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ABSTRACT. When developing new astronomical instruments, there is a need to perform the char-
acterization of their individual components, especially the detectors, to ensure that
their performances comply with the scientific objectives of the instrument. A visible-
near infrared (VIS-NIR) facility was developed for the absolute and relative radio-
metric characterization of space-based detectors at the Royal Belgian Institute for
Space Aeronomy (BIRA-IASB). The facility operates from 0.4 to 2.65 μm in an ISO-5
environment. It offers a tunable monochromatic flux with a high level of straylight
rejection (10−8) and 2% uniformity, over a four-decade range of intensity with adjust-
able bandwidth. Latency measurements are also possible. Thermalization is offered
within a precision of 7 mK between 50 K and 382 K. The ultimate vacuum level of the
detector chamber is below 10−6 mbar. A robust security system avoids both reach-
ing temperatures outside the operational range of the detector and its electronics,
and contamination due to vacuum loss. The facility was already used to characterize
the VIS-NIR detectors of the Moons And Jupiter Imaging Spectrometer (MAJIS), one
of the instruments on board the Jupiter ICy Moons Explorer (JUICE). The versatility
provided by the VIS-NIR facility allows its use for the characterization of other astro-
nomical detectors.
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1 Introduction
The need to characterize imaging detectors is essential to confirm their performances for both
space- and ground-based instruments, since often the characterization offered by the manufac-
turers does not meet the stringent accuracy requirements for scientific instruments. Besides,
numerical simulations are vulnerable to conceptual and implementation errors because of the
limited understanding of the detector’s physics, and the development of data analysis methods
to reduce the undesirable detector characteristics can take years.1 For imaging, the understanding
of the behavior and performances of each pixel under different illumination conditions, wave-
lengths, and temperatures must be accurately evaluated, considering the potential environment to
which a detector could be exposed. For instance, depending on their operational spectral range,
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detectors usually require cryogenic operating conditions to reduce the thermal noise generated
during image acquisition, especially infrared (IR) detectors. However, if the thermal control is
limited, it might be possible that during observations the nominal temperature of the detector
varies, which will directly affect the signal-to-noise ratio (SNR) of the images. In addition, detec-
tors onboard space missions are subjected to harsh radiation environments, and therefore their
performances downgrade with time.2,3 Hence, to fully understand the instrument and its response
over time, to assess the evolution of its performances during observations, the initial measured
characteristics of the detector will be the crucial starting reference point for any subsequent
analysis.4

Due to the complexity of characterization procedures, according to Shapiro et al.,1 the result-
ant measured performances of a detector could bias photometric, astrometric, spectroscopic, and
shape measurements at the 1% level or less. However, if a detector is well characterized by
providing the different conditions to which it will be exposed during operation, including the
expected image acquisition methods, there will be enough confidence that the detector will per-
form according to its specifications in all feasible environments, including critical performance
parameters.5 The required optical sources, data acquisition methods, and minimum specifications
for both test chambers and optical systems can be derived from the specific planning of
measurements6 and, for maintaining repeatability, it is desirable to have as simple as an optical
system can be.5,7

1.1 Typical Characterization Measurements
Traditionally, many detector parameters, such as responsivity and noise, are measured by expos-
ing the detector to a spatially uniform photon flux or dark conditions, respectively.8 The photon
flux uniformity can be achieved by means of a diffuser or an integrating sphere (IS), although
these devices will highly reduce the irradiance at the detector, and special considerations must be
taken into account to still provide enough signal to it. The irradiance must be stable, homo-
geneous, and with a well-known spectral response covering the operating spectral range of the
detector to be characterized, and this can only be confirmed by a proper characterization of the
sensitive area of the detector, i.e., the optical working plane (WP).

On the other hand, parameters such as quantum efficiency (QE) and spectral response, which
are highly wavelength dependent, require a monochromatic light source to illuminate the detector
at the desired wavelength with high spectral purity. Normally for these measurements, the current
of a reference calibrated photodiode is measured first to determine the irradiance received at the
WP of the optical setup for a certain illumination. In this way, when exposing the detector to be
characterized under the same illumination and exactly at the same position as the reference pho-
todiode, it is possible to determine how many of those photons produced signal in each of the
pixels of the detector.6 Therefore, the accuracy of the measurement will be depending on the
stability of the light source and the alignment of the detector. The monochromatic light source
can be either obtained from different light-emitting diode (LED) sources or lasers or through the
combination of a continuum light source, such as lamps or blackbodies, and a monochromator.

Another parameter relevant to the characterization of a light detector is its linearity.
Although it is expected that a detector responds linearly with incident light, this linearity is
often deviated depending mainly on the transimpedance of the metal-oxidesemiconductor
field-effect transistor (MOSFET) amplifiers of the detector array.6 When measuring linearity,
the detector should generate signal from its minimum level to saturation. This can be done by
exposing the detector to different incident radiation while acquiring images with the same
integration time (linearity versus flux) or by providing constant incident radiation while acquir-
ing images at different integration times (linearity versus integration time). Measuring linearity
at a constant photon flux depends also on the stability and homogeneity of the light source
to guarantee that each pixel is exposed to the same amount of photons during the complete
measurements.

Because background measurements are an important part of the image acquisition pro-
cedure, a characterization facility must include a shutter in which the light source can be stopped,
so that any emission produced by devices along the optical path can be subtracted from the
measurements during data processing. This is also related to the measurement of the persistence
effect, which is related to the residual signal in a pixel after a bright exposure. Therefore, the
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speed of the shutter must be synchronized with the integration time of the detector during data
acquisition.

Finally, measuring parameters that do not require the illumination of the detector, such as
dark current (DC) and read-out noise, requires removing emissions from surrounding bodies at
the wavelengths at which the detector is sensitive. For instance, an IR detector is generally
enclosed by radiation shields at cryogenic temperatures, so the blackbody emission from bodies
at room temperature is blocked, whereas the radiation from the cold shield does not produce any
background signal in the detector. Therefore, these measurements will be accurate if the dark
conditions are guaranteed and if the detector is at a stable temperature.

When measuring non-uniformities, as is the case for dark signal non-uniformity and photo
response non-uniformity, the spatial differences between pixels are analyzed. In consequence,
there is no need to use reference photodiodes during the measurements. These non-uniformities
are due to imperfections during the fabrication process of the detector, which provides different
values of capacitance.6

In the end, the accurate determination of the performance parameters of any imaging detec-
tor is a challenge that could be tackled if a single, but versatile characterization facility is used.6

1.2 VIS-NIR Characterization Facilities Available
Some visible-near infrared (VIS-NIR) facilities are available for the characterization of astronomi-
cal detectors. In the case of the European Space Agency (ESA), even if instruments are provided
by external consortia, ESA takes responsibility for the procurement of the detectors9 and can
provide infrastructure for their commissioning through ISO-17025 accredited facilities for
charged-coupled device (CCD) and complementary metal-oxide-semiconductor (CMOS) detec-
tors’ validation.10 Similarly, the National Aeronautics and Space Administration (NASA), through
the Detector Characterization Laboratory, supports flight qualification testing of detectors and
detector systems, providing a full optical and electrical characterization of detector arrays.11

However, usually these facilities are state-of-the-art instruments developed to fulfill the needs
of each project (often for also state-of-the-art detectors) to comply with the specifications
demanded for each required measurement. This was the case for the Euclid mission,12,13 the
James Webb Space Telescope (JWST),14–16 and the Large Synoptic Survey Telescope,17 to men-
tion some examples.

What is typical among these testing facilities is the use of quartz-tungsten-halogen (QTH)
and xenon lamps as their main light source. The stability of the lamp is continuously monitored
and reported to be in the order of 1%.18,19 However, the power is not usually higher than
500 W,20,21 and some considerations must be taken into account to provide enough flux to the
detector, especially when the system requires the use of an IS or a diffuser. Other light sources
used include 3000 K blackbodies14,19 and LED illumination sources.13,16,19 To reach the same
level of intensity stability of QTH lamps with LEDs, the temperature of the LED must be sta-
bilized within 300 mK.13 As LEDs offer illumination at specific wavelengths, it could be possible
to disregard the use of a monochromator. This was the case for the Teledyne Imaging Sensors
Test Facility.16 Naturally, if one single facility provides different illumination sources, the optical
layout must be reconfigured.

ISs are the general solution to provide a uniform light beam to the detector, especially when
measuring QE. However, depending on its properties, some additional items could be added to
achieve the desired homogeneity (usually 1%18). For instance, when the IS is too small and the
image of the aperture is still visible at the output port, adding flat diffusers could improve the
uniformity of the beam22 regardless attenuation. Another solution is to place the detector far from
the output of the IS under a baffle system that also reduces straylight.4,21–23 Neutral-density (ND)
filters are also used to vary the light flux of the system,24–26 although other alternatives, such as
diaphragms, apertures, or pinholes of different sizes, have also been adopted,16,18 sometimes in
combination with ND filters.22,27

Operating CCD or CMOS detectors at near-infrared (NIR) and even visible wavelengths
require their thermalization at cryogenic temperatures. Open-cycle cryostats are used in some
characterization facilities20,21,28 to reach these temperatures. Vibrations in such systems would
only come from the pumping system, which is normally disabled during measurements.
However, most of the facilities count with closed-cycle cryostats, which are chosen depending
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on their power capabilities. For instance, the facilities used for the characterization of the NIR
spectrograph detectors for the JWST16 needed two-stage cold heads: one stage for thermalizing
the detectors with independent thermal controls for their electronics, and one stage for thermal-
izing the optics of the facility. Typical thermal stability provided by the characterization facilities
is in the order of millikelvin with temperature rates below 1 K∕min.13,22,29

It is worth mentioning that working with flight detectors requires that the test facilities are
installed inside ISO-5 areas to comply with the necessary cleanliness levels when manipulating
space-based detectors. These areas include a robust security system to protect the detectors dur-
ing the measurements. Considering the additional challenges of supplying (1) uniform flux sta-
bility tunable over a large spectral range and (2) a cryogenic environment, using a single versatile
test bench to perform absolute and relative radiometric measurements of an imaging detector, is
desirable for optimizing resources, time-saving during the measurements, and repeatability of
measurement conditions. Therefore, providing a testbench that is flexible, accurate, and highly
automated while minimizing the need for customized designs is the main objective of this work.
In this paper, a new VIS-NIR characterization facility from the Royal Belgian Institute for
Space Aeronomy (BIRA-IASB) is described. This facility has been already used to characterize
the VIS-NIR detectors of the Moons And Jupiter Imaging Spectrometer (MAJIS),30,31 one of the
instruments on board the Jupiter ICy Moons Explorer (JUICE). This facility is offered to the
scientific community as another option for future projects and contributions.

2 VIS-NIR Characterization Facility at BIRA-IASB
The BIRA-IASB characterization facility follows the requirements specified by the European
Space Components Coordination (ESCC)32 and the European Machine Vision Association
(EMVA)33 current standards for the characterization of imaging detectors. The facility is under
a laminar flux certified as an ISO-5 area that includes the optical setup, the thermal-vacuum
chamber, and a horizontal laminar flux allocating a working area dedicated to the manipulation
of equipment (Fig. 1). The soft-walls are made of anti-static transparent vinyl to allow low out-
gassing and isolate the ISO-5 area from the gray room, which achieves an ISO-7 cleanliness
level. Environmental temperature, pressure, and relative humidity are continuously monitored
in both areas. The temperature and relative humidity can be actively controlled to remain at
22°C�3°C and 40% to 65%, respectively. The ground-support equipment (GSE) is located
in an ISO-8 area, from which the remote control of devices operating in the clean room is
possible.

The facility was designed to measure the parameters listed in Fig. 2. Note that some param-
eters can be derived from the results of other measurements. Moreover, different illuminating
conditions, dynamical illumination levels, temperatures, and exposure times can be provided,
besides absolute radiometry to measure parameters such as QE.

Fig. 1 Schematic diagram of the ISO-5 area where the characterization facility is located.
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2.1 Cryogenic System
Inside the vacuum chamber, the thermalization of a VIS-NIR detector is made through an oxygen
free high-conductivity (OFHC) copper plate on which the detector is installed. The copper plate
is thermally connected to the cold finger of the one-stage Advanced Research Systems closed-
cycle cryocooler model CS104FT, which provides a cooling power of 60 W at 77 K, with an
ultimate performance of 25 K without thermal load. As implemented in the characterization
facility, the cold finger can achieve a minimum temperature of 43 K. Both, the cold finger and
the copper plate are provided with a proportional-integrative-derivative (PID) thermal control
loop. The copper plate counts with a redundant control loop to ensure thermal protection in case
of failure of the primary loop. Two LakeShore 335 and one LakeShore 336 temperature con-
trollers are used to regulate the control loops. The copper plate can be stabilized at a temperature
between 50 and 382 K, with a difference of 0.01% with respect to the target temperature, and
a precision within 7 mK after 2 h of activating the thermal control.

Figure 3 shows a diagram of the high-vacuum system of the BIRA-IASB characterization
facility. The vacuum chamber is a customized cubical model with a volume of 420 L. The view-
port has a diameter of 63 mm and is made of CaF2. All O-rings are made of Viton. The pumping
equipment consists of a dry primary pump with a pumping speed of 4 L∕s, in serial connection
with a turbo-molecular pump with 260 L∕s of pumping speed that can automatically be activated

Fig. 3 Schematic diagram of the vacuum system of the VIS-NIR facility. The detector to be
characterized would be mounted in front of the CaF2 viewport inside the vacuum chamber.34
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Fig. 2 List of measurements that can be performed with the VIS-NIR characterization facility,
and the parameters that can be derived under different experimental conditions, to characterize
an imaging detector.
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when a level of 10−1 mbar is achieved inside the chamber. A vacuum level of 10−5 mbar is
achieved in 80 min, with an ultimate vacuum level of 10−7 mbar.34 An electro-pneumatic valve
can isolate the vacuum chamber from the pumping system if needed. The vacuum chamber was
designed to keep a high-vacuum level only with the pumping system permanently active. Thanks
to the design of the detector mount, vibrations induced by the pumping system and the cryocooler
are countered, even during measurements. The venting process is made with ultra-high-purity
nitrogen (N5.0).

Figure 4 shows the mount developed to support, thermalize, and optically align the detector
in front of the viewport of the vacuum chamber. The four pillars of the base supporting the optical
breadboard are part of a translation system for optical alignment in height. Although it is
expected that the temperature of the base is always around room temperature, it is thermally
isolated from the vacuum chamber by 4 mm thick polytetrafluoroethylene (PTFE) feet (not vis-
ible in the figure). The optical breadboard allows the attachment of different components.
However, the detector would be installed inside the radiation shield screwed to the copper plate.
The room available at the copper plate is limited by the radiation shield to 138.5 mm ×
106 mm × 111.5 mm. The focal plane unit, which normally contains the detector and its
electronics, should not exceed these dimensions unless a different design is developed for the
radiation shield.

The different parts of the mount were carefully designed. The materials used have low out-
gassing levels, i.e., a total mass lost (TML) lower than 1% and a collected volatile condensable
materials (CVCM) lower than 0.1%. The main conductive material used was OFHC copper,
whereas PEI-Ultem™ 1000 was chosen as the main insulating material due to its low thermal
conductivity (0.24 Wm−1 K−1).35 Indium foils were used between different mechanical inter-
faces to improve thermal conductivity when necessary.

It is worth mentioning that 15 PT100 resistance temperature detectors are installed at the key
parts of the mount. In total, the facility offers the possibility of monitoring the temperature of up to
24 locations, from which 6 can be part of a temperature control loop. NI data acquisition modules
are used for temperature monitoring besides the LakeShore controllers. The monitoring of critical
parts, such as the copper plate and the movable plate, is performed through calibrated temperature
sensors and might be redundant. Thermometry is wired by the fourth-lead technique to eliminate
the effect of lead resistance on the measurement of the temperature sensors. The systematic error
of the temperature measurements varies from 22 to 79 mK, depending on temperature.

In terms of safety, the thermal GSE (TGSE) is continuously monitoring the temperature
sensors and the user can configure different alarms to protect sensitive devices from temperatures
outside their operating range, including the detector to be characterized. Therefore, if the temper-
ature is too low to compromise the functioning of the detector, the cryocooler is deactivated

(a) (b)

Fig. 4 Mount developed to support and thermalize VIS-NIR detectors: (a) frontal view and
(b) internal view of the radiation shield.
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automatically, and if the temperature is too high (usually during warming up or outgassing
processes), the concerned heaters are deactivated. The temperature rate of the copper plate when
suddenly disconnecting the cryocooler is not higher than 0.5 K∕min. Similarly, the TGSE is
continuously monitoring the vacuum level in the chamber through a pressure gauge with 30%
of accuracy between 1 × 10−9 and 1 × 103 mbar. A redundant pressure gauge is available in case
of failure of the main one. The TGSE was developed in LabVIEW with some functionalities in
Python. The data acquired during the campaign of measurements is backed up in the servers of
BIRA-IASB, including detector frames, radiometry, thermometry, and ambient parameters.
Moreover, backup computers can substitute the optical and the TGSE systems in case of failure.

The core of the security system is a security rack whose control panel is available from
the clean room although the main functionalities can be accessed from the TGSE. The TGSE
controls temperature and pressure monitors while displaying and registering data in real time.
Together with the pumping system, the TGSE provides the input conditions to the security rack
for the activation or deactivation of the different devices of the cryogenic system. If any anomaly
is detected, such as failures in the pumping system or leaks, the electro-pneumatic valve is auto-
matically closed to avoid vacuum loss. In addition, an electrovalve is available to isolate the
turbo-molecular pump from the primary pump. Overpressure is avoided by means of pressure
relief valves installed in the vacuum chamber to mainly protect the viewport during the venting
process. In case of a power blackout, the cryogenic system will stop working and the electro-
pneumatic valve will close. However, an uninterruptible power supply system is available to
continue powering the TGSE for the monitoring of pressure and temperature conditions for
4.5 h after the power blackout. In case of a general power blackout, BIRA-IASB counts with
an electricity generator with the capability to supply energy to the institute for ∼24 h during
working days, or up to ∼48 h during weekends. Moreover, the control panel of the security rack
includes an emergency stop button to immediately suspend the functioning of the pumping and
cryogenic systems while the electro-pneumatic valve of the vacuum chamber is closed, without
compromising the safety of the sensitive devices installed inside the vacuum chamber. If an
irregularity is detected, SMS messages notify the operators in charge. This is especially useful
during nights and weekends. Additional details concerning the security system of the VIS-NIR
characterization facility can be consulted in Ref. 36. Figure 5 shows pictures of the security rack
and the vacuum system of the VIS-NIR characterization facility.

2.2 Optical System
To perform measurements in dark conditions, the VIS-NIR detector to be characterized must be
harbored inside a closed radiation shield designed to limit its own thermal contribution and block
the straylight from warm objects around it. Considering a threshold for negligible background
radiation of 1 e− s−1 pix−1 for a VIS-NIR detector with a spectral cut-off at 2.5 μm, the radiation
shield must be kept at a temperature below 172 K.37 From validation tests (Sec. 3.1), it was
probed that the radiation shield of the BIRA-IASB facility is ∼10 K warmer than the cold plate
when thermalizing a detector at nominal temperature (132 K), well below the limit of 172 K.

Fig. 5 Security system components36: (a) control panel of the security rack, (b) rear panel of
the security rack, (c) pumping system, (d) cryocooler and pressure gauge, and (e) temperature
monitors and controllers.
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The radiation shield of the facility is black anodized to reduce internal reflections, and it is exter-
nally covered with multi-layer insulation (MLI) jackets to reflect back radiation from surround-
ing objects. However, the radiation shield is not completely closed; it was designed to allow the
photon flux entrance from the viewport of the vacuum chamber to perform measurements at light
conditions when required. For this purpose, the mount was provided with the Standa vacuum-
compatible motorized translation stage model 8MT30V-50, which allows the opening and clos-
ing of the radiation shield by a movable plate. An optical filter was added to the movable plate to
reject the thermal radiation of the viewport for wavelengths larger than 1.47 μm. If required, the
movable plate can also be thermalized through a PID temperature control loop, although the
minimum temperature achievable will depend on the temperature of the radiation shield. The
movable plate is 13 K warmer than the radiation shield (see Sec. 3.1), so it will approach the
limit of 172 K only when the cold plate has a temperature of 157 K, which would correspond to
a temperature already outside the typical range to thermalize a VIS-NIR detector for testing.
Therefore, the thermal radiation produced by the radiation shield (and movable plate) on an
H1RG™ detector array of 1024 × 1024 pixels is estimated as 5.8 × 10−3 e− s−1 pix−1 for the
nominal case (132 K) and 6.5 × 10−2 e−s−1pix−1 for the hottest case (144 K). These values are
slightly different from what is reported in Bolsée et al.34 due to the improvements performed to
reduce straylight since then (see Sec. 3.2).

Figure 6 shows a schematic diagram of the optical design of the VIS-NIR facility. To let light
reach the detector, the movable plate is kept either open or at the filter position. The photon flux is
produced by a 1000 W QTH lamp covering the working range from 0.4 to 2.65 μm. The lamp is
operated in continuous current mode with 8 A� 80 μA, resulting in radiance stability ∼0.1%.34

The stability of the lamp is continuously monitored by a VIS-NIR four-channel filter radiometer
with ∼10 nm of bandwidth (BW). An infrasil condenser and focusing lens collimate the beam

Fig. 6 Optical diagram of the VIS-NIR characterization facility and equivalence models: (a) wave-
length injection and signal monitoring from the QTH lamp to the detector inside the vacuum cham-
ber; (b) radiation model when the movable plate of the radiation shield is closed, providing dark
conditions to the detector as if a blackbody surrounded it at a temperature below 172 K; (c) radiation
model when the movable plate of the radiation shield is opened, the detector receives the light flux
from the output of the IS besides the thermal radiation from the CaF2 window at room temperature.
When the movable plate of the radiation shield is at the filter position, the thermal radiation from
room temperature bodies is removed.
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from the lamp to focalize it in the entrance slit of a double-monochromator. The DTMc300 Bentham
double-monochromator provides a monochromatic and tunable photon flux, with up to 10−8

straylight rejection. The diffraction gratings implemented in each monochromator are optimized
for the VIS-NIR spectral range between 0.4 and 3.5 μm, with an accuracy on the wavelength scale
of�0.1 nm up to 1.1 μm, and�0.25 nm for longer wavelengths. The wavelength selection by the
monochromator can be remotely controlled from the GSE room. The only element that must be
manually adjusted is the slit width to tune the bandpass for each monochromator.

The output of the double-monochromator is coupled to a 4-port IS of 13.5 cm in diameter
through a 1 m long optical fiber. The optical fiber has an average transmission of 48% and wave-
length cut-off around 2.65 μm. As it is configured, the monochromator could be used for wave-
lengths up to 3.5 μm if the optical fiber is replaced.

The IS is coated with spectralon (PTFE) material, suitable for VIS-NIR wavelengths. The
output port of 6.35 cm in diameter is placed at the viewport of the vacuum chamber to transfer
the high-homogeneity radiance to the detector. The use of absolute calibrated photodiodes in the
additional ports of the IS allows for performing absolute radiometric measurements with the
characterization facility, besides monitoring the stability of the signal in real-time during mea-
surements. For this purpose, an experimental transfer function was obtained to determine the
ratio of the spectral power available in one reference point of the optical WP and its correspond-
ing point in the reference port of the IS for each wavelength (see Sec. 3.2). The inhomogeneity in
the illumination intensity provided by the IS at the WP and its spectral dependence were also
characterized and allowed the application of a corrective factor to calculate the optical power at
any position of the WP. Therefore, the optical alignment of the IS and the detector is critical.

The IS is aligned to the viewport of the vacuum chamber by means of a mechanical interface
that also reduces straylight. On the other side of the viewport, the detector is aligned with respect
to the baffle of the radiation shield in the optical WP of the facility in such a way that it is possible
to determine which pixel of the detector intersects the central axis of the viewport. If the detector
is well aligned, then the calibration can be used for absolute radiometry for each pixel.

Performing relative radiometry is simpler. The radiance at the detector must be stable during
measurements, which can be demonstrated by monitoring the photodiodes at the IS. The cal-
ibration of illumination levels for measurements, such as linearity in function of flux, can also
be performed through the monitoring of the reference photodiodes. The photodiodes used
include a Bentham Si detector for wavelengths shorter than 1 μm, and a Bentham PbS detector
to replace the Si detector for wavelengths longer than 1 μm. The Si photodiode was calibrated by
the National Metrology Institute Physikalisch-Technische Bundesanstalt (PTB), and the PbS
photodiode was calibrated by Bentham. Light modulation is necessary when the PbS photodiode
is in use to optimize its SNR. Then, a removable chopper is placed at the entrance of the mono-
chromator, and a phase-sensitive detection system is used to read its signal. To allow continuous
monitoring of the signal between 0.5 and 2.35 μm, a Hamamatsu InGaAs photodiode is addi-
tionally included to stay operational when the chopper is removed to illuminate the detector
without phase-sensitive detection. Additional photodiodes can be installed at the dual output of
the monochromator for signal monitoring.

The facility can provide up to 30 different levels of attenuation over four orders of magnitude
through the combination of several ND filters located in two filter wheels after the light source.34

To stop any light exposure in the detector, the facility includes the electronic Uniblitz shutter
DSS335B at the entrance slit of the monochromator. Since it has a maximum closing time of
40 ms, it can be used for latency measurements.

It is worth mentioning that the optical path between the monochromator and the external side
of the viewport of the vacuum chamber is continuously flushed with nitrogen gas to avoid
light absorption due to atmospheric water vapor. The Nitrocraft Nitrogen Generator NCS-004C
available provides a flow of 0.6 L∕min. Special attention was considered to avoid introducing
straylight through the pipes.

As it is described, the BIRA-IASB facility to characterize VIS-NIR detectors is versatile
enough to allow the measurement of parameters that require dark and uniform light conditions
varying dynamical illumination levels and wavelengths, besides the possibility of performing
absolute radiometry while stabilizing the detector at different temperatures—all without modi-
fying the main configuration of the facility and allowing the automation of measurements during
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the characterization campaigns without compromising the sensitive devices of the facility, thanks
to its robust security system. Moreover, the facility is installed in an ISO-5 area that complies
with clean environmental conditions continuously monitored, allowing its use for space projects.

3 Subsystems Validation
Before characterizing a flight model (FM) detector, the facility had to be thermally and optically
validated to ensure that the capabilities required for a complete characterization of a VIS-NIR
detector were met, without compromising the safety of the detector.

3.1 Cryogenic System
The vacuum system was carefully cleaned and degassed as well as every component of the mount
was cleaned and baked out above 100°C before the assembly. The filter of the movable plate and
the translation stage were installed as provided by the manufacturers, with no need for additional
cleaning or baking out.

The design of the mount was initially verified by a thermal analysis performed using the
CreoSimulate software before the manufacturing of the parts. However, at this stage, the radi-
ation shield and the movable plate were designed to keep a temperature close to 172 K with the
cold head thermalized at 77 K. From the optical validation phase, several shielding modifications
were performed at the movable plate, besides the use of a stronger thermal connection between
the main thermal link and the radiation shield (Sec. 3.2). As a result, the movable plate and the
radiation shield thermalize around 147 and 130 K, respectively, with the cold head at 80 K.

The thermal tests also revealed the impact that the opening of the movable plate has on the
internal temperature of the radiation shield. The temperature of the copper plate is not perturbed,
thanks to the PID control loop, but this will not be the case for the temperature of a detector that is
not directly controlled by a PID loop, as was the case for the MAJIS project. For instance, during
the characterization of the MAJIS spare model (SM) detector,31 the temperature of the movable
plate in the open position increased by 9 K and produced a maximum temperature variation on
the detector of 1.6 K. Fortunately, even during measurements under light conditions, the movable
plate remained below the limit of 172 K and produced a negligible effect on the signal of the
detector. However, to compensate for the temperature increase of the detector, the copper plate
was thermalized 1.6 K below its nominal temperature. Consequently, after a position change of
the movable plate, it is necessary to change the thermalization of the copper plate accordingly and
wait at least 2 h for the temperature to stabilize (�0.5 K from target temperature).38

The cooling-down and warming-up processes were defined during the validation phase.
Figure 7 shows the vacuum and temperature evolution of the cryogenic system with no detector
installed in the mount. At least 80 min are needed to achieve a vacuum level from room pressure
to below 1 × 10−4 mbar in the vacuum chamber and activate the cryocooler for the cooling down
of the mount. About four more hours are needed to stabilize the temperature of the copper plate to

(a) (b)

Fig. 7 Performances of the cryogenic system of the characterization facility. (a) Pumping down of
the vacuum chamber (bottom) and cooling down of the mount (top). (b) Warming up of the mount
(top) and venting of the vacuum chamber (bottom).
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its target temperature, with a maximum rate of −0.9 K∕min.34 The temperature rate of the warm-
ing-up process is defined by the capabilities of the vacuum system to pump out the outgassing of
materials and by the rate at which the detector can be exposed. For instance, the temperature
changes for the MAJIS VIS-NIR detectors could not exceed 5 K∕min.36 To avoid molecular
contamination on the detector during the warming-up process, the coldest item must never
be the detector itself. So depending on the temperature evolution of the mount and the vacuum
level of the chamber, the cryocooler could be deactivated when the detector is above 200 K.34

Once every item of the mount is at room temperature, the vacuum system can be stopped and
the venting process can be performed.

To validate the security system, it was necessary to produce the conditions that would cause the
system to fail. No real detector was installed in the facility during these tests, but two additional
temperature sensors were installed in the copper plate to reproduce the thermometry signals of the
detector itself and its electronics. The tests included: power blackout at different stages of the pump-
ing-out and cooling-down processes, interruption of the operation of the primary pump at different
vacuum regimes, interruption of the operation of the cryocooler, activation of every low- and high-
temperature alarm, leak simulation in the vacuum chamber, and activation of the emergency button
at different stages of the pumping-out and cooling down processes. The only situation that was not
tested during the validation of the security system was overpressure inside the vacuum chamber.

Figure 8 shows the thermal-vacuum behavior of the chamber during the most representative
tests. The temperature alarms are activated by considering the thermal inertia of the temperature
change due to the deactivation of either the heaters or the cryocooler. Therefore, the correspond-
ing actuator is always deactivated before the real temperature limit of the sensitive device is
achieved. For instance, in Fig. 8(a), the copper plate is heated until the temperature measured
by detector 2 reaches 318 K; the heaters in the copper plate are deactivated by the security sys-
tem, and although the temperature continues increasing, detector 2 does not reach the temper-
ature limit defined at 320 K. Similarly in Fig. 8(b), the copper plate is cooled down until the
temperature measured by detector 2 reaches 125 K; the cryocooler is deactivated by the security
system, and although the temperature continues decreasing, detector 2 does not reach the temper-
ature limit defined at 120 K. In both cases, the temperature of the copper plate recovers the
defined safe temperature level around 5 min later.36

(a)

(b)

(c)

Fig. 8 Results from the most representative validation tests of the security system. No real detec-
tor was installed in the facility, but additional temperature sensors on the copper plate were used to
reproduce the required thermometry signals to the security system. (a) High-temperature alarm
test: temperature stops increasing due to the automatic disconnection of the heaters of the copper
plate when detector 2 reaches 318 K. (b) Low-temperature alarm test: temperature stops decreas-
ing due to the automatic disconnection of the cryocooler when detector 2 reaches 125 K.
(c) Emergency stop button test: the pressure increases in the vacuum chamber due to the closing
of the electro-pneumatic valve (bottom), followed by the increase of temperature at the mount due
to the disconnection of the cryocooler (top); temperature and pressure decrease after some
minutes due to the successful reactivation of the pumping system and the cryocooler. Alarm tests
were repeated for each temperature sensor whose temperature limits were critical.
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The results of the emergency stop button tests [Fig. 8(c)] are representative of those obtained
from other tests, such as power blackout, leak detection, and failure of the pumping system. Each
of them causes the closing of the electro-pneumatic valve and the deactivation of the cryocooler.
In this case, the test started from the nominal vacuum level. A quick increase in pressure of about
two orders of magnitude is observed after the closing of the electro-pneumatic valve. Shortly
after, there is an increase in temperature due to the disconnection of the cryocooler, which
in consequence produces outgassing that increases the pressure level of the vacuum chamber
as well. If the vacuum level increases to 10−2 mbar, the turbopump can no longer be activated.
However, no contamination is expected even if the detector returns to room temperature because
as soon as the turbopump is activated again, the mount and the detector will release the trapped
molecules during their passive warming-up, and once the cryocooler is activated these molecules
will be trapped again by the cold head.38 In case such an event takes place, a reaction time of
less than an hour is expected from the personnel in charge of the facility.

3.2 Optical System
The validation of the optical system included the characterization of the stability of the QTH
lamp, the photon flux under the different ND filters, the photon flux available per wavelength,
the homogeneity of the IS at the optical WP, the transmission of the filter at the movable plate,
and the level of straylight inside the radiation shield. The radiometric model of the facility37 was
essential to validate the results, especially to estimate the radiance at the output of each optical
component of the facility coming from both the light source and the blackbody emissions of the
individual optical surfaces.

The calibration of the power supply of the QTH lamp was verified in-house using a
calibrated multimeter and a calibrated shunt load with 0.1 Ω resistance. The deviation between
the current provided by the power supply of the QTH lamp and the measured value by the multi-
meter was ∼1.2%. However, since the QTH lamp is used in a relative scale, the calibration of
its power supply is not critical.

The attenuation of the light source when passing through the two filter wheels of the facility
was characterized at the IS level. Each filter wheel has 6 different positions where 9 ND filters are
placed (optical densities from 0.17 to 2.3). The ND filters were selected in such a way that all
cross combinations contribute to a uniform sampling of the illumination level, from the maxi-
mum flux to a flux lowered by 3 to 4 orders of magnitude,34 reaching up to 30 different levels of
attenuation at a certain wavelength. The analysis of the level of illumination is based on the ratio
between the maximum flux at the selected wavelength (obtained from the OPEN position avail-
able) and the set of all other possible combinations, including the OPEN position. Since there is a
variable level of available radiance at the viewport due to the spectrum of the light source and
the wavelength-dependent transmission of the optical components, a slight change in a selected
wavelength would provide a new set of 30 slightly different levels of illumination. Therefore, it
can be considered that the VIS-NIR facility provides high tunability in terms of illumination.
However, although the characterization performed provides information about the most appro-
priate combination of filters to be applied during measurements, the accurate attenuation that a
detector is receiving should be characterized in real-time through the photodiodes located at
the IS.

The optical power available at every output of the IS, useful for absolute radiometry, was
measured with the calibrated photodiodes available (see Sec. 2.2). Figure 9 shows the spectral
radiance available at the main output port of the IS for different BWs, as measured by the
Si and PbS photodiodes. The relation between the optical power that the photodiode would
receive at the WP and at the actual output port of the IS is given by a dimensionless transfer
function R0 determined by Eq. (1). The parameters SIS and SWP were experimentally acquired
and constitute the net signal of the photodiode in A, as measured at the output of the IS and at
the WP, respectively. R0 also takes into account the ratio between the solid angles correspond-
ing to the different geometries where the photodiode was located

EQ-TARGET;temp:intralink-;e001;114;112R0ðλÞ ¼
SWPðλÞ
SISðλÞ

: (1)
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However, the illumination of the WP is not fully homogeneous. The flux homogeneity at the
output of the IS was quantified by a calibrated photodiode coupled with a pinhole at the WP.
The photodiode was used to scan the illumination from the IS at different wavelengths, passing
through the baffle of the radiation shield inside the vacuum chamber, in steps of 2 mm. An
inhomogeneity matrix was obtained by interpolating the measurements to get a finner grid that
can be adapted to the pixel width of the detector to be characterized.37 Since no significant
spectral dependence was observed during the performed measurements (∼2%), no spectral
dependence is considered for radiance analysis during characterization campaigns.34 The final
inhomogeneity matrix of the IS (Fig. 10) is constituted by the average of the matrix as measured
in the WP, generated by the output illumination of the IS for each wavelength, and normalized to
one at the orthogonal intersection centered on the viewport. The homogeneity is especially high
for the central part, describing a square of ∼16 mm around the central pixel with a homogeneity
close to one. The extremes of the matrix, excluding the corners, present a decrease of only 15%

Fig. 9 Measurement of the spectral radiance produced by the 1000WQTH lamp of the facility, and
available at the main output port of the IS for different BWs.37 The thick lines represent the average
radiance whose measurements are represented by the dashed lines. The drop in radiance at
1.1 μm is due to the replacement of the Si photodiode by the PbS photodiode.

Fig. 10 Characterization of the homogeneity from the IS at the optical WP interpolated to 1 mm.
The center position corresponds to the intersection with the optical axis. The white square rep-
resents the sensitive area of the MAJIS VIS-NIR detector.
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with respect to the center. The remaining inhomogeneity encountered is considered for the
estimation of the spectral power in the radiometric model as a multiplicative factor for all
wavelengths. Therefore, the spectral power at a certain point in the WP PWPðx; y; λÞ is
deduced by considering the net average spectral power as measured by the reference photo-
diode at the IS PISðx; y; λÞ, the homogeneity propagation function Hðx; yÞ, and the transfer
function R0ðλÞ as

EQ-TARGET;temp:intralink-;e002;114;664PWPðx; y; λÞ ¼ PISðx; y; λÞR0ðλÞHðx; yÞ: (2)

The QE of the detector QEðλÞ is defined by Eq. (3), where Ep is the photon energy illumi-
nating the detector in J, FWP is the light signal as measured by the detector (DC already sub-
tracted) in digital units (DU), g is the derived conversion gain in e−∕DU, and IT is the integration
time in seconds at which the signal was measured. Note that an overestimation of the electronic
conversion gain can be induced by interpixel capacitance,39 which can lead to an overestimation
of the QE. For the MAJIS VIS-NIR detectors, a factor of 0.93 is applied to the determined con-
version gain to correct this effect30

EQ-TARGET;temp:intralink-;e003;114;555QEðx; y; λÞ ¼ Ep

PWPðx; y; λÞ
· g

FWPðx; yÞ
IT

: (3)

Optical alignment is ensured by constraining the critical parts of the mount shown in Fig. 11.
The mount itself mechanically constrains the three degrees of freedom present in rotation, since
the assembly was performed using screws with conical heads and a calibrated torquemeter to
guarantee consistency between the real mount and the optomechanical design, including the
integration of the detector on the cold plate. The optical axis of the facility is defined as the
orthogonal light path centered on the viewport of the vacuum chamber. During the alignment
validation, the optical axis was identified by a laser beam, and the mount inside the vacuum
chamber was aligned by means of a cross-hair installed on the baffle of the radiation shield.
The vertical alignment is performed by the translation system of the mount supporting the optical
breadboard. One of the three axes of rotation of the mount is constrained by keeping the frontal
part of the optical breadboard in contact with the vacuum chamber. Therefore, the mount can
slide against the wall of the vacuum chamber and be aligned to the viewport by two calibrated jigs

Fig. 11 Schematic view of the interior of the vacuum chamber. The red arrow on the left shows the
linear distance constrained with a calibrated jig during alignment; the red circle on the right shows
the main junction of the rigid thermal link constrained with an L-shape jig.
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manufactured as a result of this validation. This alignment procedure guarantees repeatability
with a typical tolerance of 0.2 mm for translations.

The removal of thermal radiation above 1.47 μm is actually performed by two superposed
short wave pass filters (SWPFs) at the movable plate of the radiation shield. The filters are
customized by Northumbria Optical Coatings Ltd. The final flux transmission is observed in
Fig. 12. Note that the SWPFs offer an average transmission of 54% between 0.4 and 0.9 μm
but, despite the high rejection above 1.47 μm [Fig. 12(a)], only 16 wavelengths between 0.9 and
1.47 μm provide a transmission>30% [Fig. 12(b)]. This is the main limitation of the BIRA-IASB
VIS-NIR facility (see Sec. 4). Therefore, the measured background signal from thermal emitters
must be carefully subtracted during measurements. In addition, measuring QE will require con-
sidering windowing techniques or short integration times to avoid saturation of the detector at
wavelengths above 1.47 μm. From modeling, the residual straylight from undesirable thermal
emitters on the optical path was estimated to generate <10 e− pix−1 s−1 when using the SWPFs.

Measuring the level of straylight inside the radiation shield requires the mount at cryogenic
temperatures and the detector under dark conditions, so the photon flux reaching the detector is
only due to thermal emission around it. This validation was a process performed during the
characterization campaigns of the MAJIS VIS-NIR detectors31,38 and meant the improvements
performed between campaigns. The main modifications from the original design were related to
the baffling system of the slit of the movable plate and the main flexible thermal link between the
movable plate and the radiation shield. A general improvement was also performed concerning
the isolation between the movable plate and the translation stage, which must remain at a temper-
ature above 250 K. As a result, the final level of straylight measured under dark conditions was
finally negligible during the MAJIS SM campaign and allowed the straylight characterization
inside the radiation shield of the mount.31

4 Comparison Against Other Facilities
The BIRA-IASB VIS-NIR characterization facility was developed to be a simple and versatile
option for characterizing space-based detectors. Other characterization facilities were discussed
in Sec. 1. Some clear advantages of the BIRA-IASB facility against some of them are discussed
in this section.

4.1 Light Source
The selected light source is a QTH lamp of 1000 W, whose radiance is similar to a blackbody at
3200 K. This lamp provides enough flux not only to saturate the detector but also to persist with
enough signal after passing by two ND filters, a double-monochromator, and an IS. In general,
the power of the lamps used in other facilities18,20,21,23 is not higher than 500 W. Moreover, the
radiance stability of the BIRA-IASB lamp is 0.1%, which is better than the stability achieved by
Crouzet et al.18 (<1%) and Koshak et al.19 (0.5 %). Although the spectral range of the QTH lamp
covers ultraviolet to NIR wavelengths, the facility is used between 0.4 and 2.65 μm due to the
gratings of the double-monochromator. Therefore, an upgrade to extend the wavelength range of
the VIS-NIR facility is possible by replacing the gratings.

4.2 Double-Monochromator
The facility provides tunability of the VIS-NIR spectral wavelength range with bandpasses from
1 to 10 nm, thanks to the use of a double-monochromator. None of the facilities described in

(a) (b)

Fig. 12 Simulated transmission of the SWPF at nominal temperature: for the (a) whole spectral
range of the BIRA-IASB facility and (b) spectral region below 1.47 μm.
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Sec. 1.2 specifies the use of a double-monochromator to extract the required wavelength.
Typically, when using a single-monochromator, additional filters shall be implemented to
improve the purity of the signal, as is the case for Hill et al.,27 Crouzet et al.,18 and Coles
et al.23 The advantage of using a double-monochromator is to provide a tunable monochromatic
flux with a high level of straylight rejection at the output selection; the undesirable high orders of
diffraction are removed thanks to the internal filter wheel equipped with high-pass filters.
Typically, the wavelength scale accuracy increases from �0.2 to �0.1 nm, when compared
against a single-monochromator, and the wavelength reproducibility also increases from
�0.05 to �0.025 nm.40 After calibration, the wavelength scale accuracy of the facility was
optimized using tabulated lines provided by spectral lamps between 0.4 and 3.5 μm.

Some test facilities directly illuminate the detector with LEDs for specific wavelengths,
offering accuracy in the order of 5% to 10%, as observed in Rauscher et al.16 However, although
these facilities can perform measurements, such as linearity, they would be limited if a wide
spectral range is required for measurements, such as QE. This is the reason why Secroun et al.13

offer two configurations: one for specific measurements under LED sources, and one with a
continuum wavelength range for QE measurements, including the use of a monochromator and
a QTH lamp source.

4.3 Dynamical Illumination Levels
Similar to the BIRA-IASB facility, Cosentino et al.26 use different ND filters to provide adjust-
able radiance, whereas facilities, such as Crouzet et al.,18 prefer the use of apertures to vary the
intensity of the flux. Another example is the case of Hill et al.27 or Biesiadzinski et al.,22 where
the flux is decreased by varying both the size of a pinhole and the combination of ND filters. The
BIRA-IASB facility combines ND filters in two filter wheels to reach up to 30 different levels of
attenuation over four orders of magnitude, the same value as provided by Hill et al. In the BIRA-
IASB facility, the ND filters were selected to contribute to a uniform sampling of the illumination
level: a slight wavelength change offers a new set of 30 slightly different levels due to the spectral
distribution of the QTH lamp combined with the transmissions of the spectrometer and the
optical fiber, providing in consequence a great tunability in terms of illumination.

The use of two linear polarizers, from aligned- to cross-orientation, could provide different
but continuous levels of illumination. This is another solution to be explored in a later upgrade.
The IS would remove polarization features, but special attention should be paid to the cooling
system dedicated to the optics at the light entrance level, since the 1000 W lamp can provide an
optical power larger than the threshold limit and could damage the polarizers.

4.4 Absolute Radiometry
Thanks to the homogeneity characterization of the light flux at every point of the WP (1 mm
steps, see Sec. 3.2), the IS can directly illuminate the detector to perform absolute radiometry,
with continuous monitoring of the light flux during data acquisition. Facilities, such as Christov
et al.,20 Weatherill et al.,21 Coles et al.,23 and Serra et al.,4 include a ∼1 m long baffle between the
output port of the IS and the WP, to reduce straylight and increase uniformity despite sacrificing
intensity. In the BIRA-IASB facility, the detector is aligned as close as possible to the output port
of the IS outside the vacuum chamber (86 mm from the viewport). Straylight is decreased by the
cold baffle of the radiation shield, and beam stability is monitored in real-time by calibrated
InGaAs and PbS/Si photodiodes installed in the additional output ports of the IS. Other facilities,
such as Crouzet et al.,18 implement a pick-up mirror to either focus the light on the detector under
test or on the reference photodiode when necessary, so no monitoring in real-time is possible.
Another example is Biesiadzinski et al.,22 where a 70/30 beam splitter is used instead to provide
feedback to the reference photodiode while illuminating the detector to be characterized.
Therefore, continuous monitoring is possible at the cost of decreasing flux, which is not desirable
when using a 50 W lamp. In any case at the BIRA-IASB facility, the accurate alignment of the
detector with respect to the IS is critical.

4.5 Cryogenic Capabilities
The BIRA-IASB facility uses a closed-cycle cryostat with one single cold head to thermalize the
detector and the radiation shield at cryogenic temperatures. Some facilities, such as Crouzet et al.28
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and Biesiadzinski et al.,22 still prefer the use of open-cycle cryostats mainly due to the absence of
vibrations from the pumping and cryogenic systems that can affect the stability of the detector
under test. The clear disadvantage is the periodic refill of the cryostats unless it is performed
automatically, as in Weatherill et al.21 This is not an issue for the BIRA-IASB facility, since the
detector mount was mechanically designed to compensate for any vibration from the cryogenic
system. Another disadvantage of the open-cycle cryostats is the minimum temperature achievable
by these systems. Typically based on the use of liquid nitrogen (LN2), they do not reach temper-
atures lower than 120 K, whereas the BIRA-IASB facility is able to thermalize detectors from
50 to 382 K with a maximum temperature rate of −0.9 K∕min, a rate comparable to facilities,
such as Crouzet et al.28 andWeatherill et al.21 The copper plate is able to stabilize within 0.01 % of
the target temperature, with a precision better than 7 mK.

When part of the optical system is also thermalized at cryogenic temperatures, two-stage
cold head systems are preferred, as is the case for the Teledyne Imaging Sensors Test Facility,16

the Independent Detector Testing Laboratory,24 and the University of Hawaii Test Facility.29 The
disadvantage of only thermalizing the detector and its surrounding radiation shield at cryogenic
temperatures is visible in NIR measurements. Then, the thermal contribution of the viewport of
the vacuum chamber and any object behind it within the field of view of the detector must be
removed. The facilities, which typically thermalize optical components inside the cryostats,
cover wavelengths above 2.0 μm. Since the BIRA-IASB facility covers a spectral range up
to 2.65 μm, the approach is similar to that of Crouzet et al.,18 with the use of a cold SWPF
to remove the emission of warm objects outside the vacuum chamber at wavelengths longer
than 1.47 μm.

4.6 Remote Control
Thanks to the design of the BIRA-IASB facility, typical detector characterization measurements
requiring dark conditions, different temperatures, and dynamical illumination levels and wave-
lengths can be performed in one single cooling cycle without the need of changing the configu-
ration of the setup, which ensures the repeatability of measurements. Especially for dark
conditions, some facilities, such as Serra et al.,4 perform measurements with a lid on the detector
and, after a second cooling cycle, perform measurements under light conditions with the lid
removed. The LabVIEW-based GSE allows the remote control of both the optical system and
the cryogenic system without the need of accessing the clean area where the facility is installed,
except for the manual adjustment of the width of the variable slits of the monochromator.
Therefore, most of the processes can be automatized, including the pumping and cooling-down
and measurements that do not need the adjustment of the variable slits. This is also the case for
facilities, such as Crouzet et al.,18 Secroun et al.,13 and Christov et al.20

The BIRA-IASB facility was designed to characterize one detector at a time. If the current
configuration of the mount is not modified, the size of a detector unit must be less than
138.5 mm × 106 mm × 111.5 mm to fit inside the radiation shield of the facility. Other facilities
allow the characterization of multiple detectors in a single cooling cycle, including mosaics,
although depending on the optical configuration it might be required to perform different cooling
cycles to perform measurements at other optical configurations. Some examples are the ultra low
background29 and the Teledyne Imaging Sensors16 test facilities.

It is worth mentioning that the possibility of remote control and performing automatized
measurements is also possible due to the robust security system developed for the BIRA-
IASB facility. In this way, the facility can keep the detector under cryogenic conditions for
several weeks, whereas ensuring protection against thermalization outside the operating range,
vacuum loss, and electric failures.

4.7 Other Measurements
Although the BIRA-IASB facility was developed to perform relative and absolute irradiance
measurements at the detector plane, some specialized measurements are not possible to perform
in the current configuration, including modulation-transfer-function (MTF), pixel spot scanning,
charge transfer efficiency (CTE), and pulse illumination. The pixel spot scanning feature has
been used in other facilities, such as Crouzet et al.,18 as a second method to measure QE in
combination with a collimated light beam. However, in the BIRA-IASB facility, the QE is
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measured directly from the exposure to the well-characterized flux of the IS, and it was not
necessary to develop a scanning system for this purpose. In any case, a non-vacuum-compatible
scanning system is available at the laboratory if required. This was used for characterizing the
homogeneity of the IS at the optical WP and could be adequate to become a proper pixel spot
scanning in the future. Implementing the possibility to perform MTF and CTE measurements
would require the inclusion of a movable knife-edge close to the detector and a 55Fe light source
to provide high-energy photons.

In addition, the modularity of both the optical and cryogenic systems allows their use inde-
pendently. This can be appreciated for the characterization of VIS-NIR detectors with no cryo-
genic requirements demanded, or if thermal testing of electronic devices is necessary.

Radiation testing is out of the scope of the BIRA-IASB facility, and would require the use of
radioactive sources, such as Ruthenium 106 or Chlorine 36, and a different type of viewport.
Moreover, only other than flight or spare detectors would be exposed to these tests. For the
MAJIS VIS-NIR detectors, the effect of high-energy electrons impacting their sensitive area was
investigated by the Liege Space Center.41

5 Conclusions
The BIRA-IASB VIS-NIR facility is a single versatile test bench developed to perform absolute
radiometric measurements for characterizing space-based detectors. The facility is in a certified
ISO-5 environment compliant with ESCC and EMVA standards, with continuous monitoring of
temperature, pressure, and relative humidity, and is provided with active systems to control tem-
perature and humidity. The optical system allows the acquisition of data under dark conditions
with straylight levels leading to <10 e− pix−1 s−1. Monochromatic light flux is provided in the
spectral range between 0.4 and 2.65 μm, with straylight rejection of 10−8, high radiance stability
(∼0.1%), and wavelength accuracy of �0.1 nm,40 tunable from 1 to 10 nm BW. Moreover, the
facility provides up to 30 different levels of illumination per wavelength at the WP. In this facility,
the output port of the IS directly illuminates the detector’s sensitive area inside the vacuum cham-
ber. Thanks to the calibration of the spectral power at the WP and the repeatability ensured for
optical alignment (<0.2 mm), it is possible to perform absolute radiometry and measure QE.

Concerning the thermal-vacuum performances of the facility, the ultimate pressure of the
system is in the order of 10−7 mbar, although it is possible to achieve 10−5 mbar after 80 min of
pumping. Then, the closed-cycle cryocooler can be activated to thermalize the copper base plate
with a maximum cooling rate of 0.9 K∕min. The vacuum chamber has a capacity of 420 L and
counts with redundant gauges and overpressure relief valves for safety reasons. In addition, six
PID temperature control loops are available at the facility, each of them with the possibility of
configuring alarms dedicated to the protection of sensitive devices; up to 24 temperature sensors
can be monitored in real-time. The systematic error of the temperature measurements is expected
to vary from 22 to 79 mK, depending on the temperature being measured.

In its current configuration, the BIRA-IASB facility can allocate one VIS-NIR detector unit
inside the radiation shield of up to 138.5 mm × 106 mm × 111.5 mm and thermalize it with a
stability better than 7 mK between 50 and 382 K. It is not required to open the vacuum chamber
to modify its optical configuration. The cold radiation shield includes a movable plate that allows
light flux to reach the detector if needed. In addition, it includes a SWPF that can be used to
remove the thermal radiation from the viewport of the chamber and other warm objects on the
optical path (>1.47 μm) to perform measurements at specific wavelengths. This is the main
limitation of the BIRA-IASB facility. When using the filter, only 16 peak wavelengths can
be used between 0.9 and 1.47 μm for QE measurements, when ideally, part of the optics should
be also thermalized to allow a continuum sampling of the pixels response.

The BIRA-IASB facility can run continuously over several weeks and be remotely con-
trolled by the GSE systems. It is not necessary for the operators to work in the clean area during
the campaign of measurements. Depending on the needs of the user, the measurements can be
performed manually or automatically. The only element that must be manually adjusted is the
width of the variable slits of the double-monochromator to tune the bandpass to the required
settings; these can be replaced by motorized slits in a future stage of the facility. Moreover,
a robust security system was implemented to protect the detector and other sensitive devices
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inside the vacuum chamber from the risk of damage due to temperatures outside their operating
range, contamination due to failures in the vacuum system, and general electric failure, especially
during non-working hours.

The BIRA-IASB VIS-NIR characterization facility was already used to characterize the SM
and FM VIS-NIR detectors of MAJIS/JUICE,30,31 and is now offered to the scientific community
as another option for future characterizations.
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