
1. Introduction
The Van Allen radiation belts constitute a zone with high-energy charged particles trapped in the magnetic 
field surrounding the Earth. Such a population of particles interacts in complex ways with lower energy parti-
cles (ionosphere, plasmasphere, and plasmatrough), and with electromagnetic waves of different frequencies 
(Baker, 2021; Koskinen & Kilpua, 2022). The more energetic particles are accelerated by diverse mechanisms 
involving plasma particles and waves (see e.g., Li & Hudson, 2019; Reeves et al., 2003; Thorne et al., 2013). The 
Van Allen radiation belts consist of two main regions: the inner and outer belts. The inner belt is more stable 
and primarily composed of protons. The outer belt, on the other hand, is filled mainly with electrons, highly 
influenced by external sources such as solar wind (Turner et al., 2019). Between the inner and outer belts, there 
exists a slot region that contains very low particle fluxes. During active solar conditions, significant particle 
fluxes migrate from the outer belt to the slot region following the effects of the magnetopause shadowing, and 
they can even attain the inner belt (Reeves et al., 2016). This overpopulation decays in several hours to days 
depending on the energy of the particles, and if the space weather conditions lie down to normal. The population 
of energetic electrons of the radiation belts ranges from a few keV to tens of MeV, playing a threatening role in 
near-Earth spacecraft operations. The thousands of satellites orbiting the Earth for monitoring, communications, 
and other scientific purposes are constantly exposed to perturbations due to charged electrons of low energy 
contributing to surface charging anomalies and to more energetic particles that engender deep charging to the 
satellite devices (Garrett, 2016). Both phenomena can be mitigated with a better knowledge and forecast of the 
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radiation environment dynamics. This is a very difficult task that can be hardly overcome nowadays by smartly 
using available measured data combined to physical knowledge.

Many works have arisen these last two decades where the satellite measurements in the inner magnetosphere have 
been used to figure out radiation belt dynamics and, more recently, to train machine learning models. The Geosta-
tionary Operational Environmental Satellite network with its fleet of geosynchronous equatorial orbit (GEO) 
satellites launched since the seventies (https://www.nasa.gov/content/goes) have been extensively employed for 
such goal (see e.g., Landis et al., 2022; Myagkova et al., 2019; Son et al., 2022; Sun et al., 2021; Wei et al., 2018). 
The launch of Radiation Belt Storm Probes (RBSP) in 2012 in a Low-Medium Earth orbit with a highly elliptic 
equatorial trajectory (Mauk et al., 2012), later renamed Van Allen Probes, has enormously contributed to the 
research on the physical processes governing the radiation belts and revamped our knowledge of the near-Earth 
space by demonstrating, for example, the existence of a third ultra-relativistic radiation belt (Mann et al., 2016) 
during high geomagnetic activity. Hence, data from RBSP are being used routinely, even after their decom-
missioning in 2019, as driven parameters for machine learning models (see e.g., Chu et al., 2021; Ma, Bortnik, 
et al., 2022; Ma, Chu, et al., 2022; Wing, Turner, et al., 2022) and also combined with other satellite data as from 
Los Alamos National Laboratory GEO satellite and NOAA Low Earth Orbit (LEO) Polar Operational Environ-
mental Satellite (POES) (de Lima et al., 2020) to feed the PreMev model. Other LEO satellite data driving such 
kind of works come from the Global Positioning System (Smirnov et al., 2020) for the MERLIN model or the 
POES data for the SHELLS model (Claudepierre & O’Brien, 2020). This list of examples is not exhaustive.

In the present work, the PROBA-V/EPT high-energy electron data are prototypically employed to train a 
deep-learning model. The next section illustrates the EPT measurement features and mentions previous works 
using the data. The OMNIWEB solar wind and geomagnetic data retrieved as input for the model are also intro-
duced. Section 3 describes the NN model developed for the forecast of electron fluxes time series in LEO, and 
the group of parameters selected to test the model. Section 4 gathers the results, and the final conclusions are 
elaborated in Section 5 together with an outlook of future developments.

2. Data
2.1. PROBA-V/EPT Data

The Energetic Particle Telescope (EPT) was launched in May 2013 onboard PROBA-V satellite (Cyamukungu 
et al., 2014) on a LEO of 98.7° inclination at 820 km of altitude and with a 101.21 min period. The average pitch 
angle varies between 60° and 120°. The EPT discriminates between electrons, protons and helium ions in energy 
ranges 0.5–20 MeV, 9.5–300 MeV and 38–1,200 MeV, distributed in 6, 10, and 10 channels, respectively, with a 
time resolution of 2 s. Figure 1 illustrates the instrument measurements during a day of satellite world coverage 
(left) and a month (right) path. Missing data over Europe correspond to the 10:30–11:30 Local Time at Descend-
ing Node (Pierrard et al., 2014). The processed data are available at https://swe.ssa.esa.int/space-radiation.

Figure 1. PROBA-V/EPT coverage displaying the 0.5–0.6 MeV electron fluxes in #/(cm 2 s sr MeV) along the orbit during June 23 (left) and the entire month of June 
(right) in 2015.
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Because of its polar orbit, the satellite presents a very quick variation in L-shells (McIlwain, 1961) along its 
trajectory, especially close to the poles, as it can be noticed in Figure 2 where a whole orbit period is represented 
in L (left) and geomagnetic latitude (right) axis. After about 30 min of orbit along low L-shells (twice during 
the period), the spacecraft sweeps nearly all the L-shells in about 10 min from one pole to the other about four 
times in a period. The instrument operation for 9 years now allows the investigation of many aspects of the Van 
Allen radiation belts. Indeed, the EPT electron fluxes have been analyzed to a wide extent along several works 
(Cunningham et al., 2020; Pierrard et al., 2019, 2020, 2021, 2022), also correlating the data with other space-
craft and confirming different mechanisms of particles sources and losses. Figure  3 displays electron fluxes 
from 2015 to 2018 for two EPT channels (top and middle panels) covering non-relativistic (E = 0.5–0.6 MeV) 
and relativistic (E = 1.0–2.4 MeV) energies. Geomagnetic activity, represented in the figure by the Disturbance 

Figure 2. L-shell parameter (black) and magnetic latitude variation (red) during a PROBA-V orbit in 15 June 2015.

Figure 3. PROBA-V/EPT electron fluxes at L = 1–8 RE for two energy channels: 0.5–0.6 MeV (top panel), 1.0–2.4 MeV 
(middle panel) together with Dst data (bottom panel) during 2015–2018.
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storm time (Dst) index (bottom panel), has severely perturbed the electron fluxes on many occasions during the 
selected period generating dropouts, flux enhancements, injections to the slot region and some of them to the 
inner belts, as well as long flux relaxation times. The strongest geomagnetic storms provoked deep injections 
of lower energy fluxes until the inner belt, several times during 2015, once in 2017 and once in 2018, whereas 
fewer fluxes of higher energy penetrate down under the slot. The present work will focus on predicting the fluxes 
variations for these particular energy channels, which we will denote e1 and e5, respectively, all along the article. 
More precisely, the logarithm with base 10 of the corresponding fluxes, named Log(e1) and Log(e5), will be the 
predicted quantities. The time series of logarithmic electron fluxes as well as the satellite coordinates L, Magnetic 
Local Time (MLT) and Latitude (denoting the geomagnetic latitude) resampled, in a first stage, at 1-min resolu-
tion have been selected as input data.

2.2. OMNI Data

Given the numerous works that have already systematically analyzed the solar wind and geomagnetic parameters 
that better drive the machine learning procedure for the radiation belts (see references cited in the introduction 
section), we have restricted the time series to the following data. As for geomagnetic indices, the SYMmetric 
disturbances parallel to the Earth magnetic dipole (SYM/H index), which is essentially similar to the Dst index 
(1-hr resolution) but with a higher time resolution (1-min) (Wanliss & Showalter, 2006), was selected together 
with the Auroral electrojet Lower index (AL) (Weygand et al., 2014). Regarding the Solar Wind parameters, we 
kept only the Solar Wind speed (SWSpeed) and pressure (SWPressure). The geomagnetic and solar wind data sets 
at 1-min resolution have been extracted from the (https://omniweb.gsfc.nasa.gov/).

3. Method
3.1. Neural Network Model

The Long-Short Term Memory (LSTM) deep learning method was selected for this work (Hochreiter & 
Schmidhuber, 1997) by using the Keras library in the framework of the Tensorflow platform (Abadi et al., 2016). 
LSTM is an advanced Recurrent Neural Network capable of remembering long-term dependencies into the learn-
ing procedure (Géron, 2022). The basic architecture of LSTM (see Figure 4) is a cell where the information flow 
at each time step “t” traverses three gate controllers with the purpose of forgetting the useless memories, includ-
ing the current inputs and providing new outputs for the next cell or as final results. The forget gate combines 
long-term and short-term memories coming from the previous cell step ct−1 and ht−1, respectively, where “c” 
states for cell and “h” states for “hidden.” The input gate incorporates to the current time step new inputs (x) that 
influence the candidate cell state (c′) and the output gate elaborates the cell results (y).

Figure 4. Long-Short Term Memory time-step cell structure.
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The corresponding equations have the following form:

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑖𝑖 × 𝑥𝑥𝑡𝑡 +𝑊𝑊ℎ𝑖𝑖 × ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (1)

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑓𝑓 × 𝑥𝑥𝑡𝑡 +𝑊𝑊ℎ𝑓𝑓 × ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓 ) (2)

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑜𝑜 × 𝑥𝑥𝑡𝑡 +𝑊𝑊ℎ𝑜𝑜 × ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜) (3)

𝑐𝑐
′
𝑡𝑡
= 𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑊𝑊𝑥𝑥𝑐𝑐′ × 𝑥𝑥𝑡𝑡 +𝑊𝑊𝑡𝑐𝑐′ × 𝑡𝑡𝑡−1 + 𝑏𝑏𝑐𝑐′ ) (4)

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡′

⨂

𝑐𝑐𝑡𝑡−1

⨁

𝑖𝑖𝑡𝑡

⨂

𝑐𝑐
′
𝑡𝑡 (5)

𝑦𝑦𝑡𝑡 = ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡

⨂

𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑐𝑐𝑡𝑡) (6)

where Wx and Wh are the weight matrices for the connection to the inputs xt and to a previous short-term state 
ht−1, respectively, that feed the four layers of the cell: forget (f), input (i), output (o) and the candidate cell state 
(c′). The biases “b” provide a particular contribution to each of the layers in order to better adjust the outputs. The 
three first layers are activated by a Sigmoid function:

�(�) =
1

1 + �−� (7)

and the candidate cell state by a Tangent Hyperbolic function:

���ℎ(�) =
�� − �−�

�� + �−� (8)

The time series of EPT logarithmic electron fluxes spanning 2015–2018 data together with the PROBA-V satel-
lite coordinates, solar wind and geomagnetic data for the same time period were merged and interpolated when 
necessary. Next, the time series data set containing all the variables has been resampled to 1-hr and to 1-day reso-
lution for the training and predicting instances as discussed later in Section 4. The whole data set was then split 
as follows: 60% was assigned to the “train” series and 30% was allocated to “validation” to monitor the accuracy 
of the training while tuning the model hyperparameters. The remaining 10% was kept as the “test” data set, which 
is employed later for testing the prediction effectiveness of the model. Then, the whole period of 4 years was split 
like this: train = 1 Jan 2015–15 July 2017; validation = 15 July 2017–5 August 2018; test = 5 August 2018–31 
December 2018.

3.2. Model Hyperparameters

The whole data set was preprocessed using the StandardScaler tool (https://scikit-learn.org/stable/modules/
preprocessing.html), which is a common re-scaling procedure in machine learning to standardize the data 
containing many outliers and with very different variable ranges. The inverse transformation is applied to the 
outputs at the end of the predicting procedure to recover the real values ranges. The NN model was trained with 
two LSTM layers containing 64 and 8 units. The Mean Square Error (MSE) was used as loss for the compilation 
step with the Adam optimizer to improve the model. Two parameters were activated for the fitting procedure: (a) 
the “Early Stopping” parameter to stop training when the monitoring metrics (the loss given by the validation data 
set) is no longer improving; and (b) the “Model Checkpoint” (together with the setting save_best_only = True 
according to the monitored loss) to save the best model state. This best saved state can be loaded afterward to 
directly make predictions.

3.3. Input Features

Following the work already performed in many previous articles (see e.g., Landis et  al.,  2022; Ma, Bortnik, 
et al., 2022; Ma, Chu, et al., 2022; Smirnov et al., 2020; Wei et al., 2018; Wing, Johnson, et al., 2022; Wing, 
Turner, et al., 2022, and references cited therein) for the selection of the input variables to predict electron fluxes 
in the radiation belts, we have pre-selected the parameters displayed on the heatmap correlation of Figure 5. 
The correlations were evaluated here with the whole data set spanning 2015–2018. Only the case of e1 channel 
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for L = 3–8 RE is displayed and discussed here since the conclusions remain identical for other L ranges and 
considering e5. The correlation matrix contains the satellite coordinates: L, Latitude, as well as cos(MLT) and 
sin(MLT). These last two variables are used instead of MLT alone to avoid discontinuities when passing from 
MLT = 23H to MLT = 0H. As already mentioned, only two solar wind parameters (speed and flow pressure) 
and two geomagnetic indexes were selected. The correlation is more significant between the fluxes and the solar 
wind speed (31%) and the SYM/H index (35%), weaker with the flow pressure, sin(MLT), the AL index and the 
latitude (10%, 13%, 14%, and 21%, respectively) and even less important with the other variables. The solar wind 
and the geomagnetic parameters are strongly correlated, what provokes a decrease of the correlation when both 
groups of parameters are considered together as inputs for the training procedure as shown later.

Finally, eight groups of input variables were selected to perform correlation tests that allowed to choose the best 
one for the model training:
 Group 0: Log(fluxes)
 Group 1: Log(fluxes), SYM/H
 Group 2: Log(fluxes), SYM/H, AL
 Group 3: Log(fluxes), L, cos(MLT), sin(MLT), Latitude
 Group 4: Log(fluxes), SYM/H, L, cos(MLT), sin(MLT), Latitude
 Group 5: Log(fluxes), L, cos(MLT), sin(MLT), Latitude, SWSpeed, SWPressure
 Group 6: Log(fluxes), SYM/H, L, cos(MLT), sin(MLT), Latitude, SWSpeed, SWPressure
 Group 7: Log(fluxes), SYM/H, Latitude, SWSpeed

4. Results and Discussion
The usual Root Mean Square Error (RMSE) and the Spearman Correlation Coefficient (r) were employed to 
compare the predicted Log(e) values (obtained with the developed LSTM model using the train data set series) 
with the corresponding observation subseries of the out-of-sample test data set. The Prediction Efficiency (PE) 
has also been evaluated to assess the forecasts as follows:

PE = 1 −

∑

(𝑌𝑌𝑖𝑖 −𝑋𝑋𝑖𝑖)
2

∑
(

𝑋𝑋𝑖𝑖 − �̂�𝑋
)2 (9)

Figure 5. Correlation matrix between PROBA-V/EPT logarithmic electron fluxes, satellite coordinates, solar wind and 
geomagnetic parameters.
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where Yi, Xi, and 𝐴𝐴 �̂�𝑋 are the predictions, observations, and the observations 
average, respectively. In addition, novel metrics based on the log accuracy 
ratio R  =  log(Yi/Xi) introduced by Morley et  al.  (2018) are applied to the 
results (Yi, Xi represent here the untransformed fluxes). These metrics are the 
Median Symmetric Accuracy:

MSA = 100 (exp(Median(|log(𝑅𝑅)|)) − 1) (10)

and the Symmetric Signed Percentage Bias:

SSPB = 100 sgn (Median(log(𝑅𝑅)))(exp(|Median(log(𝑅𝑅))|) − 1) (11)

These metrics present the advantages of being robust to efficiently deal 
with data distributed over several orders of magnitude and presenting outli-
ers. They are easily interpretable and directly provide the evaluation of the 
untransformed fluxes, which are the focused physical quantities by the users. 
The Space Weather community suggests their use to validate the performance 
of the radiation belts environment models with the object of screening their 
operational applicability in the evaluation of Space Weather effects (Zheng 
et al., 2019).

Results are presented in the next subsections by evaluating the metrics that 
compare the predictions with the corresponding out-of-sample test set. 

Log(e1) fluxes are employed to discuss the analysis of different input groups, L ranges, time step units and time 
step look-back since similar trends are obtained with Log(e5), for which the results are only shown for the best 
metrics case and particular differences from Log(e1) fluxes. The predictions involve only one time step in the 
future, that is, 1 hr for 1-hr resolution and 1 day for 1-day resolution. Finally, some preliminary results of multi-
step prediction are also discussed.

4.1. Comparing Input Features

The eight input groups selected in the previous section present, in general, very similar good metrics of RMSE 
and r values, as noticed from Table 1 for Log(e1) considering the different L ranges, where we can roughly 
assume that only the outer belt is included for L = 3–8 RE, the slot region is added for of L = 2–8 RE and finally 
the inner belt is also incorporated for L = 1–8 RE. The 0_baseline row reports metrics for a baseline ML persis-
tence model where the observation of the previous time step is used to predict the observation at the next time 
step. This model is the simplest forecast that can be performed, representing a benchmark for the results of the 
LSTM model. The baseline results for the outer belt region are accurate enough, but including the other regions 
drastically impairs the performance. Considering now the LSTM results, some small differences between groups 
can be highlighted for any L range. Groups 1 and 2, adding only geomagnetic indexes series to the corresponding 
fluxes, provide overall slightly worse correlation and higher total errors. The consideration of AL in group 2 does 
not seem to provide added value to the inputs. On the contrary, there is an improvement in group 3 by considering 
only the satellite coordinates. Certainly, the best correlation is obtained with the inclusion of both the satellite 
coordinates and the SYM/H index (group 4). The addition of the solar wind parameters to the 3rd group (4th 
group) to define group 5 (group 6) does not exhibit a better correlation, except for the range L = 2–8 RE (that 
presents very similar metrics to the range L = 1–8 RE). This is a consequence of the close dependence between 
solar wind and geomagnetic parameters (as pointed out before), which are already well represented by SYM/H in 
group 1. Moreover, any subtle nonlinear correlation between the solar wind features and the flux variations could 
be hidden in the statistical procedure. Furthermore, it is observed that removing the SYM/H parameter in group 
5 worsens the metrics compared with group 6. The introduction of solar wind parameters worsens the whole data 
set of inputs because they contain many gaps contrary to the geomagnetic indexes that do not have any gaps. To 
overcome such loss of information that constrains dropping all the other data at the times of solar wind data gaps, 
we have filled the missing data with interpolated values of solar wind parameters. It should be taken in mind that 
the interpolation remains a fictitious way of retaining more data in the time series and somehow misleading real 
trends in the training procedure.

Group

RMSE r RMSE r RMSE r

L = 1–8 RE L = 2–8 RE L = 3–8 RE

0_baseline 0.801 0.221 0.711 0.419 0.354 0.844

0 0.391 0.794 0.388 0.810 0.232 0.931

1 0.385 0.802 0.382 0.816 0.225 0.935

2 0.393 0.796 0.392 0.804 0.227 0.934

3 0.331 0.858 0.342 0.856 0.212 0.943

4 0.324 0.864 0.345 0.855 0.204 0.947

5 0.331 0.858 0.347 0.851 0.214 0.942

6 0.334 0.864 0.324 0.864 0.206 0.946

7 0.342 0.849 0.341 0.858 0.210 0.944

Note. The 0_baseline reports the metrics evaluated with the persistence 
model. The bold-italic values represent the best results for each L region.

Table 1 
Correlation Metrics (RMSE and r Parameters) for the Input Groups 0–7 
Evaluated With LSTM Model for the Hourly Time Series at L = X − 8 RE 
With X = 1,2,3 Using Log(e1)
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Assessment using MSA and SSPB metrics is displayed in Figure 6 for e1 and e5 EPT channels. MSA confirms for 
e1 the worst performance of the model when including the slot and the inner belt regions. The opposite behavior 
is observed for e5 even if the errors keep closer than for e1. Such differences could be partially explained by the 
fact that the slot and the inner belt regions are more attained by lower energy fluxes generating more variability 
and, thus, less accuracy in the forecasts. Bias, limited to about |10|%, are very variable when considering the 
different groups, but from a quick visualization, the e1 (e5) metrics in general demonstrate an overestimation 
(underestimation) of observations.

Figure 7 displays a good correlation, r = 0.935, 0.947, 0.946 between predictions and observations of hourly 
Log(e1) for input groups 1, 4, 6 where only the outer radiation belt is considered (L = 3–8 RE) with a look-back of 
48 hr. The color scale reflects the counts distribution along the flux units. Many points are located very close to 
the main diagonal and between 10 3 and 10 5.5 electron flux units (EFU). When comparing different L-shell ranges 
for the input group 4 (yielding the largest correlation) as in Figure 8, we obtain a worse correlation for extended L 
ranges to the slot region (L = 2–8 RE) and to the inner belt (L = 1–8 RE) represented in the middle and left panel, 
respectively. Nevertheless, the entire range L = 1–8 RE performs better than considering only the slot region. 
Deviations from the main diagonal concentrate around the strongest distribution 10 3.5–10 5 EFU whereas for the 
L = 2–8 RE, the extreme lowest count tail seems to deviate more, showing the limitations of the model to simulate 
the dropouts and the higher flux increments.

Another aspect to check is the impact of longer look-back periods on the model performance, as displayed in 
Figure 9. The three panels show 72, 96, and 120 hr of look-back for input group 4 at the outer belt ranges. The 

Figure 6. MSA and SSPB metrics (in %) for e1 and e5 and input groups 0–7 evaluated with Long-Short Term Memory model for the hourly time series at L = X − 8 
RE with X = 1, 2, 3 (red, green, blue). The corresponding values for the baseline model are for e1: MSA = (183.3, 107.6, 58.4), SSPB = (−0.7, 0.4, 0.5) and for e5: 
MSA = (83.8, 69.9, 67.4), SSPB = (0.9, 1.2, 1.2) in the X = (1, 2, 3) order.

Figure 7. Correlation between hourly Log(e1) observed and predicted fluxes in #/(cm 2 s sr MeV). From left to right: for groups 1, 4, and 6 for a look-back of 48 hr at 
L = 3–8 RE.
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metrics are very similar to the 48 hr look-back meaning that 2 days in the past is enough to obtain a correlation 
of nearly 0.95 for 1 hr of prediction data.

4.2. Daily and Hourly Time Step Resolution

The time step resolution used in the training scheme is governed by a balance between the model convergence 
capabilities and the degree of detail desired for the predictions. In Figure 10, a comparison of the same test data 
set displays, on the left, the daily predictions vs. the hourly predictions on the right. The hourly average allows 
capturing local variations that are smoothed by the daily average, while worsening the correlation as the resolu-
tion is higher. This was also confirmed with 10-min resolution computations, not shown in this paper, that hardly 
converge to poorer metrics. Both the hourly and the daily model capture the main features of the time series 
evolution. However, the huge dropouts observed are not well reproduced by the model and should be more deeply 
investigated in further studies.

4.3. Comparison of Log(e1) and Log(e5) Predictions

Keeping the same NN parameter settings as before, the model obtained for the Log(e5) predictions follows the 
same trends as Log(e1), with the input group 4 also giving the best metrics. The corresponding logarithmic fluxes, 
lower than those of e1 as expected, span from around 10 0.5 to 10 3 EFU with small deviations from the main diago-
nal. However, when broadening the L range to the slot region (L = 2–8 RE) and to the inner belt (L = 1–8 RE) as in 
Figure 11, the metrics are still very good. Contrary to the Log(e1) results, the Log(e5) predictions provide better 

Figure 8. Correlation between hourly Log(e1) observed and predicted fluxes in #/(cm 2 s sr MeV) for input group 4 and for a look-back of 48 hr at different L ranges.

Figure 9. Correlation between hourly Log(e1) observed and predicted fluxes in #/(cm 2 s sr MeV) for group 4 and for a look-back of 72, 96, and 120 hr at L = 3–8 RE.
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correlation and lower total errors for the whole L range. It is also interesting to note that the huge dropouts are 
better captured for Log(e5) as noticed when comparing plots from the left with those from the right in Figure 12 
for two ranges of L-shell: (a) inner belt included and (b) only outer belt. This explains, to some extent, the better 
metrics obtained for the higher energy channel predictions of Log(e5).

4.4. Prediction of Several Steps Ahead

The same model design has been trained to forecast the Log(e1) and Log(e5) fluxes for a sequence of steps ahead 
in a unique execution. In Table 2, the metrics of a simulation considering 48 hr look-back and 12 hr ahead are 
reported for each hour of the simultaneous forecast. The performance is slightly poorer than for one-step fore-
casts, but it is still very good, in particular for the first steps, and very promising for further investigations. Here, 
the RMSE (MSA) errors remain smaller (higher) for the fluxes of higher energy than for those of lower energy. 
Different from the case of one-step simulations, correlation coefficients are worse for higher energy fluxes. The 
Bias reveals a small nearly systematic underestimation. Figure 13 displays an example of a look-back + forecast 
period of 48 + 12 hr chosen for September 2018, as an illustration, among those contained in the sample test 
series. It is important to mention that a more systematic analysis should help to infer the most reliable multistep 
sequence for a desired threshold metrics.

Figure 10. Daily and hourly Log(e1) fluxes in #/(cm 2 s sr MeV) for input group 4 with a look-back of 2 days (left) and 48 hr (right) at L = 3–8 RE.

Figure 11. Same as Figure 8, but for Log(e5) fluxes.
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5. Conclusions
For the first time, the PROBA-V/EPT electron fluxes have been used to train a Neural Networks model for radia-
tion belt forecasting. The LSTM method has been selected as deep learning Neural Network to better consider the 
long-term and short-term dependences of the time series variables. The satellite coordinates as well as external 
Geomagnetic indexes and Solar Wind data have also been joined to the series of input variables, employed to 
assess the performance of the model guided by different groups of parameters. It has been found that merging 
the electron fluxes with the satellite coordinates and the SYM/H geomagnetic indexes results roughly in the best 
metrics for both the non-relativistic 500–600 keV and the relativistic 1.0–2.4 MeV energy channels. The addition 
of Solar Wind parameters does not lead to an improvement in the model configuration for these simulations. On 
the contrary, their effects seem to be overlapped with the influence provided by the SYM-H geomagnetic index. 
A preparatory interpolation made out to keep as much data as possible could also influence the real trends of 
Solar Wind parameters. The 1-hr resolution model provides a reasonable equilibrium between a detailed dynam-
ics description and the model performance. Looking back 2 days in the past appears enough to predict the next 
step, either for the hourly or the daily resolution. Unfortunately, the total reconstruction of the L-time 3D space 
is less feasible at such resolutions since PROBA-V crosses very quickly (in about 10 min and near the poles) all 
the L-shells along its orbit period. The inclusion of the slot region and the inner belt worsens the metrics for the 

Figure 12. Hourly fluxes in #/(cm 2 s sr MeV) for input group 4 with a look-back of 48 hr for Log(e1) on the left and Log(e5) on the right at (a) L = 1–8 RE (top plots) 
and (b) L = 3–8 RE (bottom plots).
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lower energy predictions from about r∼0.95 (RMSE ∼ 0.20) to r ∼ 0.85 (RMSE ∼ 0.35), whereas the metrics 
remain well correlated at r ∼ 0.95 and with very low total errors (RMSE ∼ 0.16) when extending the L range for 
the higher energies. The lower RMSE errors for the high energies come from a better capture of the huge dropouts 
and their significant MSA lower errors when adding the lower L regions to the forecast could be related to less 
flux variability in time than for low energy fluxes. Simulations considering simultaneously a sequence of steps 
ahead, even worsening the metrics, demonstrate still reliable capabilities of the fitted model and its potential 
implementation in operational frameworks. In general, the bias remained relatively small at no more than 10%.

Further work is still needed to completely tune the present model to predict the electron flux of the radiation 
belts at LEO with high accuracy. A reprocessing of the data, as in the SHELLS model (Boyd et al., 2023), could 
be considered to remove orbital effects on flux variations at different longitudes, and thus, to enable the use of 
high resolutions down to 1 min. More data over the next years will contribute to completing an entire solar cycle 

Log(e1) e1 Log(e5) e5

Hs ahead RMSE r PE MSA SSPB RMSE r PE MSA SSPB

1 0.241 0.926 0.856 32.7 −3.1 0.223 0.917 0.840 34.8 −3.6

2 0.260 0.915 0.833 34.2 −2.0 0.235 0.907 0.823 38.1 −4.3

3 0.256 0.917 0.838 35.0 −3.0 0.238 0.905 0.818 37.1 −0.8

4 0.277 0.904 0.810 37.8 −0.8 0.237 0.906 0.820 37.0 −2.5

5 0.264 0.911 0.827 37.0 −1.8 0.247 0.898 0.805 39.1 −1.3

6 0.275 0.902 0.812 40.7 −5.7 0.252 0.892 0.796 41.3 −4.6

7 0.287 0.893 0.796 41.6 −3.6 0.265 0.881 0.774 44.3 −0.8

8 0.286 0.893 0.797 42.8 −6.9 0.270 0.876 0.767 44.1 −3.7

9 0.300 0.883 0.776 43.4 −3.3 0.273 0.874 0.761 44.7 −0.1

10 0.289 0.890 0.792 41.2 −4.7 0.277 0.870 0.754 45.0 0.0

11 0.297 0.885 0.781 43.1 −1.0 0.281 0.866 0.746 46.2 1.1

12 0.299 0.882 0.778 43.4 −1.4 0.281 0.866 0.747 45.3 −0.3

Note. Corresponding metrics for e1 and e5.

Table 2 
Metrics for Log(e1) and Log(e5) Predictions Using Group 4 Inputs With the Hourly Time Series at L = 3–8 RE Considering 
48 hr Look-Back and 12 hr Ahead

Figure 13. One forecast of 12 hr in red over the sample test series for 48 hr of look-back considering input group 4 to predict: (left) Log(e1) and (right) Log(e5) fluxes 
at L = 3–8 RE.
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of flux measurements that will refine the training of the model. New multidirectional measurements from the 
3-Dimensional Energetic Electron Spectrometer (3DEES) instrument that will be launched onboard PROBA-3 
in 2024 will extend the resources to improve the model together with the addition of other multi-satellite data. 
Supplementary efforts should also be invested to introduce more physics knowledge to produce robust learning 
mechanisms capable of converging faster toward optimal solutions. For example, customizing the loss functions 
by introducing specific equations of the radiation belt dynamics could accelerate such achievements.

Data Availability Statement
The electron fluxes are publicly available at https://swe.ssa.esa.int/space-radiation upon registration on the ESA 
SSA website. The Solar Wind parameters and geomagnetic indices are publicly available at https://omniweb.
gsfc.nasa.gov/. The processed text csv data files used as input and the corresponding Python 3.9 code elaborated 
to generate the Machine Learning model and data results for the study are available at (Botek et al., 2023) with 
Creative Commons Attribution 4.0 International licence.
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