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Nonlinear electronic stopping of negatively charged particles in liquid water
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We present real-time time-dependent density-functional-theory calculations of the electronic stopping power
for negative and positive projectiles (electrons, protons, antiprotons, and muons) moving through liquid water.
After correction for finite mass effects, the nonlinear stopping power obtained in this paper is significantly
different from the previously known results from semiempirical calculations based on the dielectric response
formalism. Linear-nonlinear discrepancies are found both in the maximum value of the stopping power and the
Bragg peak’s position. Our results indicate the importance of the nonlinear description of electronic processes,
particularly, for electron projectiles, which are modeled here as classical point charges. Our findings also confirm
the expectation that the quantum nature of the electron projectile should substantially influence the stopping
power around the Bragg peak and below.

DOI: 10.1103/PhysRevResearch.5.033063

I. INTRODUCTION

The problem of electronic stopping of charged particles in
matter is of continuing interest in fundamental science and
in many applied research areas. In particular, an accurate
description of the damage caused by energetic protons and
electrons in biological tissue is crucial for hadron radiotherapy
of cancer [1,2] and space exploration [3–6]. The effect of
ionizing radiation on the DNA components, the main subject
of radiobiology, is an active field of research in which the
electronic effects are yet to be understood [7].

An energetic particle moving through biological matter
continually transfers energy to the target nuclei and electrons.
The rate at which the projectile loses energy to the target
per unit length of trajectory is called the stopping power
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usually separated in electronic and nuclear contributions.
Nuclear stopping power is primarily important for heavy pro-
jectiles with relatively low kinetic energies. Conversely, for
fast projectiles the most important energy-loss mechanism is
electronic stopping. In this paper, we study the impact of
fast light projectiles and, thus, only focus on the electronic
stopping power (ESP), which constitutes the first stage of the
radiation damage process.

For decades, researchers have been using semiempirical
methods based on the dielectric response formalism to study
radiobiological effects of ionizing radiation [7], in particular,
to calculate the ESP [8–10]. The ESP in such models is de-
fined as

Se(T ) =
∫ Emax(T )

Emin

E
d�(E ; T )

dE
dE , (1)

where T is the electron incident kinetic energy, E is the
electron energy loss, and d�/dE is the single-differential
cross-section (CS), which, in turn, is the integral of the sys-
tem’s energy-loss function (ELF) over momentum q,

d�(E ; T )

dE
= 1

πa0T

∫ qmax(E ;T )

qmin (E ;T )

ELF(E , q)

q
dq, (2)

where the limits qmin/max(E ; T ) = √
2m(

√
T ∓ √

T − E )
come from momentum conservation (m is the electron rest
mass) [9]. The ELF is a fundamental property of a material
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defined as the imaginary part of the inverse macroscopic di-
electric function ELF = Im[−1/ε(E , q)] [11]. Much of the
effort of researchers in the radiobiology community is di-
rected toward accurate modeling of ε. Many different models
have been suggested to describe the dielectric function and
its dependence on q, such as the Drude, Lindhard, and Mer-
min models, to name but a few, but the optical-data models
based on experimental data are state of the art [12]. The
dielectric function in the optical-data models is extracted from
the optical absorption experimental data (zero momentum
transfer). Such models use theoretical extension algorithms to
extend the optical data to finite q. Different extension models
have been suggested (see review by Nikjoo et al. [12]), and
among those, Penn [13], Emfietzoglou-Cucinotta-Nikjoo [9],
and Mermin energy-loss-function (MELF) [14] models better
reproduce the experimental ELF at q �= 0.

Approximations for q > 0 make the results for the CSs
and ESP uncertain at lower energies, especially below a few
hundred eV. Since the qmin in Eq. (2) increases with decreas-
ing T , at lower electron energies, the CSs mostly depend
on high-momentum ELF based on extension models, which
provide uncertain results, especially below 100 eV, and do not
agree with each other [12]. Some recent efforts toward an
accurate description of low-energy electron impact on wa-
ter were made by Emfietzoglou and co-workers [15,16]. In
these works, the authors extend the MELF model to in-
clude electron-electron interaction by introducing exchange-
correlation effects, which improved the agreement with
experimental electron inelastic mean free path (inverse total
inelastic CS) at energies below 100 eV.

At high proton and electron velocities, the ESP can be
well described by linear-response theory. However, the linear
description is no longer applicable when the particles travel at
intermediate and low velocities (around the Bragg peak and
lower) [17]. Moreover, for light particles at sufficiently low
velocities, e.g., electrons towards the end of the track, nuclear
stopping, and quantum effects become relevant.

Recent developments in density functional theory (DFT)
and its time-dependent extension (TDDFT) have advanced
significantly the description of the electronic stopping pro-
cesses in materials in the whole range of velocities [18]. Most
of the studies are focused on solid-state materials [19–24], al-
though, some ab initio simulations for protons in liquid water
became available in recent years. Real-time (RT-)TDDFT cal-
culations of the proton stopping in water, ice, and water vapor
provide accurate results and show a quantitative agreement
with available experiments [25–27].

Liquid water is commonly used as a target in semiempir-
ical calculations relying on experimental data not available
for DNA components. For electrons in water, no studies ad-
dressing the nonlinearity of the electronic stopping processes
are available to date. However, understanding the nonlinear
effects in the interaction of electrons with water is of great
importance for benchmarking semiempirical methods and for
providing access to the low-energy region in which the di-
electric response formalism is not expected to be valid [17].
Hence, in this paper, we present a detailed analysis of the
nonlinear effects in the ESP for negative and positive pro-
jectiles representing electrons, protons, and muons in water
calculated using RT-TDDFT. We compare our results with

dielectric-response calculations and other available data, such
as SRIM [28] and ESTAR [29]. We analyze as well the effect
of the projectile charge, the so-called Barkas effect [30], on
the electronic stopping.

II. METHODOLOGY AND NUMERICAL DETAILS

We used the RT-TDDFT implementation of the open-
source SIESTA code [22,31] to evolve the electronic orbitals
in time as implemented in version master-post-4.1-264, avail-
able in Ref. [32]. In SIESTA, the time-dependent Kohn-Sham
(KS) equations are solved by real-time propagation of the KS
orbitals using the Crank-Nicolson scheme [33] as recently
implemented by Halliday and Artacho [34,35]. The new im-
plementation replaces the Sankey integrator [36] known to be
problematic at high energies [37]. The forces on the nuclei of
the target atoms and on the projectile itself are disregarded in
the time propagation, thereby, describing electron dynamics
with frozen host nuclei and a constant velocity projectile as
performed in many similar studies [19,20,22,26]. In this way,
we can separate the electronic and nuclear contributions to the
total stopping and only consider the ESP with a clear velocity
dependence. The ESP Se = dEKS(x)/dx is obtained from a
linear fit of the KS total electronic energy EKS(x) with respect
to the projectile displacement x, along the constant-velocity
path. This expression is known to give the correct value of
Se within the density-functional theory defined by the chosen
exchange-correlation functional as long as it is an adiabatic
one [18,38].

The water samples and the projectile trajectories are as
of Gu et al. [26]. The simulation cell consisted of 203
water molecules. A total of seven trajectories were consid-
ered for each projectile. Gu et al. [26] showed that with
a limited number of rigorously chosen trajectories it is
possible to reproduce accurately the statistically averaged
experimental ESP.

The electronic ground state of the target water sample
was calculated using the static DFT implementation of the
SIESTA code [39] using periodic boundary conditions. For
each trajectory, the projectile was placed at the initial posi-
tion in DFT calculations. We used the generalized gradient
approximation in the Perdew, Burke, and Ernzerhof form for
the exchange-correlation functional [40]. Norm-conserving
Troullier-Martins [41] relativistic pseudopotentials were used
to represent the core electrons. The valence electrons were
represented by a triple-ζ polarized (TZP) basis set of numer-
ical atomic orbitals with the default energy shift of 0.02 Ry
[42]. The electronic Brillouin zone was sampled at the �

point. The real-space grid was determined by a plane-wave
cutoff of 1000 Ry. The KS states were then evolved in time
by performing the RT-TDDFT calculations for each projectile
moving with different velocities using the time step of 1 as.
The convergence of Se with respect to the time step and the
Brillouin zone sampling was tested in Ref. [34].

The point-charge projectiles were modeled via a spheri-
cal Gaussian charge distribution, using a SIESTA feature that
allows the modeling of charged objects of different shapes.
[44]. The parameters defining the Gaussian charge distribu-
tion were determined from the comparison of the ESP for
a proton projectile moving with the velocity of 1.71 a.u.
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FIG. 1. ESP for a proton in liquid water as a function of veloc-
ity. Our results are presented for both the point charge p+ and the
hydrogen ion H+ (full symbols) and are compared with the SRIM
data [28] (solid line), the RT-TDDFT results from Gu et al. [26] for
H+ (dashed-dot line), and experimental data from Shimizu et al. [43]
(empty symbols). The error bars of the RT-TDDFT results depict the
accuracy of the linear fit.

(h̄ = e = me = 1) and modeled both as an explicit hydrogen
atom and via a Gaussian charge distribution [45], taking the
latter as a reference. We determined that the Gaussian positive
charge (p+) distribution given by a width of σ = 0.05 Å, and
a cutoff of 0.5 Å leads to the same stopping power within 2%
as the hydrogen projectile (H+) as can be seen in Fig. 1. The
basis set for the projectile was provided by a ghost hydrogen
atom. We used a triple-ζ doubly polarized (TZ2P) basis set on
the projectile with cutoff radii r(ζ1) = 8.80, r(ζ2) = 6.853,

and r(ζ3) = 0.50 Bohr for electrons to adapt to the narrow
Gaussian distribution. The dependence of Se on the Gaussian
charge width is discussed in the Appendix.

The agreement between our results and Gu et al. [26]
for H+ is very reasonable although, at low proton veloci-
ties, our ESP is slightly lower than the reference result. The
discrepancy may be associated with the differences in the
pseudopotentials and basis sets used in our SIESTA calcula-
tions, versus the ones used with the CP2K code by Gu et al.
[26], and with the fact that they performed all-electron cal-
culations. The ESP for p+ and H+ from SIESTA RT-TDDFT
obtained in this paper and shown in Fig. 1 are in close agree-
ment with each other except for the highest velocities where
the p+ results are slightly higher than the rest of the data
sets. The discrepancy mainly comes from the use of different
basis sets for the two projectiles, the TZP basis set for the H+
and the TZ2P one for the ghost atom moving with p+. The
stopping power is more sensitive to the choice of the basis set
at high velocities for both projectiles as our test calculations
have shown. As stated before, the Gaussian charge demands
more basis than the pseudoised proton.

III. RESULTS AND DISCUSSION

Figure 2(a) shows the comparison of our RT-TDDFT stop-
ping power for a negative point charge (an electron) with the
ESP obtained using semiempirical methods by Garcia-Molina
et al. [46], Emfietzoglou et al. [9] and Muñoz et al. [48] (the-
ory combined with experiment). Our results are also compared
to the dielectric model developed by Ashley et al. [49], and
the ESTAR [29] data based on Bethe theory. The LR-TDDFT
result also presented in Fig. 2(a) is obtained from the ab initio
energy-loss function [47].

FIG. 2. (a) ESP for an electron in liquid water as a function of velocity calculated with RT-TDDFT compared with the results obtained
using the dielectric response formalism from Emfietzoglou et al. [9] (dashed-dot line), Gracia-Molina et al. [46] (dotted line) and with the
LR-TDDFT stopping power [47] (dashed line). The semiempirical data points from Muñoz et al. [48] are obtained by converting the mass
stopping power for gas phase to ESP by assuming the density of 1 g/cm3. ESTAR data [29] (thin solid line, on the most right) and Ashley et al.
[49] (based on dielectric response, thin dashed line) are also presented for comparison. (b) Comparison of ESP obtained from RT-TDDFT (full
symbols) and from LR-TDDFT using the mass-dependent integration limits for q (see Ref. [47]) (solid line) and without such limits (dashed
line). See the text for explanation.
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FIG. 3. (a) ESP for a proton and an electron in liquid water as a function of velocity obtained in this paper within RT-TDDFT (full symbols)
compared with the dielectric response results from Refs. [9,10] (lines). (b) ESP for an electron, a muon (both negative and positive), and a
proton in liquid water as a function of the projectile kinetic energy from RT-TDDFT (full symbols) compared with the dielectric response
results for e− [9] (dashed line) and p+ [10] (dotted line), and Bethe-Bloch formula for μ− [50] (dashed-dot line).

We can observe from Fig. 2(a) that all the methods, in-
cluding linear-response and real-time TDDFT results, agree in
the limit of high velocities (above ∼8 a.u.). This is expected
since at high v, the projectile acts as a small perturbation to
the system, which have no time to respond to the fast-moving
particle and, hence, the process enters linear regime. Below
8 a.u., is where the discrepancy between the linear-response
and nonlinear results is remarkable. In particular, the position
of the Bragg peak is significantly different. The linear results
show a maximum at around 3 to 4 a.u. (energy of the order of
100–200 eV), whereas, the RT-TDDFT gives us the maximum
stopping at the velocity of 2 a.u. (∼50 eV). Slightly closer
to ours is the position of the Bragg peak obtained by Muñoz
et al. [48]. These data points are calculated using experimental
cross sections for gas-phase water.

Apart from the large discrepancy between the position of
the Bragg peak in the linear and nonlinear stopping power
for electrons observed in Fig. 2(a), the maximum value of
the ESP is also drastically different. The linear results largely
underestimate the stopping power in a wide range of velocities
as compared to our ab initio nonlinear ESP. A significant part
of the discrepancy, however, stems from finite-projectile-mass
effects as follows.

Since we use a constant velocity approximation for the
electron in our RT-TDDFT calculations, this implies that its
mass is infinite. In the linear calculations based on the in-
tegration of the electron ELF, although the approximation is
built for a constant velocity perturbation, the electron mass
is accounted for in the integration limits for the momentum
transfer q in Eq. (2). Removing such integration limits for
q, and, thus, integrating from zero to infinity over the mo-
mentum transfer, we obtain the infinite-mass linear-response
ESP. This leads to a much higher ESP as can be seen in
Fig. 2(b) (dashed line). Both RT-TDDFT and LR-TDDFT
stopping power for infinite electron mass have peaks of similar
height. However, the nonlinear effect is still noticeable as
the Bragg peak position of the RT-TDDFT ESP is shifted by
approximately 1 a.u. of velocity. The comparison in Fig. 2(b)

emphasizes that a constant velocity is a crude approxima-
tion for an electron. In a realistic scenario, particularly, at
projectile energies below the Bragg peak, disregarding the
slowing down of the electron projectile can be a strong ap-
proximation. Moreover, at certain conditions, the electron can
be completely stopped and captured by the target nuclei. The
latter can happen for some trajectories (close impact) but not
for others. On average, over many trajectories, the result may
be different from our constant-velocity results. The rate of
the difference is only possible to predict with a thorough
investigation involving a large number of incident velocities
and trajectories. Furthermore, at variable electron velocity,
extraction of velocity-dependent stopping power becomes a
challenging task.

Figure 3(a) shows that the maximum of the ESP for p+ is
higher than for e− obtained with RT-TDDFT, a phenomenon
known as the Barkas effect [30]. Note that the Barkas effect
is typically described in relation to projectiles with opposite
charges and identical masses, but in this paper, all constant-
velocity projectiles have the same (infinite) mass. The position
of the maxima (the Bragg peaks), however, is very similar
(v = 1.7 and 2 a.u. for proton and electron, respectively). This
is not true in the case of the results of Emfietzoglou et al.
in which the Bragg peak is observed at 2 a.u. for the proton
and at 4 a.u. for the electron projectile. Overall, the linear-
nonlinear discrepancy is much more pronounced for electron
projectiles.

Figure 3(b) shows the ESP for an electron, a negative, a
positive muon, and a proton as a function of the projectile
kinetic energy. For the positive (negative) muon, we used
the results of the proton (electron) scaling the kinetic energy
taking into account the muon mass Mμ = 206.768me [51].
The Bragg peak is at energies of ∼50 eV, 10, and 90 keV for
the electron, muons, and proton, respectively. The Bragg peak
energies scale linearly with the masses of the three particles
(e.g. for a proton vs muon Mp/Mμ = 8.88me) as expected
since their only mass dependence arises from the velocity-
energy conversion. The mass dependence is not linear in the
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case of the dielectric-response model of Refs. [9,10] in which
the mass is explicitly included in the method. For a negative
muon, the Bethe-Bloch result [50] is only available at energies
above 107 eV, out of range of our calculations.

IV. CONCLUSIONS

In conclusion, we presented the electronic stopping power
for negative and positive projectiles in liquid water obtained
with RT-TDDFT and compared to linear results available
in the literature. Correcting for projectile mass effects, the
nonlinear effects have been shown to be prominent in the
electron-water interaction given the large difference between
the linear and nonlinear ESP. This effect, however, has to be
verified by calculations considering the quantum nature of the
external electron and accounting properly for its finite mass.
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FIG. 4. Electronic stopping power (in eV/Å) for a proton in liq-
uid water as a function of the width σ (in angstroms) of the spherical
Gaussian used to represent the proton charge for a proton velocity of
1.71 a.u. The error bars of the RT-TDDFT results depict the accuracy
of the linear fit for extracting the stopping power.

APPENDIX: PROJECTILE CHARGE WIDTH

As already known from earlier work [19], the electronic
stopping power depends on the smoothening of the Coulomb
interaction of the projectile with the system electrons at short
distances. Such smoothening is performed both when using
pseudopotentials and when substituting a point charge by a
charge distribution. Our test results have shown that indeed
the width of the Gaussian affects the stopping power in the
calculations in this paper. Namely, as could be expected, the
ESP increases as the Gaussian becomes narrower (see Fig. 4).

The limit of zero width does not represent a convergence
target, however, since the projectile is not a classical point
charge. It could be argued that such a width should scale with
the de Broglie wavelength.

From a technical point of view, such a width should not
be smaller [19] than the discretization of real space used to
compute the Hamiltonian matrix elements and specified by
the plane-wave energy cutoff [39] of 1000 Ry in this paper,
which implies a half wavelength of 0.1 Bohr. We chose to
use the same Gaussian width for the whole range of velocities,
obtained from reproducing the Bragg peak values obtained
with the explicit all-electron calculations in Ref. [26] for
the electronic stopping power for protons. We, then, used
the same width to model the negatively charged Gaussian-
distributed projectiles.
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