can design another IMEX(1,2,2)
scheme by combining the implicit midpoint scheme with a two-
step explicit midpoint or Predictor-Corrector scheme. This yields
the following double Butcher tableau,

IMEX midpoint
PC

0
1/2 1/2

0 1

IM
0

1/2 0 1/2

0 1

, (22)

and corresponds to the second-order IMEX midpoint scheme

u(n+1)∗ = un + 1
2∆tFex(un) + 1

2∆tFim(u(n+1)∗),

un+1 = un + ∆tF(u(n+1)∗). (23)

Another variant of a two-step IMEX scheme available
in MPI-AMRVAC is known as the IMEX222(λ) scheme from
Pareschi & Russo (2005), where a λ parameter can be varied,
but the default value λ = 1 − 1/

√
2 ensures that the scheme

is SSP and L-stable (Izzo & Jackiewicz 2017). It has implicit
evaluations at fractional steps λ and (1 − λ). Its double Butcher
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table reads

IMEX222(λ)
Heun

0
1 1

1/2 1/2

IM
λ λ

1 − λ 1 − 2λ λ
1/2 1/2

. (24)

Three-step IMEX variants. Since we thus far almost exclu-
sively handled Butcher tableaus with everywhere positive
entries, we may prefer the IMEX-ARK(2,3,2) scheme (Giraldo
et al. 2013), which also has two implicit stages, three explicit
stages, at overall second order. It writes as

IMEX − ARK(2, 3, 2)
explicit

0
2δ 2δ
1 1 − ν ν

1
2
√

2
1

2
√

2
δ

implicit
0
2δ δ δ
1 1

2
√

2
1

2
√

2
δ

1
2
√

2
1

2
√

2
δ

, (25)

where we use the fixed values δ = 1 − 1/
√

2 while ν = (3 +
2
√

2)/6.
Thus far, in terms of the double Butcher tableaus, we have

mostly been combining schemes that have the same left col-
umn entries (i.e., sub-step time evaluations) for the implicit and
the explicit stages. A possible exception was the IMEX222(λ)
scheme. The implicit part was always in diagonally implicit
Runge-Kutta type (or DIRK). Since one in practice implements
the implicit stages separately from the explicit ones, one can
relax the condition for implicit and explicit stages to be at
the same time. In Rokhzadi et al. (2018) an IMEX-SSP(2,3,2)
scheme with two implicit and three explicit stages was intro-
duced, which indeed relaxes this; it is written as

IMEX − SSP(2, 3, 2)
explicit

0
0.712 0.712

0.994 0.077 0.917

0.399 0.346 0.255

implicit
0

0.708 0.354 0.354

1 0.399 0.346 0.255

0.399 0.346 0.255

.

(26)

If we allow for tableaus with also negative entries, we may
even get third-order IMEX schemes, for example the ARS(2,3,3)
scheme by Ascher et al. (1997; also denoted as IMEX-ARS3),
where

IMEX − ARS3 or ARS(2, 3, 3)
explicit

0
γ γ

1 − γ γ − 1 2(1 − γ)
0 1/2 1/2

implicit
0
γ 0 γ

1 − γ 0 1 − 2γ γ
0 1/2 1/2

(27)

which uses the fixed value γ = (3 +
√

3)/6. This has the advan-
tage of having only two implicit stages, which are usually more
costly to compute than explicit stages. This ARS3 (Ascher et al.
1997) scheme has been shown to achieve better than second-
order accuracy on some tests (Koto 2008), while needing three
explicit and two implicit stages.

Finally, the IMEX-CB3a scheme, denoted as IMEXRKCB3a
in Cavaglieri & Bewley (2015) uses three explicit steps, in com-
bination with two implicit stages to arrive at overall third order,
so it is an IMEX(2,3,3) variant:

IMEX − CB3a
explicit

0
c2 c2
c3 0 c3

0 b2 b3

implicit
0
c2 0 c2
c3 0 c3 − a33 a33

0 b2 b3

. (28)

The following relations fix all the values in its Butcher
representation:

c2 =
1

54

(
27 +

3
√

2187 − 1458
√

2 + 9
3
√

3 + 2
√

2
)
,

≈ 0.89255,

c3 =
c2

6c2
2 − 3c2 + 1

,

b2 =
3c2 − 1

6c2
2

,

b3 = 1 − b2,

a33 =

1
6 − b2c2

2 − b3c2c3

b3(c3 − c2)
. (29)

This scheme has the advantage that a low storage implementation
(using 4 registers) is possible.

5.2. IMEX implementation and usage in MPI-AMRVAC

IMEX implementation. The various IMEX schemes are
shared between all physics modules, and a generic implemen-
tation strategy uses the following pseudo-code ingredients for its
efficient implementation. First, we introduced a subroutine,

global_implicit_update(α∆t,tn + β∆t,ua,ub),

which solves the (usually global) problem on the instantaneous
AMR grid hierarchy given by

ua = ub + α∆tFim(ua). (30)

This call leaves ub unchanged, and returns ua as the solution
of this implicit problem. On entry, both states are available at
time tn + β∆t. On exit, state ua is advanced by α∆t and has its
boundary updated. Second,

evaluate_implicit(t,ua)

just replaces the ua state with its evaluation (at time t) in the
implicit part, that is, ua → Fim(t,ua). Finally, any explicit sub-
step is handled by a subroutine,

advect1(α∆t,ta,ua,tb,ub),

which advances the ub state explicitly according to

ub(tb + α∆t) = ub(tb) + α∆tFex(ua(ta)), (31)

along with boundary conditions on ub(tb + α∆t).

A66, page 16 of 31



Keppens, R., et al.: A&A proofs, manuscript no. aa45359-22

t=0 t=100 t=200

t=400 t=600 t=1200

0.0 0.5 1.0 1.5 2.0 2.5
x

0.0

0.5

1.0

1.5

2.0

2.5

y

t=1600 t=2500 t=3500

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

v

Fig. 11. Temporal evolution of v(x, y, t) in a pure reaction-diffusion 2D Gray-Scott spot replication simulation. An animation is provided online.

IMEX usage in MPI-AMRVAC. Currently, the IMEX schemes
are used for handling (1) stiff diffusion terms, such as encoun-
tered in pure reaction-diffusion (or advection-reaction-diffusion)
problems, or in the radiation-hydro module using flux-limited
diffusion (FLD; Moens et al. 2022); (2) stiff coupling terms,
such as in the gas-dust treatment as explained in Sect. 4.1.2, or
in the ion-neutral couplings in the two-fluid module (Popescu
Braileanu & Keppens 2022).

As an example of the first (handling stiff diffusion) IMEX
use-case, we solve the pure reaction-diffusion 2D Gray-Scott
spot replication simulation from Hundsdorfer & Verwer (2003;
which also appears in Pearson 1993). The Gray-Scott two-
component PDE system for u(x, t) = (u(x, t), v(x, t)), has the
following form:

∂tu = Du∇
2u − uv2 + F(1 − u), (32)

∂tv = Dv∇2v + uv2 − (F + k)v,

where F and k are positive constants; Du and Dv are constant
diffusion coefficients. We note that the feeding term F(1 − u)
drives the concentration of u to one, whereas the term −(F + k)v
removes v from the system. A wide range of patterns can be
generated depending on the values of F and k (Pearson 1993),
here we take F = 0.024 and k = 0.06. The diffusion coefficients
have values D1 = 8 × 10−5 and D2 = 4 × 10−5. The initial condi-
tions consist of a sinusoidal pattern in the center of the domain
[0, 2.5]2:

u(x, y, 0) = 1 − 2v(x, y, 0),

v(x, y, 0) =
{ 1

4 sin(4πx)2 sin(4πy)2 if x, y ∈ [1, 1.5]
0 elsewhere

.
(33)

Figure 11 shows the temporal evolution of v(x, y, t) for a high
resolution AMR simulation with a base resolution of 2562 cells.
The five levels of refinement allow for a maximal effective res-
olution of 40962 cells. This long-term, high-resolution run then
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Fig. 12. Temporal convergence of the IMEX Runge-
Kutta schemes in MPI-AMRVAC. The error computed as
[
∑N

i=1 (u[i] − uref[i])2 + (v[i] − vref[i])2]1/2, where N is the total
number of grid points, is plotted as a function of the timestep used to
obtain the numerical solutions u and v using IMEX schemes. The uref
and vref are the reference numerical solutions obtained using an explicit
scheme with a much smaller timestep.

shows how the AMR quickly adjusts to the self-replicating, more
volume-filling pattern that forms: while at t = 100 the coarsest
grid occupies a large fraction of 0.859 of the total area, while
the finest level covers only the central 0.066 area, this evolves to
0.031 (level 1) and 0.269 (level 5) at time t = 3500, the last time
shown in Fig. 11. We note that on a modern 20-CPU desktop
[using Intel Xeon Silver 4210 CPU at 2.20GHz], this entire run
takes only 1053 s, of which less than 10 percent is spent on gener-
ating 36 complete file dumps in both the native .dat format, and
the on-the-fly converted .vtu format (suitable for visualization
packages such as ParaView or VisIt; see Sect. 8.5).

In order to perform a convergence study in time we take the
same setup as Fig. 11, but for a uniform grid of 2562 cells (corre-
sponding to a cell size of ≈0.012) and a final time tend = 100
(corresponding to the second panel of Fig. 11). We compare
every simulation to a reference solution obtained with a classical
fourth-order explicit Runge-Kutta scheme for ∆t = 10−3. When
explicitly solving the reaction-diffusion system corresponding to
the initial conditions, the explicit timesteps are ∆td, expl = 0.149
and ∆tr, expl = 5.803 associated with diffusion and the reaction
terms, respectively. Hence, the use of the IMEX schemes reduces
the computational cost by a factor of ∆tr, expl/∆td, expl ≈ 39 for
this particular problem. For the convergence tests themselves the
value of the largest timestep is fixed to unity, followed by four
successive timesteps smaller by a factor of 2. The resulting con-
vergence graph for ∆t ∈ {0.0625, 0.125, 0.25, 0.5, 1} is shown in
Fig. 12, showing good correspondence between the theoretical
and observed convergence rates.

We note that in this Gray-Scott problem15, the implicit update
from Eq. (30) is actually a problem that can be recast to the
following form:

∇2ua −
1

α∆tDu
ua = −

1
α∆tDu

ub, (34)

and similarly for v. For solving such generic elliptic problems on
our AMR grid, we exploit the efficient algebraic multigrid solver
as introduced in Teunissen & Keppens (2019).

15 This test is available at tests/demo/Gray_Scott_2D.

6. Special (solar) physics modules

In recent years, MPI-AMRVAC has been actively applied to solar
physics, where 3D MHD simulations are standard, although
they may meet very particular challenges. Even when restrict-
ing attention to the solar atmosphere (photosphere to corona),
handling the extreme variations in thermodynamic quantities
(density, pressure and temperature) in combination with strong
magnetic field concentrations, already implies large differences
in plasma beta. Moreover, a proper handling of the chromo-
spheric layers, along with the rapid temperature rise in a narrow
transition region, really forces one to use advanced radiative-
MHD treatments (accounting for frequency-dependent, nonlocal
couplings between radiation and matter, true nonlocal-thermal-
equilibrium physics affecting spectral line emission or absorp-
tion, etc.). Thus far, all these aspects are only handled approx-
imately, with, for example, the recently added plasma-neutral
src/twofl module (Popescu Braileanu & Keppens 2022) as
an example where the intrinsically varying degree of ioniza-
tion throughout the atmosphere can already be incorporated. To
deal with large variations in plasma beta, we provided options
to split off a time-independent (not necessarily potential) mag-
netic field B0 in up to resistive MHD settings (Xia et al. 2018),
meanwhile generalized (Yadav et al. 2022) to split off entire 3D
magneto-static force-balanced states −∇p0 + ρ0g + J0 × B0 = 0.
For MHD and two-fluid modules, we add an option to solve inter-
nal energy equation instead of total energy equation to avoid
negative pressure when plasma beta is extremely small.

A specific development relates to numerically handling
energy and mass fluxes across the sharp transition region varia-
tion, which under typical solar conditions and traditional Spitzer-
type thermal conductivities can never be resolved accurately in
multidimensional settings. Suitably modifying the thermal con-
duction and radiative loss prescriptions can preserve physically
correct total radiative losses and heating aspects (Johnston et al.
2020). This led to the transition-region-adaptive-conduction
(TRAC) approaches (Johnston et al. 2020, 2021; Iijima & Imada
2021; Zhou et al. 2021), with, for example, Zhou et al. (2021)
introducing various flavors where the field line tracing function-
ality (from Sect. 7.2) was used to extend the originally 1D hydro
incarnations to multidimensional MHD settings. Meanwhile,
truly local variants (Iijima & Imada 2021; Johnston et al. 2021)
emerged, and MPI-AMRVAC 3.0 provides multiple options16 col-
lected in src/mhd/mod_trac.t. In practice, up to 7 variants
of the TRAC method can be distinguished in higher dimensional
(> 1D) setups, including the use of a globally fixed cut-off tem-
perature, the (masked and unmasked) multidimensional TRACL
and TRACBmethods introduced in Zhou et al. (2021), or the local
fix according to Iijima & Imada (2021).

Various modules are available that implement frequently
recurring ingredients in solar applications. These are, for
example: a potential-field-source-surface (PFSS) solution on
a 3D spherical grid that extrapolates magnetic fields from a
given bottom magnetogram (see src/physics/mod_pfss.t
as evaluated in Porth et al. 2014), a method for extrap-
olating a magnetogram into a linear force-free field in a
3D Cartesian box (see src/physics/mod_lfff.t), or a

16 In fact, the original 1D hydro “infinite-field” limit where MHD along
a geometrically prescribed, fixed-shape field line is believed to follow
the HD laws with field line projected gravity, can also activate the TRAC
treatment in the src/hd module, in combination with a user-set area
variation along the “field line,” which has been shown to be important,
e.g., in Mikić et al. (2013).
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modular implementation of the frequently employed 3D Titov-
Démoulin (Titov & Démoulin 1999) analytic flux rope model
(see src/physics/mod_tdfluxrope.t), or the functionality
to perform nonlinear force-free field extrapolations from vector
magnetograms (see src/physics/mod_magnetofriction.t
as evaluated in Guo et al. 2016b,c).

In what follows, we demonstrate more recently added solar-
relevant functionality, namely the addition of a time-dependent
magneto-frictional (MF) module in Sect. 6.1, the possibility to
insert flux ropes using the regularized Biot-Savart laws (RBSLs)
from Titov et al. (2018) in Sect. 6.2, and the way to synthesize
3D MHD data to actual extreme ultraviolet (EUV) images in a
simple on-the-fly fashion in Sect. 6.3.

6.1. Magneto-frictional module

The MF method is closely related to the MHD relaxation pro-
cess (e.g., Chodura & Schlueter 1981). It is proposed by Yang
et al. (1986) and considers both the momentum equation and the
magnetic induction equation:

ρ

(
∂v
∂t
+ v · ∇v

)
= J × B − ∇p + ρg − νv, (35)

∂B
∂t
= ∇ × (v × B), (36)

where ρ is the density, v the velocity, J = ∇ × B/µ0 the elec-
tric current density, B the magnetic field, p the pressure, g the
gravitational field, ν the friction coefficient, and µ0 the vacuum
permeability. To construct a steady-state force-free magnetic
field configuration, the inertial, pressure-gradient, and gravita-
tional forces are omitted in Eq. (35) and one only uses the
simplified momentum equation to give the MF velocity:

v =
1
ν

J × B. (37)

Equations (36) and (37) are then combined together to relax an
initially finite-force magnetic field to a force-free state where J×
B = 0 with appropriate boundary conditions.

The MF method has been adopted to derive force-free mag-
netic fields in 3D domains (e.g., Roumeliotis 1996; Valori et al.
2005; Guo et al. 2016b,c). It is commonly regarded as an itera-
tion process to relax an initial magnetic field that does not need
to have an obvious physical meaning. For example, if the initial
state is provided by an extrapolated potential field together with
an observed vector magnetic field at the bottom boundary, the
horizontal field components can jump discontinuously there ini-
tially, and locally are probably not in a divergence-free condition.
The MF method can still relax this unphysical initial state to an
almost force-free and divergence-free state (the degree of force-
freeness and its solenoidal character can be quantified during
the iterates and monitored). On the other hand, the MF method
could also be used to actually mimic a time-dependent process
(e.g., Yeates et al. 2008; Cheung & DeRosa 2012), although there
are caveats about using the MF method in this way (Low 2013).
The advantage of such a time-dependent MF method is that it
consumes much less computational resources than a full MHD
simulation to cover a long-term quasi-static evolution of nearly
force-free magnetic fields. This allows us to simulate the global
solar coronal magnetic field over a very long period, for instance,
several months or even years.

We implemented a new MF module (src/mf), parallel to
the existing physics modules like MHD, in MPI-AMRVAC. This

module can be used in 2D and 3D, and in different geome-
tries, fully compatible with (possibly stretched) block-AMR. We
set the friction coefficient ν = ν0B2, where ν0 = 10−15 s cm−2

is the default value. The magnitude of the MF velocity is
smoothly truncated to an upper limit vmax = 30 km s−1 by
default to avoid extremely large numerical speed near magnetic
null points (Pomoell et al. 2019). The ν0 and vmax are input
parameters mf_nu and mf_vmax with dimensions. We allow a
smooth decay of the MF velocity toward the physical boundaries
to match line-tied quasi-static boundaries (Cheung & DeRosa
2012). In contrast to the previous MF module (still available as
src/physics/mod_magnetofriction.t) used in Guo et al.
(2016c), this new MF module in src/mf includes the time-
dependent MF method and now fully utilizes the framework
for data I/O with many more options of numerical schemes.
Especially, the constrained transport scheme (Balsara & Spicer
1999), compatibly implemented with the staggered AMR mesh
(Olivares et al. 2019), to solve the induction equation, Eq. (36),
is recommended when using this new MF module. This then
can enforce the divergence of magnetic field to near machine
precision zero.

To validate the new MF module, we set up a test17, starting
from a non-force-free bipolar twisted magnetic field (Mackay &
van Ballegooijen 2001) to verify that the MF module can effi-
ciently relax it to a force-free state. The magnetic field is given
by

Bx = B0e0.5
 z

L0
e−ξ + 4β

xy
L2

0

e−2ξ
 , (38)

By = 2βB0e0.5
1 − x2 + z2

L2
0

 e−2ξ, (39)

Bz = B0e0.5
− x

L0
e−ξ + 4β

yz
L2

0

e−2ξ
 , (40)

ξ =
0.5(x2 + z2) + y2

L2
0

, (41)

where B0 = 50 G is the peak flux density, β = 1 is a dimen-
sionless parameter to control the twist of the magnetic field,
and L0 = 10 Mm is the half distance between the peaks of two
polarities on the z = 0 boundary. The test is performed in a
3D Cartesian box bounded by −40 ≤ x ≤ 40 Mm, −40 ≤ y ≤
40 Mm, and 0 ≤ z ≤ 80 Mm with 4-level AMR grid of effec-
tive 256 × 256 × 256 resolution. The (MF) velocities in the
ghost cells are set to zero. The induction equation is solved
with a finite-volume scheme combining the HLL Riemann flux
(Harten et al. 1983) with Čada’s third-order limiter (Čada &
Torrilhon 2009) for reconstruction and a three-step Runge–Kutta
time integration. The magnetic field is extrapolated on the side
and top boundaries assuming zero normal gradient. We com-
pare two divergence control strategies, namely linde versus ct
(from Table 5). In the run using linde, we use Courant number
0.3 for stability and a diffusive term in the induction equation
diminishes the divergence of the magnetic field (Keppens et al.
2003). To keep the bottom magnetic flux distribution, the mag-
netic field vectors are fixed at the initial values in the first-layer
(next to the physical domain) ghost cells of the bottom boundary
and extrapolated to deeper layers of ghost cells with divergence-
free condition. In the run ct, we use Courant number 0.8 and the
constrained transport method with the initial face-centered mag-
netic field integrated from the edge-centered vector potential to
17 Fully provided in tests/demo/Mackay_bipole_Cartesian_3D.
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Fig. 13. MF relaxation of a non-force-free twisted magnetic flux tube.
(a) Magnetic field lines of the flux tube in different colors at time 0.
(b) Magnetic field lines starting from the same footpoints at time 900 of
the ct run. (c) Degree of force-freeness as the weighted average of the
sine of the angle between the magnetic field and the current density for
the linde and ct run. (d) Degree of divergence-freeness as the average
dimensionless divergence of the magnetic field for both runs.

start with zero numerical divergence of the magnetic field. The
tangential electric field on the bottom surface is fixed to zero
to preserve the magnetic flux distribution. Magnetic structures at
the initial time 0 and the final time 900 are presented by magnetic
field lines in Figs. 13a,b, respectively. The initial torus-like
flux tube expands and relaxes to a twisted flux rope wrapped
by sheared and potential arcades. In Figs. 13c,d, we present the
force-free degree by the weighted average of the sine of the angle
between the magnetic field and the current density as Eq. (13) of
Guo et al. (2016c) and the divergence-free degree by the average
dimensionless ∇ ·B as the Eq. (11) of Guo et al. (2016c), respec-
tively. In the ct run, the force-free degree rapidly decreases from
0.76 to lower than 0.1 within time 84, and converges to 0.0095.
The divergence-free degree levels off to 1.5 × 10−14. In the run
using linde, the force-free degree decreases similarly until 0.6
and slowly converges to a worse value of 0.16. The divergence-
free degree quickly reaches a peak value of 0.098 and decreases
to 1.5 × 10−4. Further investigation locates the large ∇ · B errors
at the two main polarities in the first-layer cells above the bottom
boundary in the linde run.

We also applied the new MF module to observations (pro-
vided in tests/mf/data_driven_tmf) for time-dependent
evolution. Figure 14 shows an example of the application of
the MF module in the solar active region 12 673. We select
the time range between 09:00 UT on 2017 September 3 and
15:00 UT on 2017 September 6 to do the simulation, which
includes the buildup period for two X-class flares peaking at
09:10 UT (X2.2) and 12:02 UT (X9.3) on 2017 September
6, respectively. Solar Dynamics Observatory Helioseismic and
Magnetic Imager (SDO/HMI) observes a temporal sequence
of vector magnetic field on the photosphere. We use the
SDO/HMI Active Region Patch (SHARP) data with a cadence
of 12 min (Hoeksema et al. 2014). The series name of the
data is “hmi.sharp_cea_720s.7115.” The vector velocity field is
also derived by the inversion of the magnetic field using the
differential affine velocity estimator for vector magnetograms
(DAVE4VM; Schuck 2008). Then, both the temporal sequence

of the vector magnetic field and the velocity field are used to
fill the first-layer ghost cells at the bottom boundary to drive
the evolution of the coronal magnetic field. The initial condi-
tion is a potential field at 09:00 UT on 2017 September 3 as
shown in Fig. 14a. On a uniform (domain-decomposed) grid
of 340 × 220 × 220 cells, the induction equation is solved with
the same numerical schemes as in the linde run of the bipolar
test. The magnetic field line evolution in Fig. 14 indicates that
a twisted magnetic flux rope is formed along the polarity inver-
sion line toward the explosion of the major flares. The resulting
3D magnetic field evolution can be compared to actual observa-
tions (in terms of their emission morphology), or can be used to
start full 3D follow-up MHD simulations that incorporate actual
plasma dynamics.

We note that we here did exploit linde divergence control,
since the ct method requires a strict divergence-free boundary
condition of magnetic field for numerical stability. For static
cases (as in the much more idealized test from Fig. 13), this can
be realized easily. However, for data-driven boundary conditions
in which magnetic fields are directly given by actual observa-
tions, such strict divergence-free conditions cannot always be
ensured. With the linde method, spurious divergence induced by
a data-driven boundary can still be diffused and reduced, and
the numerical scheme is stable even though locally the discrete
divergence of magnetic field can be relatively large (as stated
above for the test from Fig. 13, typically in the first grid cell
layer). When we tried to apply the ct method to actual SDO
data, code stability was compromised due to residual magnetic
field divergence. Future work should focus on more robust, fully
AMR-compatible means for performing data-driven runs using
actual observational vector magnetic and flow data.

6.2. Inserting flux ropes using regularized Biot–Savart laws

Solar eruptive activities, such as flares and coronal mass ejec-
tions, are believed to be driven by the eruption of magnetic flux
ropes. Many efforts have been devoted to model the magnetic
field of such a configuration, such as the analytical Gibson–Low
model (Gibson & Low 1998), Titov–Démoulin model (Titov &
Démoulin 1999), and Titov–Démoulin modified model (Titov
et al. 2014). Alternatively, nonlinear force-free field extrapola-
tions are also applied to model flux ropes numerically (e.g.,
Canou et al. 2009; Guo et al. 2010). They use the vector magnetic
field observed on the photosphere as the boundary condition,
solve the force-free equation ∇ × B = αB, and derive the 3D
coronal magnetic field. There are some drawbacks in these ana-
lytical and numerical methods. Most analytical solutions assume
some geometric symmetries, such as a toroidal arc in the Titov–
Démoulin model. On the other hand, many numerical techniques
cannot derive flux rope structures in weak magnetic field region
or when they detach from the photosphere, such as for intermedi-
ate or quiescent prominences. One way to alleviate this problem
is to adopt the flux rope insertion method (van Ballegooijen
2004). However, this method uses an initial state far from equi-
librium, which asks for many numerical iterations to relax and
the final configuration is difficult to control.

Titov et al. (2018) proposed the RBSL method to overcome
the aforementioned drawbacks. A force-free magnetic flux rope
with an arbitrary axis path and an intrinsic internal equilibrium is
embedded into a potential field. The external equilibrium could
be achieved by a further numerical relaxation. The RBSL mag-
netic field, BFR, generated by a net current I and net flux F
within a thin magnetic flux rope with a minor radius a(l) is
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Fig. 14. Evolution of magnetic
field lines in the data-driven time-
dependent MF simulation. The
left column shows a top view,
and the right column shows a
side view. The slice on the bot-
tom displays the normal magnetic
field, Bz. The magnetic field lines
are colored according to the field
strength.

expressed as

BFR = ∇ × AI + ∇ × AF , (42)

AI(x) =
µ0I
4π

∫
C∪C∗

KI(r)R′(l)
dl

a(l)
, (43)

AF(x) =
F
4π

∫
C∪C∗

KF(r)R′(l) × r
dl

a(l)2 , (44)

where AI(x) and AF(x) are the vector potentials, µ0 the vacuum
permeability, C and C∗ the axis paths above and below the refer-
ence plane, KI(r) and KF(r) the integration kernels, R′ = dR/dl
the unit tangential vector, l the arc length along the axis paths,

and r ≡ r(l) = (x − R(l))/a(l). Titov et al. (2018) have provided
the analytical forms of the integration kernels by assuming a
straight force-free flux rope with a constant circular cross sec-
tion. The axial electric current is distributed in a parabolic profile
along the minor radius of the flux rope. With such analytical inte-
gration kernels, a flux rope with arbitrary path could be derived
via Eqs. (42)–(44).

Guo et al. (2019) implemented the RBSL method in
MPI-AMRVAC18. The module works for 3D Cartesian settings,
allowing AMR. Figure 15 shows the magnetic flux rope

18 Now available in the module src/physics/mod_rbsl.t.

A66, page 21 of 31



A&A 673, A66 (2023)

Fig. 15. Magnetic flux rope constructed via RBSL overlaid on
the STEREO_B/EUVI 304 Å image observed at 01:11 UT on
2011 June 11.

constructed by the RBSL method overlaid on the 304 Å
image observed by the Extreme UltraViolet Imager (EUVI) on
STEREO_B. In practice, one needs to determine four parame-
ters to compute the RBSL flux rope, namely, the axis path C,
minor radius a, magnetic flux F, and electric current density I.
The axis path is determined by triangulation of stereoscopic
observations of STEREO_A/EUVI, the Atmospheric Imaging
Assembly (AIA) on SDO, and STEREO_B/EUVI at 304 Å. The
sub-photospheric counterpart C∗ is the mirror image of C to keep
the normal magnetic field outside the flux rope unchanged. The
minor radius is determined by half the width of the filament
observed in 304 Å. The magnetic flux is then determined by the
magnetic field observed by SDO/HMI at the footprints of the flux
rope. Finally, the electric current I = (±5

√
2F)/(3µ0a), where

the sign is determined by the helicity sign of the flux rope.
With all these four parameters, the RBSL flux rope is com-

puted via Eqs. (42)–(44). It has to be embedded into a potential
magnetic field to construct a magnetic configuration conforming
with magnetic field observations. When C∗ is the mirror image
of C, the RBSL flux rope has zero normal magnetic field outside
the flux rope, while the magnetic flux inside the flux rope is F.
Therefore, we subtract the magnetic flux F inside the two foot-
prints to compute the potential field. The RBSL flux rope field is
embedded into this potential field. So, the normal magnetic field
on the whole bottom boundary is left unchanged. The combined
magnetic field might be out of equilibrium. We could relax this
configuration by the MF method (Guo et al. 2016b,c). The final
relaxed magnetic field is shown in Fig. 15. This magnetic field
could serve as the initial condition for further MHD simulations.

The RBSL method can also be applied to construct the
analytical Titov–Démoulin modified model. An example is pre-
sented in Guo et al. (2021), where the flux rope axis has to be
a semicircular shape, and it is closed by a mirror semicircle
under the photosphere. The major radius Rc is a free param-
eter. The flux rope axis is placed on the y = 0 plane and its
center is located at (x, y) = (0, 0). The minor radius a is also a
free parameter. To guarantee the internal force-free condition, a
has to be much smaller than Rc. Then, the flux rope has to be
embedded into a potential field to guarantee the external force-
free condition. The potential field is constructed by two fictional

Fig. 16. Ingredients for the (on-the-fly or post-process) synthetic imag-
ing. (a) Simulation box (blue cube), LOS (dashed red line), and EUV
image plane (black mesh). The EUV image plane is perpendicular to
the LOS. (b) LOS depends on θ and φ at simulation box coordinates.

magnetic charges of strength q at a depth of dq under the pho-
tosphere, which are along the y-axis at y = ±Lq. The electric
current and magnetic flux are determined by Eqs. (7) and (10) in
Titov et al. (2014).

6.3. Synthetic observations

For solar applications, it is customary to produce synthetic
views on 3D simulation data, and various community tools have
been developed specifically for post-processing 3D MHD data
cubes. For example, the FoMo code (Van Doorsselaere et al.
2016) was originally designed to produce optically thin coro-
nal EUV images based on density, temperature and velocity
data, using CHIANTI (see Del Zanna et al. 2021 and refer-
ences therein) to quantify emissivities. FoMo includes a more
complete coverage of radio emission of up to optically thick
regimes, and Pant & Van Doorsselaere (2020) provide a recent
example of combined MPI-AMRVAC-FoMo usage addressing non-
thermal linewidths related to MHD waves. Another toolkit called
FORWARD (Gibson et al. 2016) includes the possibility to synthe-
size coronal magnetometry, but is Idl-based (requiring software
licenses) and an implementation for AMR grid structures is as
yet lacking.

Since synthetic data for especially optically thin coronal
emission is key for validation purposes, we now provide mod-
ules that directly perform the needed ray-tracing on AMR
data cubes, in src/physics/mod_thermal_emission.t. The
module contains temperature tables specific for AIA, IRIS and
EIS instruments, with coverage for various wavebands. One can
synthesize both EUV and soft X-ray emission, and the module
can be used for synthetic images or for spectral quantifications.
Images in vti format are readily produced either during runtime
or in a post-processing step, where the user controls the relative
orientation of the line of sight (LOS) to the data cube. We use
this for 3D Cartesian data sets from MHD, allowing AMR.

As the first step in synthesizing an EUV image, a 2D table is
created to record the luminosity of each image pixel. We assume
that an EUV image has uniform pixel size; for example, the pixel
size of SDO/AIA images is 0.6 arcsec (Lemen et al. 2012). The
spatial link between the EUV image plane and the 3D simulation
box refers to Fig. 16a, where the mapping between simulation
box coordinates (x, y, z) and EUV image coordinates (X,Y) is
accomplished using the unit direction vectors XI and YI of the
image plane at simulation coordinates:

X = (x, y, z) · XI − (x0, y0, z0) · XI, (45)
Y = (x, y, z) · YI − (x0, y0, z0) · YI. (46)
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The vectors XI and YI are both perpendicular to the LOS and to
each other, and are given by

XI =
VLOS × (0, 0, 1)
|VLOS × (0, 0, 1)|

, (47)

YI =
XI × VLOS

|XI × VLOS|
, (48)

where VLOS is the LOS vector in simulation box coordinates.
VLOS can be written as

VLOS = (− cosφ sin θ,− sinφ sin θ,− cos θ), (49)

with the user-given parameters θ and φ (Fig. 16b). The user-
defined parameter (x0, y0, z0), which has a default value of
(0, 0, 0), can be any point in the simulation box and can then
be mapped to the EUV image coordinate origin (X = 0,Y = 0).

The integral EUV flux from each cell in the simulation box
is computed and then distributed over the table, where the cell
flux is given by

Ic = N2
ecG(Tec)∆x∆y∆z, (50)

where Nec is the cell electron number density, Tec is the cell
electron temperature, G is the contribution function of the corre-
sponding EUV line given by the CHIANTI atomic database, and
∆x, ∆y, and ∆z are the cell sizes in three directions (Del Zanna
et al. 2021). Due to instrument scattering, a single point source
will appear as a blob in EUV observations. This effect is taken
into consideration when distributing cell flux to image pixels by
multiplying a Gaussian-type point spread function (PSF; Grigis
et al. 2013). The resulting pixel flux is given by

Ip =
∑

i

Ic,i

∫ Xmax

Xmin

∫ Ymax

Ymin

1
2πσ2 (51)

× exp
[
−(X − Xc,i)2 − (Y − Yc,i)2

2σ2

]
dXdY

=
∑

i

Ic,i

4

[
erfc

(
Xmin − Xc,i
√

2σ

)
− erfc

(
Xmax − Xc,i
√

2σ

)]
×

[
erfc

(
Ymin − Yc,i
√

2σ

)
− erfc

(
Ymax − Yc,i
√

2σ

)]
, (52)

where i is the cell index, Ic,i is the integral EUV flux from the
ith cell, (Xc,i,Yc,i) is the mapping result of the cell center at the
image plane, and Xmin, Xmax, Ymin and Ymax give the borders of
the pixel. The standard deviation σ of the PSF is taken from the
related papers of the corresponding spacecraft, and is usually
close to the pixel size. When the cell size is not small enough
compared to the EUV image pixel size (for example, the pro-
jection of any cell edge at the image plane is larger than half the
pixel size), a cell is split into multiple parts before the calculation
of Eqs. (50)–(52) in order to improve the integral accuracy.

Figure 17 shows a snapshot of a data-driven MHD model
for the X1.0 flare at 15:35 UT on 2021 October 28. The 3D
MHD model considers a full energy equation with background
heating, thermal conduction, and optically thin radiation losses.
A detailed analysis of this simulation will be presented in a
future paper. Here, we use a single snapshot from the evolution
to synthesize EUV images, to demonstrate this new capabil-
ity of MPI-AMRVAC. Figure 18 shows comparisons of SDO/AIA
observations and the synthesized EUV images from the data-
driven MHD model. We select three different wavebands at 94 Å,

Fig. 17. Data-driven MHD model, with all energetics incorporated. The
vertical slices show the temperature on the left and density on the right.
The magnetic field lines are colored according to the field strength. The
bottom slice displays the normal magnetic field, Bz.

171 Å, and 304 Å. It is found that the simulation and its synthe-
sized EUV images reproduces qualitatively various aspects seen
in the flare ribbons. In contrast to the actual observed images,
coronal loops are not reproduced very accurately (as shown in
Figs. 18c,d), and the simulation displays a relatively strong spher-
ical shock front, seen in all three wavebands. These aspects
rather call for further improvement of the (now approximate)
radiative aspects incorporated in the data-driven MHD model,
but these can still be improved by adjusting the heating-cooling
prescriptions and the magnetic field strength. Here, we only
intend to show the synthesizing ability of MPI-AMRVAC, which
has been clearly demonstrated.

7. Handling particles and field lines

7.1. Sampling, tracking, or Lorentz dynamics

The src/particle folder contains all options for handling
“particle” dynamics that one may relate to the PDE system at
hand. For any of the PDE modules listed in Table 1, com-
putational particles can be employed to meaningfully sample
all solution values at pre-chosen fixed or dynamically evolving
locations. We illustrate this with a 2D linear scalar advection
problem, where the particle module samples the solution at
three distinct locations: one fixed in space and time, another
one moving with constant speed on a vertical straight line, and
a third location that follows a uniform circular motion. On a
square domain, the diagonally advected profile corresponds to
our VAC logo, with constant values ρ = 0.5 exterior, and ρ = 2
interior to the letters, and Fig. 19 shows the ρ(x, y, t = 1) dis-
tribution for a 4-level AMR run using a three-step TVDLF
run with the koren limiter (Koren 1993). The sampling “par-
ticles” and their trajectories are shown in blue. The plots on
the right show the sampled data for the three particles as a
function of time. The complete setup19 demonstrates how the
user can add and define additional variables (here correspond-
ing to the exact solution ρexact(x, y, t) at given time t and the
error with respect to the exact solution) and how to add a pay-
load (namely the sampled exact solution) to the particle sampler.
This kind of sampling on prescribed user-defined trajectories

19 Provided in tests/demo/Advect_ParticleSampling_2D.

A66, page 23 of 31



A&A 673, A66 (2023)

Fig. 18. Comparison between SDO/AIA observations and synthesized EUV images from a data-driven MHD model (as in Fig. 17), including a full
energy treatment. The left column shows the SDO/AIA observations at wavebands of (a) 94 Å, (c) 171 Å, and (e) 304 Å. The right column shows
the emission at the same waveband as the left synthesized from the MHD model at the same time.

could be relevant for 3D space-weather-related MHD simula-
tions as done by ICARUS (Verbeke et al. 2022), for comparison
with actual spacecraft data. The interpolations from (AMR) grid
cell centers to locally sampled data are done by linear (bilinear
in 2D or trilinear in 3D) interpolation, where also linear inter-
polation in time is performed when dynamic evolutions occur.
The actual subroutine for interpolating any field variable to a
specific grid location can be modified at will, and is called
interpolate_var in the particle/mod_particle_base.t
module. Other interpolation schemes (e.g., quadratic or higher-
order) can be implemented there.

A second use-case for the src/particle folder is specific
to any PDE system featuring a vector velocity field, such as the
HD or MHD systems. In that case, we may be interested in gas

or plasma properties at locations that follow the flow, and hence
positions that are merely advected in a Lagrangian fashion. This
is possible with the mod_particle_advect.t module.

Whenever plasma is involved, such as in an MHD (or two-
fluid plasma-neutral) setting, we can also quantify instantaneous
magnetic and electric field data from the MHD variables. This
can then be used to compute the trajectories of charged test par-
ticles with a given mass, m, and charge, q, according to the
standard Lorentz equation, where acceleration a follows from
ma = q (E + v × B) or from its fully relativistic variant (see, e.g.,
Ripperda et al. 2018). The latter was used in Zhao et al. (2021) to
analyze relativistic particle acceleration processes in 2D resistive
MHD simulations of chaotic island formation (also occurring
in the tilt evolution from Sect. 4.2.2). We demonstrate here the
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Fig. 19. Demonstration of the sampling possibilities, where a 2D scalar linear advection problem is augmented with sampled solutions at three
locations that follow user-specified orbits. The left panel shows the solution at t = 0.92, along with the trajectories of sampling particles (blue
spheres and lines). The right panels show the numerical (in red) and the analytic solution (black) as a function of time for the three locations. An
animation is provided online.

capability of tracing charged particles in MHD simulations by
using the electromagnetic field data from Sect. 4.2.2 at t = 8.5
(roughly corresponding to Fig. 9) and evolving particles in this
fixed MHD background. Figure 20 (top left) shows the trajecto-
ries of selected particles (evolved for a time t = 0.5) in the central
xy region [−0.25, 0.25] × [−0.125, 0.125] of the aforementioned
MHD run, where island interaction creates chaotic magnetic
structures and strong out-of-plane currents Jz. The same figure
(top right, bottom left, bottom right) presents a zoom-in onto
three selected particle trajectories, showing explicitly the oscil-
latory and drift motion of charged particles around and across
magnetic field lines. Several integration methods are available
to numerically solve charged-particle motion in MPI-AMRVAC,
either in the Newtonian or in the relativistic limit.

In many astrophysically relevant situations, one may be faced
with unusually large differences in the (small) length scale set by
the charged particle local gyroradius, and the one associated with
(gradients in) the background electromagnetic field quantities. In
that case, it can be advantageous to work with the guiding center
approximation (GCA) where one solves a set of ordinary differ-
ential equations where the fast gyro-motion is averaged out. The
use of GCA equations in MPI-AMRVAC was, for example, demon-
strated in 3D MHD setups of KH unstable magnetopause setups
featuring particle trapping in Leroy et al. (2019). The various
options for the relativistic Lorentz equation integrators imple-
mented in MPI-AMRVAC, as well as the governing GCA equa-
tions with references to their original sources can be found in
Ripperda et al. (2018). A summary in the online documentation
is the markup-document in doc/particle.md.

Fig. 20. Demonstration of charged-particle tracing in an MHD simu-
lation. The background fluid state is taken from Sect. 4.2.2 and kept
fixed while several charged particles are traced (red lines in the top-
left panel) by numerically solving the equations of motion. Selected
zoomed-in trajectories (top-right, bottom-left, and bottom-right panels)
show the typical oscillatory and drift motion of charged particles around
and across magnetic field lines. An animation is provided online.
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7.2. Field line tracing

We introduce a generic field line tracing module (in
src/module/mod_trace_field.t, which is able to trace var-
ious types of field lines that start at user-specified points, either
during runtime or in post-processing fashion. At the moment,
this functionality works for 3D Cartesian AMR grids (but does
not account for possibly stretched grids discussed in Sect. 8.3).
The flow chart for tracing a single magnetic field line through a
memory-distributed block-AMR setting has been introduced in
Ruan et al. (2020; their, Fig. B1). We now add a functionality to
trace multiple field lines in parallel, where now multiple start-
ing points can be provided for a set of field lines to be traced
through the AMR grid hierarchy. We also generalize the imple-
mentation to handle any type of vector field, such that we can
plot or trace (1) magnetic field lines in MHD (or multi-fluid)
settings, but also (2) flow streamlines for the velocity field, and
(3) any user-defined vector field (e.g., useful for visualizing or
quantifying electric fields and currents). This functionality is
demonstrated in Fig. 3 where it is used to compute and visualize
velocity streamlines, and in Fig. 9 where the magnetic field lines
shown are also calculated with this module. For these 2D cases
(the tracing implementation works in 2D and 3D), we employ the
method presented in Jobard & Lefer (1997) to select seed points
to get evenly spaced streamlines or field lines.

During this tracing, users can ask to interpolate any set of
self-defined derived quantities to the field lines. This ability
is, for example, crucial to the TRAC method for handling sharp
transitions in temperature and density fields, where along the
trajectories of magnetic field lines, the temperature gradients
along the line tangent direction are required (Zhou et al.
2021). In Ruan et al. (2020), magnetic field lines in a 2D
reconnection setup inspired by the “standard solar flare model”
were computed during runtime, and model equations along the
field lines were solved to quantify how the energy release by
reconnection gets dynamically deposited in remote locations
(by energetic electron beams that collide with lower-lying,
denser chromosphere material). This involves back and forth
interpolations between grid and field lines. Together with the
general functionality provided through the particle module
(Sect. 7.1), it then becomes possible to provide dynamically
evolving seed points such that one traces the exact same field
lines, simply by using Eulerian advection on the seeds.

8. Data processing and technical aspects
8.1. Customized user interfaces

For any new application, the minimal requirement is to code up
an application-specific mod_usr.t file where at least the initial
condition for all involved variables must be provided. The input
parameter file amrvac.par makes use of Fortran name lists to
then select the time stepping scheme, the spatial discretization,
I/O aspects, boundary conditions, and parameters that control
the evolving AMR grid structure. For every PDE system from
Table 1, equation-specific parameters may need to be set as well.

The actual code versatility follows from the many ways
to allow user-customized adaptations. These include as most
commonly used ones:

– the addition of specific source terms in the equations, and
their corresponding effect on time step constraints for explicit
time stepping strategies;

– the definition of user- or application-specific
(de)refinement strategies, based on combinations of either purely
geometric or solution-derived quantities;

– the design of specific boundary conditions on user-selected
variables;

– the way to add derived variables to the I/O routines or to
carry out post-processing during conversion or runtime on data
files;

– the possibility to process data at every timestep;
– the way to handle particle data and payloads.

The complete list of all customized subroutine interfaces is given
in src/mod_usr_methods.t. Many examples of their intended
usage can be found in the tests folder.

8.2. Initializing from datacubes or driving boundaries

The code offers various possibilities to read in structured data
sets, which can be used for initialization or boundary driving
purposes. For example, the Alfvén shock test in Sect. 4.2.1
shows how a vtk image can be used to set the density at time
t = 0 in some part of the domain, while 2D and 3D advec-
tion tests can use the same image as a boundary condition.
An impression of such 2D boundary-driven advection using the
alfven.vtk image20, while enforcing user-controlled, purely
geometric AMR (only a central region is at the highest AMR
level) is provided in Fig. 21. Such 2D advection of the image
mimics a faxing process where the image gets advected into the
domain as time proceeds (this is a time-dependent 1D boundary
driving realized by a single 2D image), and 3D variants would
realize time-dependent 2D boundary driving. Initializing data
uses the src/mod_init_datafromfile.t module, which cur-
rently expects a vtk formatted data set (2D or 3D). This can
easily be adjusted to read in structured data from other sim-
ulation codes, for detailed inter-comparisons, or for revisiting
structured grid data evolutions with AMR runs that may zoom
in on details. All functionality discussed above stores the read-
in data in a lookup-table, which allows for easy and efficient
interpolations to the AMR grid. As usual, when reading in exter-
nal data, the user must beware of a possible need to introduce
floor values (e.g., ensuring positive densities and/or pressures),
or handling data outside the region covered by the given dat-
acube. The time-dependent MF module discussed in Sect. 6.1
is yet another example of how one can handle time-dependent
boundary data, as provided from external files.

8.3. AMR and multidimensional stretching in orthogonal
coordinates

MPI-AMRVAC allows for anisotropic grid stretching, that is, inde-
pendent grid stretching prescriptions for each spatial coordinate,
combined with AMR, for any geometry. A “stretched” grid does
not imply enlarging the domain, but rather the use of nonuni-
form grid cells to cover a given domain, with cells that become
gradually larger (or smaller) in a stretched direction. This gen-
eralizes our previously documented purely radial grid stretching
for spherical (or polar/cylindrical) applications as documented in
Xia et al. (2018). Currently two stretching configurations are sup-
ported, namely: (1) unidirectional stretching, where every cell is
stretched by a constant factor (the “stretching factor”) in the spec-
ified spatial direction from cell to cell; (2) symmetric stretching,
where one can specify the amount of blocks that should remain
uniform, with the remaining blocks on either side stretched. This
must have an even number of grid blocks on the base AMR level,
and adopts a central symmetry.

Figure 22 showcases this capability for 3D cylindrical (left
panel) and spherical (right panel) geometries. In both examples

20 Provided in tests/demo/Advect_BC_from_file_2D.
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Fig. 21. Density from a 2D, boundary-driven advection problem: the
alfven.vtk image is used to set time-dependent boundary values at
the top edge, advected into the domain by a constant advection speed,
v = −ey. We show the solution at t = 1.15 on a [0, 1] × [0, 1.5] domain.
The four-level AMR hierarchy is purely geometrically controlled in this
example, forcing the central band of the image to appear sharpest.

a uniform medium has been set up in which denser, uniform
spheres have been added to the domain to trigger AMR. The
domain itself consists of a 603 grid with six blocks in each
direction. The cylindrical case employs unidirectional radial
stretching with a stretching factor of 1.05, combined with sym-
metric stretching for all 6 blocks in the z-direction (so no uniform
central blocks along the z-axis). The spherical case on the other
hand employs anisotropic stretching in all three directions, r is
unidirectionally stretched with stretching factor of 1.02. Both the
θ- and ϕ directions are symmetrically stretched in four blocks
with stretching factors of 1.15 and 1.2, respectively. We note
that these factors have been exaggerated for visual effects, in
typical use cases a stretching factor between 1.01 and 1.05
is reasonable.

We caution that not all reconstruction procedures to com-
pute the cell edge from cell center values are fully compatible
with this stretching, but, for example, the WENO flavors listed
in Table 4 with the “nm” extension can all be used reliably.
These have been introduced as the nonuniform modified WENO
variants in Huang et al. (2018).

8.4. Bootstrapping: Handling small thermodynamic quantities

Whenever extreme contrasts occur in thermodynamic (densi-
ties, pressures, temperatures) or magneto-kinetic quantities (high
or low plasma beta and/or Mach numbers) within the simu-
lated domain, it may become crucial to impose bootstrapping
strategies to prevent unphysical states (negative pressure, or
too low densities) from ever occurring. In the typical finite-
volume methods as used here (and in many other software
frameworks), this can be enforced numerically in a variety of
ways. MPI-AMRVAC imposes such strategies by the global logical
parameters check_small_values and fix_small_values,
which by default are .true. and .false.. This default strat-
egy means that a simulation will stop and simply report the
error. This may signal user (or developer) implementation errors,
which must be dealt with first. It may also signal problems in
boundary treatments, or relate to as yet unresolved initial or
instantaneous variations that may need higher resolutions. Hav-
ing many choices of schemes and limiters then comes in handy,
since when problems persist for the most robust or diffusive
combinations, a bug is almost surely at play.

However, there may be (rare) situations where round-
off errors, or the various intricate nonlinear prescriptions
(such as involved in limited reconstructions) themselves cre-
ate unphysical conditions, for example when recently updated
conserved variables no longer translate to physical primitive
variables. Therefore, we allow for activating fixes controlled by
small_pressure and small_density user inputs, and offer
a number of ways to recover from unphysical states. In prac-
tice, these bootstrapping procedures are then in effect on entry
for the step translating conservative to primitive variables, can
be used when switching total to partial energy density contribu-
tions, and could enforce a thermal pressure calculation to always
return values equal to or above small_pressure. Fixes could
also be enforced at the end of specific source term additions,
but the bootstrapping will never modify magnetic fields, and will
obviously no longer strictly obey energy conservation (or mass
conservation when having positive small_density). It is then
advised to monitor this possible accumulation of errors. Such
bootstrapping was also found necessary to handle the occur-
ring near-vacuum regions in thermal runaway simulations (as
in Sect. 4.1.3) in an MHD setting (Hermans & Keppens 2021).
Bootstrapping measures may simply replace faulty values by
the user-set small_pressure and small_density combina-
tions, or work with a user-controlled area (line, square or cube
in 1D, 2D, or 3D) around the problem cell, to perform aver-
aging from surrounding non-problematic cells on the primitive
entries. In combination with specific checks enforced on the
reconstructions from cell center to cell edges, this bootstrap-
ping should then avoid fatal code crashes, without sacrificing
physical reality. It is to be noted that various codes handle this
in undocumented fashion, and may exploit (excessive) hyper-
diffusion or parameter-rich clipping strategies whenever strong
shocks, unresolved gradients, or actual discontinuities are at play.

8.5. Data analysis routines and visualizations

Natively, MPI-AMRVAC outputs its data in a custom data format
(hereafter referred to as “data files” after its use of the typi-
cal .dat extension), which relies on standard I/O routines. This
allows for optimized read/write I/O operations, thereby minimiz-
ing the amount of time needed to write data to disk. The custom
(and compact) data file format also implies efficient reading of
the data, which the code can use to restart and/or continue the
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Fig. 22. Anisotropic grid stretching for cylindrical or spherical runs. In a 3D cylindrical (left) and spherical (right) AMR grid, both cases are
unidirectionally stretched in the radial direction, with additional symmetric z-stretching for the cylindrical one and both θ and ϕ symmetric stretching
for the spherical one.

simulation from a previous snapshot. One major drawback of
storing data this way is that a custom data format as employed
here is unrecognizable by third-party software used for analysis
or visualization. To mitigate this issue the code has various con-
version routines implemented, which can convert existing data
files to more standardized formats such as .vtu (VTK unstruc-
tured data) that are directly accessible by visualization packages
such as ParaView or VisIt. While this approach is reasonable
for smaller simulations it raises various issues for large-scale
runs that output huge data files. The need for .vtu files for exam-
ple results in additional usage of disk space and more I/O-time
due to converting. Furthermore, data files from large simulations
are usually too big to load directly in memory.

For large data sets users can make use of yt, an open-source
Python package for data analysis and visualization tailored to
astrophysical codes (Turk et al. 2011). Yt’s core functional-
ity is written in Cython and heavily relies on NumPy (and its
C-API) for fast and efficient array operations. We developed
a dedicated frontend that ensures yt can directly load native
MPI-AMRVAC data files, eliminating the need for conversion to
other data formats. Additionally, data loading through yt makes
use of memory-mapping, where a first pass over the data maps
the on-disk structure to physical space prior to actually load-
ing. Data are then selectively retrieved based on queries by the
user, which avoids caching all data directly into memory. All of
MPI-AMRVAC’s possible geometries are supported as well. Some
features such as staggered or stretched grids and magnetic field
splitting, amongst others, are not yet supported, but will be in
due time.

Historically, MPI-AMRVAC only saves the conserved variables
to the datfile, but the corresponding .vtu files may switch to
primitive variables, or even add any number of user-added addi-
tional fields (such as temperature, divergence of the velocity,
etc.). Similarly, user-defined fields can be saved in data files21,
which can later be loaded in yt. Of course, adding more vari-
ables implies even more disk space. To mitigate this, the user
has full control on how many (and which) derived variables are

21 This is demonstrated in tests/demo/AlfvenShock_MHD2D and
tests/demo/Tilt_Instability_MHD2D.

stored to the .vtu and .dat files, and can generate these post-
process. A major advantage yt has over third-party visualization
tools is the use of so-called derived fields. These are quantities
that are derived from one or more primitive variables and can
be defined by the user. These fields are then composed using the
queried data and allows visualization of (most) quantities that
can be derived from others without having to save them to disk.

It should be noted that the use of ParaView or VisIt versus
yt is application-dependent and should be regarded as comple-
mentary. For smaller data sets users may prefer the graphical
user interface of third-party software for visualization rather than
Python code. For large data sets yt is (or should be) preferred.

9. Future directions

We have provided an updated account of the open-source
MPI-AMRVAC 3.0 framework, one among many AMR-
supporting frameworks in active use for computational solar and
astrophysically motivated research. We close this paper with an
outlook on further promising developments.

Most of the currently implemented physics modules (HD,
MHD, plasma-neutral two-fluid) assume no or purely local inter-
actions (adequate for optically thin conditions) between the gas
or plasma and the radiation field. The radiative-hydro module
(Moens et al. 2022) that uses FLD, now included in the 3.0 ver-
sion, realizes only the first step toward more consistent radiative
(M)HD treatments. First intrinsically coupled radiative-MHD
modeling with MPI-AMRVAC includes 2D axisymmetric magne-
tized wind studies for hot stars (Driessen et al. 2021), where line
driving is essential both for the wind generation and for realiz-
ing conditions prone to the line-deshadowing instability, causing
clumpy, magnetized trans-magnetosonic winds. These models
use an isothermal closure relation but handle the line-driven
aspect of hot, massive star winds by means of a cumulative force
contribution22, as introduced by Castor et al. (1975).

22 This module is provided by F. Driessen as src/physics/mod_cak_
force.t that can be combined with HD and MHD modules, docu-
mented as doc/cakforce.md.
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The FLD formulation can easily be carried over to an MHD
setting, while both HD and MHD formulations can also exploit
first-moment M1 closure formulations, as realized in, for exam-
ple, RAMSES-RT (Rosdahl & Teyssier 2015). Both FLD and
M1 radiative-(M)HD formulations have the distinct advantage
that they in essence translate to fully hyperbolic PDE systems
(with source term couplings), and this is readily adjustable
to any framework, such as MPI-AMRVAC. Of course, in solar
physics contexts, current state-of-the-art (non-AMR) codes such
as Stagger (as used in Stein & Nordlund 2006), Bifrost
(Gudiksen et al. 2011; Nóbrega-Siverio et al. 2020), MURaM
(Vögler et al. 2005), MANCHA3D (Khomenko et al. 2018; Navarro
et al. 2022), RAMENS (Iijima & Yokoyama 2017), and CO5BOLD
(Freytag et al. 2012) focus on 3D radiative-MHD simulations that
include magneto-convection in optically thick sub-photospheric
layers, use optically thin prescriptions for the corona, and have
a more sophisticated treatment of the radiative effects known
to be important in solar chromospheric layers. This includes
handling partial ionization effects through MHD with ambipo-
lar diffusion or two-fluid plasma-neutral modeling, as imple-
mented in MPI-AMRVAC 3.0 (Popescu Braileanu & Keppens
2021, 2022). However, they are especially concerned with more
advanced radiative transfer aspects, going beyond local thermo-
dynamic equilibrium and approximating the complex chromo-
spheric radiative aspects, as realized recently within MURaM, for
example by Przybylski et al. (2022). Future efforts toward such
truly realistic radiative-MHD or radiative-multi-fluid models on
evolving, block-AMR settings are highly desirable.
MPI-AMRVAC 3.0 still uses standard Fortran with MPI for

parallelization purposes (described in Keppens et al. 2012), and
our suite of automated tests includes compiling the code in
1D to 3D setups with various versions of gfortran or Intel
compilers. The code can use hybrid OpenMP-MPI parallelism,
where the OpenMP pragmas ensure thread-based parallelism over
the blocks available within a shared memory. The related BHAC
code considerably improved on this hybrid parallelization aspect
(Cielo et al. 2022). For truly extreme resolution simulations, one
needs further code restructuring (especially the internal bound-
ary exchange involved with AMR meshes) toward task-based
parallelism. To optimally exploit the modern mixed CPU-GPU
platforms, we plan to explore OpenACC23 or the possibilities for
GPU off-loading provided by OpenMP. Similar modern restruc-
turing efforts of Athena++ to K-Athena to make efficient usage
of tens of thousands of GPUs are documented in Grete et al.
(2021).

Even when none or only approximate radiative effects are
incorporated in our 2D or 3D (M)HD settings, one can use ded-
icated radiative transfer codes to assess the model appearance
in synthetic views. For infrared views of stellar winds colliding
with dust production zones in Hendrix et al. (2016), this was han-
dled by post-processing, where the native MPI-AMRVAC data files
were inputs to SKIRT (Camps & Baes 2015). A similar coupling
of MPI-AMRVAC to the recent MAGRITTE radiative transfer solver
is presented in De Ceuster et al. (2020). For solar physics appli-
cations, ongoing research is using the Lightweaver (Osborne &
Milić 2021) framework to synthesize spectral information from
the latest prominence formation models (Jenkins & Keppens
2022).

To ultimately do justice to plasma physics processes that
are intrinsically multi-scale, we may need to go beyond pure
fluid treatments. This is the main reason for developing vision-
ary frameworks such as DISPATCH (Nordlund et al. 2018) and

23 http://www.openacc.org

PATCHWORK (Shiokawa et al. 2018). They envision hierarchically
coupled physics and grid-adaptive aspects, which still pose var-
ious technical algorithmic challenges. First steps toward such
coupled particle-in-cell–MHD efforts in MPI-AMRVAC contexts
have been explored in Makwana et al. (2017, 2018). Comple-
mentary hybrid particle-MHD modeling has been realized in
van Marle et al. (2018), in a 2D3V setting applied to parti-
cle acceleration processes at MHD shocks, following earlier
approaches from Bai et al. (2015). This functionality is cur-
rently not included in the MPI-AMRVAC 3.0 release, since we
prioritized a basic restructuring of the particle and field tracing
modules, as documented here. We note that the development part
of the code can be inspected online24, and the corresponding new
branches can be followed on GitHub. Test particle studies may
in the future benefit from the need for hybrid particle pushers
(Bacchini et al. 2020), in which automated switching between
GCA and Lorentz treatments has been demonstrated. The open-
source strategy followed implies that many more research direc-
tions can be pursued, and we welcome any addition to the
framework.
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Titov, V. S., Downs, C., Mikić, Z., et al. 2018, ApJ, 852, L21
Toro, E. F. 2019, Shock Waves, 29, 1065
Tóth, G. 2000, J. Comput. Phys., 161, 605
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