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ABSTRACT
We have developed the polyatomic extension of the established [M. Gustafsson, J. Chem. Phys. 138, 074308 (2013)] classical theory of radiative
association in the absence of electronic transitions. The cross section and the emission spectrum of the process is calculated by a quasiclassical
trajectory method combined with the classical Larmor formula which can provide the radiated power in collisions. We have also proposed
a Monte Carlo scheme for efficient computation of ro-vibrationally quantum state resolved cross sections for radiative association. Besides
the method development, the global potential energy and dipole surfaces for H + CN collisions have been calculated and fitted to test our
polyatomic semiclassical method.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0170577

I. INTRODUCTION

In astronomical environments there are several physical and
chemical processes which result in molecule production: (i) chem-
ical exchange reactions in gas phase or on the surface of grains, (ii)
collisions with electrons, and (iii) interaction of atoms and molecules
with radiation. In complex-forming bimolecular collisions, the tran-
sient complex can be stabilized either by the collision of a third body
or by emitting a photon (see Fig. 1). The latter process is called radia-
tive association (RA) and it contributes to molecule formation in
dust-poor regions of interstellar space.1,2

Owing to the very small probability of spontaneous photon
emission, it is difficult to measure the cross section and rate con-
stant of RA. Experimental studies have been carried out only for a
few ionic systems.3 That is why theoretical modeling of the dynam-
ics of RA is often the only feasible way to obtain a reliable cross
section or rate constant of the process.2 Nevertheless, RA is also
challenging to study theoretically since, in principle, it requires the

quantum mechanical description of the time-dependent process.
Due to the difficulty of quantum mechanical treatments, most of the
previous dynamical calculations have focused merely on diatomic
molecule formation.4–36 There are only a few quantum dynamics
studies where radiative association of triatomic molecules has been
considered in full dimension including the following molecules:37–44

HeH+2 , H−3 , HN−2 , AlH+2 , AlD+2 , NaH+2 , NaD+2 , HCO−, HCO. For
other polyatomic cases, either reduced dimensional semiclassical
dynamical calculations45,46 or statistical rate theories47–51 are applied
to obtain their rate constant.

The extension of the theoretical models for polyatomic sys-
tems is desirable, since the bigger the reactants, the more probable
the RA is.47 Unfortunately, the quantum dynamical methods are
not feasible for larger polyatomic molecules. However, the classical
or semiclassical treatment of the dynamics can provide a practical
but still efficient solution regardless of the size of reactants. Despite
the lacking quantum effects, the trajectory-based method with a
good quality potential energy surface can provide accurate rate
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FIG. 1. Schematic representation of the radiative association process for the for-
mation of a hypothetical AB(n, J) molecule in a given ro-vibrational quantum state
characterized by a collection of vibrational quantum numbers, n, and angular
momentum, J. Ec denotes the collision energy and Ebind is the binding energy
of the molecule.

constants, spectral properties, and also reliable atomic-scale mech-
anism of molecular collisions.52–62

Two trajectory-based classical methods have been recently
established for RA. One is for RA in absence of electronic transitions
based on the classical Larmor theory of radiation,63 and another for
the calculation of RA through electronic transitions based on the
semiclassical surface-hopping formalism.64 Both methods are tested
and used successfully to calculate the diatomic molecule formation
through RA. However, these methods have not yet been extended
for polyatomic systems to consider the dynamics in full dimension.

The purpose of this work is to develop and implement the poly-
atomic extension of the earlier established method for RA in absence
of electronic transitions.63 In order to test our method we calculate
the cross sections of the following reaction:

H(2S) + CN(2Σ+)→ HCN/HNC + h̵ω (1)

Besides the dynamical studies, we also develop a global ab initio
potential energy surface (see Fig. 2) and a dipole surface for
H + CN collisions.

HCN and HNC molecules are fundamental building blocks for
the synthesis of more complex nitrogen bearing molecules.65,66 They
have been detected in various regions of the interstellar medium

FIG. 2. Schematic representation of ground state H + CN potential energy surface.

including star-forming regions,66–72 nebulae, planetary nebulae, cir-
cumstellar envelopes and disks, and comets. HCN and HNC are
assumed to form primarily through gas-phase chemistry,73–76 and
they are considered important tracers of molecular gas and high-
density regions in the interstellar medium. Furthermore, their spec-
troscopic line intensities can be utilized as chemical thermometer
for the interstellar medium.77 Owing to the relevance of these
molecule, it is important to unveil their possible formation pathways
like the radiative association that might have a contribution to the
production of HCN and HNC in the dust-poor interstellar space.

II. QUASICLASSICAL THEORY OF RADIATIVE
ASSOCIATION

According to the recently developed method,63 the cross
section of the radiative association can be computed by using a com-
bination of the classical trajectory method and the Larmor formula
in which the spontaneous emission is a result of a time-dependent
dipole. The method applies only in absence of electronic transitions,
and it was tested so far only for diatomic molecule formation. As is
presented earlier, this classical method can reproduce the resonance-
free quantum mechanical cross sections with good accuracy. Here,
we generalize this classical theory of radiative association63 for an
arbitrary polyatomic system by deriving the formula for quantum
state resolved semiclassical cross section. Then we also give a Monte
Carlo schemes for the efficient evaluation of the cross section. Note
that in this work the term semiclassical refers to the semiclassi-
cal quantization of the rovibrational states of the reactants. This
should not be confused with the semiclassical treatment of radia-
tive association of diatomic molecules involving different electronic
states.78,79

A. Derivation of cross section formula
Since radiative association is a collision process, its cross section

can be obtained by the classical collision theory

σ(Ec) = 2π fstat

∞

∫
0

bPr(Ec, b) db, (2)

where Pr is the opacity function (the probability of the radiation as a
function of impact parameter, b, and collision energy, Ec). The statis-
tical weight factor, fstat can be calculated from the spin- and orbital
angular momentum multiplicity of the electronic quantum states of
the reactants and product involved in the collision.

In the frequency interval [ω,ω + dω] the probability of emis-
sion is I(ω) dω/h̵ω. Hence, the total probability of radiation is

Pr =
∞

∫
0

I(ω)
h̵ω

dω, (3)

where I(ω) is the radiated energy per unit frequency. In the classi-
cal theory of dipole radiation, the time-dependent radiative power
(the total energy radiated from the system per unit time) is given by
the Larmor formula80

I(t) = − dE
dt
= 2

3c34πϵ0
D̈ 2, (4)

where E is the radiated energy, c is the speed of light, ϵ0 is the per-
mittivity of vacuum, and D is time-dependent dipole moment of

J. Chem. Phys. 159, 144112 (2023); doi: 10.1063/5.0170577 159, 144112-2

Published under an exclusive license by AIP Publishing

 15 O
ctober 2023 07:02:03

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

the system. By Fourier transforming Eq. (4) and using the Parseval
theorem

∞

∫
−∞

f 2
t dt =

∞

∫
−∞

∣ fω∣2
dω
2π
= 2
∞

∫
0

∣ fω∣2
dω
2π

, (5)

we obtain the frequency dependent radiated power as80

I(ω) = 2
3c3π4πϵ0

∣∫
∞

−∞

eiωtD̈(b, t, Ec)dt∣
2
. (6)

Inserting I(ω) into Eq. (3), the total radiative probability can be
computed as

Pr =
2

3c3πh̵4πϵ0
∫

ωmax

ωc

1
ω
∣∫

∞

−∞

eiωtD̈(b, t, Ec)dt∣
2

dω, (7)

where the new boundaries of the frequency integral are introduced
to take into account only the transitions which result in stable
molecule formation. By having ωc = Ec/h as a lower limit, rather
than 0, transitions to the continuum are excluded. Furthermore,
ωmax = Emax/h, where Emax is the maximally possible energy loss
of the system in the collision, corresponding to the minimum ro-
vibrational energy and total angular momentum of the formed
molecule. See Appendix A for further details of how to determine
the value of Emax. For neutral systems, we may introduce further
simplification by applying the differentiating property of Fourier
transformation

∣F(D̈)∣2 = ω4∣F (D)∣2, (8)

with this identity

Pr =
2

3c3πh̵4πϵ0
∫

ωmax

ωc

ω3∣∫
∞

−∞

eiωtD(b, t, Ec)dt∣
2

dω. (9)

It should be stressed that Eq. (9) is valid solely for neutral species. For
ionic system Pr has to be calculated from Eq. (7) (see e.g., Öström
et al.20). In such cases, the identity Eq. (8) does not hold because the
dipole moment of ionic systems is not an L2 (i.e., square integrable)
function.

Equations (7) and (9) are suitable to describe merely the col-
lision of two structureless fragments. In polyatomic reactions, the
probability of the process also depends on the ro-vibrational states
of the interacting partners. In the semiclassical picture these are
characterized by a collection of initial (semiclassical) ro-vibrational
quantum numbers (nAB) and the phases of rotations (η) and vibra-
tions (χ) of the reactants. Furthermore, the relative orientation of
the colliding fragments, which is characterized by the Euler angles
(ψ), are also needed to be considered. Hence, in the general case
(either ionic or neutral system), the polyatomic radiative probability
density takes the form

Pgen
r (Ec, b, nAB,η, χ,ψ)

= 2
3c3πh̵4πϵ0

∫
ωmax

ωc

1
ω

× ∣∫
∞

−∞

eiωtD̈(b, t, Ec, nAB,η, χ,ψ)dt∣
2

dω. (10)

For neutral systems by using Eq. (8), Eq. (10) is simplified

Pneut
r (Ec, b, nAB,η, χ,ψ) = 2

3c3πh̵4πϵ0
∫

ωmax

ωc

ω3

× ∣∫
∞

−∞

eiωtD(b, t, Ec, nAB,η, χ,ψ)dt∣
2

dω.

(11)

Inserting Eqs. (10) and (11) into Eq. (2) and integrating over
the phase variables (η, χ,ψ), we obtain the initial quantum state
resolved semiclassical radiative association cross section for general
and neutral polyatomic systems as

σgen(Ec, nAB) =
4 fstat

3c3h̵4πϵ0
∫
∞

0
b db∫

2π

0
⋅ ⋅ ⋅∫

2π

0
dη dχ dψ

× ∫
ωmax

ωc

1
ω
∣∫

∞

−∞

eiωtD̈(b, t, Ec, nAB,η, χ,ψ)dt∣
2

dω,

(12)

σneut(Ec, nAB) =
4 fstat

3c3h̵4πϵ0
∫
∞

0
b db∫

2π

0
⋅ ⋅ ⋅∫

2π

0
dη dχ dψ

× ∫
ωmax

ωc

ω3∣∫
∞

−∞

eiωtD(b, t, Ec, nAB,η, χ,ψ)dt∣
2

dω.

(13)

One needs only to follow the time-dependent dipole moment
of the system along its classical trajectory to calculate the ro-
vibrationally state-resolved probability of spontaneous emission
[Eqs. (10) and (11)] or the cross section [Eqs. (12) and (13)] of
molecule formation in collisions.

B. Monte Carlo estimation of the cross section
Since the radiative probability, as well as the cross section,

are many dimensional integrals Monte Carlo (MC) integration is
needed for the efficient evaluation of Eqs. (10)–(13). To use the MC
method one needs to sample randomly the initial conditions of reac-
tants, including the ro-vibrational phases (η, χ) ∈ [0, 2π], the Euler
angles (ψ) and the impact parameter (b), to take into account all
possible phase space points of colliding fragments that may have a
contribution to the reaction.

When the phase variables are sampled uniformly and the
impact parameter is sampled as bi = bmax

√
ξi, where ξi ∈ [0, 1] is a

uniform random number, then we obtain the following Monte Carlo
formula

σ(Ec, nAB) ≈
πb2

max

Ntot

Ntot

∑
i

P(i)r (Ec, nAB, bi,ηi, χi,ψi) (14)

for the initial quantum state resolved cross section for the col-
lision of two arbitrary molecules, where P(i)r has to be calculated
from Eq. (10) or Eq. (11) for the ith trajectory. In this MC scheme,
each trajectory has a contribution to the total radiative probability.

III. COMPUTATIONAL DETAILS
OF THE DYNAMICAL CALCULATIONS
A. Details of the quasiclassical trajectory calculations

The molecular collisions were studied using the quasiclassical
trajectory (QCT) method. The calculations were performed using
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an in-house built code, where the classical equations of motion
are solved in Cartesian coordinates for each atom participating in
the collision. To simulate the quantized nature of the vibration
and rotation of the reactant molecules, the internal motion of
molecules is described by ensembles of classical states that corre-
spond to preselected quantum mechanical states. The magnitude of
the rotational angular momentum of the CN molecule, L, was cal-
culated from the conventional semiclassical quantization formula
L = h̵

√
( j( j + 1), where j is the rotational quantum number of

the diatomic molecule. The ro-vibrational initial state of the CN
molecule is sampled by employing a rotating Morse oscillator
based on Porter–Raff–Miller method.81 The impact parameter b was
sampled with a weight proportional to b itself, and the maximum
impact parameter was chosen dynamically as a function of the colli-
sion energy to take into account all reactive events. The Hamilton’s
equations of motion are integrated in Cartesian coordinates using
the tenth-order Adams–Moulton predictor-corrector algorithm ini-
tiated by Velocity–Verlet integrator. The integration time step was
0.5 atomic time units in the calculations, guaranteeing energy con-
servation better than 0.5 cm−1 at the given collision energy. In this
work, we have calculated 2 × 105 trajectories at each collision energy.

B. Details of the computation of radiative
association cross section

In this section, we discuss the numerical issues and their solu-
tions regarding the computation of the cross section. Along the
trajectories, we recorded the time-dependent dipole of the system,
which provides the starting point for the computation of the cross
section. First, we discuss how to obtain efficiently the radiative prob-
ability for each trajectory and then how to use these individual
probabilities to obtain the cross section.

1. Which dipole is supposed to be used and how?
In general, the non-interacting reactants possess a permanent

dipole moment, such as that of CN in our case. This is illustrated
in Fig. 4(a) by non-zero value of Dz when the H atom is far away,
corresponding to the dipole of the free CN molecule. This means
that rotating and vibrating molecules also radiate classically even
before approaching the interaction zone in the collision. This effect
should be removed from the recorded D̃(t) because it does not result
in molecule formation. Based on this consideration, the following
modified dipole is used in Eq. (10)

D(q, t) =
⎧⎪⎪⎨⎪⎪⎩

D̃eq if q ∉ [int. zone]
D̃(q, t) if q ∈ [int. zone],

(15)

where D̃eq is the constant value of the dipole of the non-interacting
fragments at their equilibrium structure. D̃eq is held at constant mag-
nitude and direction so that it is time independent. In other words,
outside the interaction zone D(q, t) has direction and magnitude
that are independent of the CN orientation and bond length, respec-
tively. Hence, outside the interaction zone, the second derivative of
the dipole in Eq. (10) results in a zero contribution to the radia-
tive power. In this work, the interaction zone is defined based on
the Jacobi distance, where R < 5.0 Å. This is a reasonable choice since

the dipole can be considered as constant above this value. Between
Rmin = 4.5 Å and Rmax = 5.5 Å we used the switching function82

fsw(t) =
1
2
− 1

2
tanh (tan (πt)), (16)

with the reduced variable

t = R − Rmin

Rmax − Rmin
+ 1

2
, (17)

in order to obtain a smooth transition when we damp the dipole to
the constant D̃eq. Furthermore, in Appendix B we give an alternative
procedure to eliminate the radiation of the non-interacting reac-
tants. In the present work, we tested both methods, and they resulted
in the same cross section.

Besides the vibrational contribution of the radiation, it is also
important to treat properly the rotation of the molecular complex.
In our work, the dipole vector was written in Cartesian coordi-
nates. Owing to this, the effect of rotation in the radiation pro-
cess is automatically included. However, it should be stressed that
the rotational contribution is not considered when the compo-
nents of D(t) are expressed by internal coordinates. In such cases,
one needs to use also the Euler-angles to take into account the
change of dipole stemming from the time-dependent orientation of
the collision-complex.

There is a further technical issue when the Cartesian compo-
nent of the dipole is given in the frame of principal axis of inertia
(PAI) – like the HCN/HNC system in the present work – and the
dynamics is calculated in laboratory fixed Cartesian coordinates
(LAB). In such cases, the dipole vector is supposed to be trans-
formed from PAI to LAB coordinates in every time step of the
trajectory by using the orthogonal transformation (rotation) matrix
formed by the eigenvectors of the inertia tensor. However, the sign of
the eigenvectors is not defined by the diagonalization which means
there are eight different transformation matrices by considering the
possible sign combinations. Such ambiguity may introduce discon-
tinuity into the dipole in the LAB frame that is supposed to be
used in Eqs. (10) and (11). A similar problem appears in reactive
dynamics calculations, owing to the sign-ambiguity of the rotation
matrix when the Eckart transformation is utilized to project out the
rotational modes.83 In order to avoid this numerical problem, we
transformed the PAI dipole vector into LAB dipole vector by using
all of the eight rotation matrices, and at the end, we chose that matrix
where the obtained LAB dipole shows the largest overlap with the
LAB dipole of the previous time-step. Since the inertia tensor has
to be diagonalized in each time-step of dynamics we employed the
special algorithm of Kopp84 designed for 3 × 3 matrices.

2. Evaluation of the radiative probabilities
For the calculation of the cross section of neutral systems like

the HCN molecule it would be rational to use Eq. (13) with Eq. (11).
However, owing to theω3 factor in the frequency integral of Eq. (11),
numerical issues may arise when the Fourier transform of the dipole
is noisy. In our numerical experiments, the ω3 factor amplified the
numerical noise of the signal at large frequencies, which resulted
in a no-convergent frequency integral for some trajectories. That
is why Eq. (12) is recommended even for the characterization of
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a neutral system instead of Eq. (13) because it always provides
a convergent frequency integral thanks to the 1/ω factor. How-
ever, using Eq. (12) demands the calculation of the second time
derivative of dipole which may introduce additional noise into the
spectrum. To reduce the numerical noise of the signal before Fourier
transformation, we applied the Savitzky–Golay filter85 on D(t) that
automatically can provide the desired second derivative, D̈(t). In the
Savitzky–Golay filter we applied a second order smoothed polyno-
mial computed from the 5–5 data points in backward and forward
direction.

There is another numerical obstacle, regarding the very long
trajectories at low collision energies, which makes the evaluation of
Pr in Eqs. (10) and (11) impossible. Based on the Nyquist condition,
the maximum frequency that can be represented by Fourier trans-
formation is ωtop ∝ nFFT/ttraj, where nFFT is the number of sampling
points and ttraj is the integration time of the trajectory. This means
that for very long trajectories, especially at low collision energies,
the cut-off (ωtop) might be too small to represent properly the low-
frequency part of the spectrum which has a significant contribution
to the radiative probability. Based on the spectra of individual col-
lision (see Fig. 8), in general at least ωtop = 10 000 cm−1 is required
in this reaction for the frequency integral in Eqs. (10) and (11). In
principle, we could increase nFFT to expand the cut-off frequency up
to ωtop = 10 000 cm−1. However, then it would not be feasible any-
more to evaluate the Fourier transformation for all the trajectories
within a reasonable computation time. Although we are not able
to calculate Pr for such trajectories, we cannot discard them, since
these collisions would have a considerable contribution to the cross
section.

The radiative probability of these long trajectories is estimated
as the maximum radiative power observed among all trajectories,
where Pr can be computed from the Fourier transform of the time-
dependent dipole. This estimation provides a conservative lower
limit for the radiative probability of the extremely long trajecto-
ries and consequently establishes a lower bound for the computed
classical radiative association cross sections.

Besides the integration of the equations of motion, the Fourier
transformation is another computationally intensive numerical pro-
cedure in the calculation of radiative association. It is not useful
to apply the same number of FFT sampling points for each trajec-
tory, since the duration of the collisions can be quite diverse, and
we do not need the spectrum at too high frequencies. To make more
efficient the evaluation of Pr we dynamically adjusted nFFT for each
trajectory based on their integration time to make possible the repre-
sentation of the emission spectrum at least up to ωtop = 10 000 cm−1.
The Pr of too long trajectories was not evaluated, instead estimated
with the above-mentioned procedure, where we could not achieve at
least ωtop = 10 000 cm−1 with maximum nFFT = 215.

IV. GLOBAL POTENTIAL ENERGY AND DIPOLE
SURFACE OF H + CN SYSTEM
A. Details of the quantum chemical calculations

The Molpro package86 was used for the quantum chemical cal-
culations. The potential energy and the dipole moment surface are
calculated with the explicit correlated internally contracted mul-
tireference configuration interaction method (icMRCI-F12) using

the aug-cc-pVTZ-F12 basis set as implemented in Molpro. All
calculations were carried out in the Cs point group. The refer-
ence wavefunction is obtained by using the state-averaged com-
plete active space self-consistent field (CASSCF) method with a full
valance active space, and with six states (3A′ and 3A′′) in the
state average. The dipole moment of the system is calculated as an
expectation value of the dipole operator.

In order to sample the configuration space of the system, we
employed Jacobi coordinates of the HCN molecule denoted by
(rCN, R, θ). We used 19 points for rCN ∈ [0.8, 3.0] Å, 46 points for
R ∈ [0.5, 12.0] Å, and 25 points for θ ∈ [0○, 180○] to represent the
configuration space.

B. Global potential energy surface
The calculated ab initio energies are interpolated by a 3D B-

spline using the BSpline package.87 The obtained PES is attractive,
there is no barrier in the entrance channel (see Fig. 3). Over the range
of the 3D spline fitting we employed the following extrapolation
formulas

Vsr(rCN, θ, R) = ae−bR, (18)

which describes the short range part of the PES, and

Vlr(rCN, θ, R) = D0 − C6/R6 (19)

for the long-range extrapolation similarly as done by Ayouz et al.88

The coefficients, a, b, D0, C6, are evaluated at each (rCN, θ) value.
The short range extrapolation parameters, a and b, are determined
from two points: V(rCN, θ, R = 0.50 Å) and V(rCN, θ, R = 0.52 Å) at
a given R, while the long-range parameters, D0 and C6 are obtained
from V(rCN, θ, R = 11.00 Å) and V(rCN, θ, R = 11.80 Å) of the 3D
spline potential values.

In order to test the quality of the PES, we used the DVR3D
code89 to compute the ro-vibrational quantum states. The results
of these calculations are compared to the ro-vibrational energies of
other works where the PES is developed for bound state spectro-
scopical calculations90–95 (see Fig. S1 in the supplementary material).
In general, the ro-vibrational energies of our PES slightly under-
estimate (by 10–15 cm−1) the corresponding quantum states on
most recent accurate PESs.92–95 Such deviation is acceptable for
global PESs which are used for collision dynamics and not solely

FIG. 3. Section of the PES of HCN at a fix rCN distance.
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FIG. 4. Section of dipole surface of the HCN system. Panel (a) shows the
z-component and panel (b) displays the x-component of the dipole.

for bound state computations in order to describe the ro-vibrational
spectroscopy with high accuracy.

C. Global dipole surface
Besides the PES, we also calculated and fitted the global electric

dipole surface of the HCN system which is displayed in Fig. 4. The
dipole vector is defined in the frame of principal axis of inertia (PAI)
as in Molpro. The z component of the dipole is parallel with the CN
bond and the x component is perpendicular to the CN bond. For the
fitting procedure, we used the following function forms for the two
PAI components of the dipole (Dy = 0, since all three atoms lie in
the x, z plane)

Dx =
3

∑
i=0

6

∑
j=0

6

∑
k=1

Cijkri
CNe−Aj(R−Bj)

2

P1
k(cos θ), (20)

Dz =
3

∑
i=0

6

∑
j=0

6

∑
k=0

Cijkri
CNe−Aj(R−Bj)

2

P0
k(cos θ), (21)

where Pm
k (cos θ) factors are the associated Legendre polynomials

and Aj, Bj, Cijk are parameters which are determined by nonlinear
fitting. At long ranges (R > 5.5 Å) the dipole surface is extrapolated
with the dipole of the free CN diatom. The comparison of the fitted
dipole surface of the present work and that of Mourik et al.90 can be
found in Fig. S2 in the supplementary material. Around the equilib-
rium structures the two surfaces show a good agreement. However,
the dipole surface of Mourik et al.90 is represented only in a limited
region of the configuration space that is useful for the calculation of
spectral line intensities of a bound system, but not for the description
of a collision process.

V. RESULTS AND DISCUSSION
A. Reduced dimensional QCT and quantum
dynamics calculations

Besides the full dimensional QCT computations, we also
performed reduced dimensional calculations in 1D by using our

FIG. 5. Reduced dimensional (1D) cross section of the HCN and HNC formation in
H + CN collisions obtained by quantum mechanical (QM) perturbation theory and
the QCT method.

semiclassical QCT method and quantum mechanical (QM) per-
turbation theory. (See Appendix C for the computational details
of QM.) For these calculations, we utilized the 1D sections of
potential energy and dipole surfaces along the collinear H–CN and
H–NC axes. Reduced-dimensional models serve as valuable tools for
assessing the performance of classical or semiclassical methods in
cases where full-dimensional quantum dynamical calculations are
unavailable.96,97 Furthermore, such comparison can shed light on
the importance of missing degrees of freedom in the reduced dimen-
sional treatment which have been applied previously to obtain the
rate constant of polyatomic systems.45,46

Figure 5 shows the cross sections for the formation of HCN
and HNC obtained by 1D reduced dimensional QCT and QM
calculations. In complex-forming collisions when the tunneling is
negligible, then the QCT method can remarkably well reproduce
the baseline of the quantum dynamical cross section. Similar good
agreement is observed for diatomic molecule formation when the
capture is not hampered by a potential barrier in the entrance
channel.

Based on this, we reckon here that the full dimensional QCT
calculations can provide reliable cross sections for a wide range of
collision energies apart from the resonances.

B. Full dimensional QCT calculations
The full-dimensional description of the RA process is highly

desired, since there are several ro-vibrational degrees of freedom of
polyatomic molecules that may contribute to the radiation process.
QCT provides an efficient way to calculate the detailed dynamics of
molecule formation through RA in arbitrary dimension when the
global PES and dipoles surface is available.

The RA process is efficient when the system falls into the deep
potential well, and the reactants spend several ro-vibrational periods
together as a collision complex. That is why we calculated the radia-
tive power only for complex-forming trajectories where the change
of the dipole is considerable during the collision. The complex is
defined by a geometric and energetic constraint: the center of mass
of CN diatom and the hydrogen atom has to be closer than 4.5 Å,
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FIG. 6. Probability of complex formation (capture) as a function of impact
parameter in H + CN collisions in full dimension.

and the potential energy has to reach at least half of the HCN poten-
tial well, −2.6 eV, at some point during the trajectory (see Fig. 3).
Based on this definition, the non-complex-forming trajectories have
negligible contribution to the radiated probability.

The opacity functions of complex formation are displayed in
Fig. 6. The probability of capture is almost unity even at large impact
parameters when the collision energy is low. This is a clear sign of the
long-range attraction, which makes the capture more efficient under
cold interstellar circumstances. The corresponding cross sections for
complex formation (see in Fig. S3 in the supplementary material)
show a divergent cross section as the collision energy diminishes.

The full dimensional RA cross section for the collision of
CN(v = 0, j = 0) and the hydrogen atom is shown in Fig. 7. It grows
with decreasing energy, similar to the capture cross section, since
at low collision energies the reactants spend more time together.
Therefore, the probability of photon emission in the RA process is
higher at cold temperatures. Figure 7 also clearly shows that the
extremely long trajectories cannot be discarded. Trajectories with
long lifetime have a considerable contribution to the reactivity. The
cross section is larger with almost one order of magnitude at low and
intermediate collision energies than those of obtained by omitting
the trajectories with extremely long lifetime.

FIG. 7. Comparison of the reduced dimensional and 3D cross sections for the
formation of HCN/HNC through radiative association.

In Fig. 7, we also present a comparison between the out-
comes of the reduced-dimensional (1D) and full-dimensional QCT
calculations. It is evident that the full-dimensional calculations
yield a significantly larger cross section compared to the reduced-
dimensional model. The difference spans almost two orders of
magnitude across a wide range of collision energies. This finding
highlights the substantial impact of the C–N stretching and H–C–N
and/or H–N–C bending modes of the HCN/HNC molecule, as well
as the large amplitude motion of the hydrogen atom around the CN
molecule in the deep potential well, which were held constant in the
1D model. These factors play a crucial role in the radiative probabil-
ity and molecule formation. Furthermore, assuming that the QCT
method performs similarly in both 1D and full dimension (as it
can reproduce the QM cross section baseline), the full-dimensional
QCT calculations provide a lower estimate for the exact quantum
mechanical cross section due to the absence of resonances.

It has to be stressed that our implementation of the QCT
calculations cannot distinguish the formation of HCN and HNC iso-
mers by radiative association. However, as we will see below, this is
unnecessary based on the analysis of emission spectra.

C. Emission spectra and the mechanism
of radiative association in H + CN collisions

Besides the cross section, our method also allows us to
extract the spectrum of the emission in collisions. By using the
Wiener–Khinchin theorem, it can be shown that this spectrum is
similar to that obtained from the dipole-dipole auto-correlation
function, which is usually used to calculate vibrational spectrum
from molecular dynamics simulations.57–59 However, in our case,
we calculate a transient (collision induced) vibrational emission
spectrum in contrast to the infrared absorption spectrum of stable
molecules. This vibrational information of the transient collision
complex may shed light on the mechanism of radiative associa-
tion and how it depends on the collision energy and the initial
ro-vibrational state of reactants.

In Fig. 8 the emission spectrum of representative collisions
at three different energies is displayed. By analyzing a large num-
ber of individual trajectories, we may draw a conclusion about the
mechanism of RA process in HCN/HNC system. At high collision
energies, the combination bands of the stretching with the bend-
ing modes give the biggest contribution to the radiative probability
(see Fig. 8 and Table I) which is a clear sign of the strong anhar-
monicity caused by the high-energy content of the system. This is
not surprising, since the timescale of the fast collisions is comparable
to the fastest degree of freedom of the system. In most of the ener-
getic collisions, there is no time for several periods of slow modes, as
the large amplitude oscillation of H around the CN molecule or the
pure C–N stretching. However, when the collision energy is small
enough, then efficient pathways are opened for energy flow through
the slow degrees of freedom, and the pure harmonic frequencies will
appear in the spectrum. Hence, for instance, below Ec = 500 cm−1

the harmonic C–H, N–H and C–N stretching modes are dominat-
ing (see Fig. 8). Furthermore, in many cases, instead of the bending
modes, a large amplitude motion (LAM) can be observed, when the
H atom orbits the CN diatom. This LAM can be considerably effi-
cient for RA since the dipole of the system is changing extensively
and swiftly.
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FIG. 8. Normalized spectrum of the radiation for some representative trajectories
in H + CN collisions at three different collision energies.

TABLE I. Harmonic vibrational frequencies of the HCN and HNC molecules and their
first overtones and combinations.

HCN HNC

Mode ν (cm−1) Mode ν (cm−1)

νCH 3310 νNH 3614
νCN 2081 νCN 2012
νbend 704 νbend 462
2νCH 6620 2νCH 7228
2νCN 4162 2νCN 4024
2νbend 1408 2νbend 924
νCH + νCN 5391 νNH + νCN 5626
νCH + νbend 4014 νNH + νbend 4076
νCN + νbend 2785 νCN + νbend 2474

We can make a significant observation by realizing that the
radiative power has a substantial contribution up to ωtop = 10 000
cm−1 in all collisions (see Fig. 8). This means that the emitted photon
carries away a maximum energy of hωtop, and the formed molecule
has a maximum binding energy of Emax

bind ≈ h̵ωtop − Ec. Therefore, the
formed HCN/HNC system is just below its dissociation limit, with
an energy content far exceeding the barrier that separates the HCN
and HNC isomers. Based on this, it is not meaningful to distinguish
the formation of HCN and HNC molecules in the current QCT cal-
culations. In the interstellar medium, where three-body collisions
are negligible, the hot HCN/HNC system formed by radiative asso-
ciation can stabilize in either the HCN or HNC molecule by emitting
a second photon.

VI. CONCLUSION
In this work, we have presented an efficient semiclassical

method to calculate the detailed dynamics for the formation of
arbitrary size molecules by radiative association in absence of elec-
tronic transitions. In order to test our method, we also devel-
oped a global full-dimensional potential and dipole surface for the
H +CN nonreactive collisions. The PES and dipole surface are avail-
able as supplementary material. Our method is a combination of the
QCT method and the classical Larmor formula, which provides the
radiative power in collisions. Owing to the QCT method, we may
calculate ro-vibrationally initial quantum state resolved cross sec-
tions of RA. We also analyzed the numerical issues regarding the
RA calculation using the QCT method and provided solutions
for them. Based on our calculation, we have shown that the full-
dimensional treatment of the RA process is important, in contrast
to previous works where the collision of polyatomic molecules is
described solely in 1D. In full dimension, the RA cross section is
almost 100 times larger in a wide range of collision energies than
that of the reduced dimensional (1D collinear) model. Further-
more, our method also allows us to obtain the emission spectrum of
RA process. Analysis of these transient emission spectra can provide
the details of the RA mechanism of the molecule in question.

SUPPLEMENTARY MATERIAL

The supplementary material includes the Fortran90 subrou-
tines of the global potential energy and dipole surfaces used in this
work. Furthermore, additional figures are also included that support
the findings of this works.
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APPENDIX A: THE UPPER LIMIT OF THE FREQUENCY
INTEGRAL AND THE MINIMUM ENERGY
RO-VIBRATIONAL STATE OF MOLECULES
FORMED BY RADIATIVE ASSOCIATION

The upper limit of the frequency integral, ωmax in Eqs. (7) and
(9)–(11) requires the determining the maximum binding energy
(or the minimum energy content) of molecules formed after the
emission of a photon by considering the conservation of the total
angular momentum (see Fig. 1)

h̵ωmax = Ec +max [Ebind(J)], (A1)

where Ec is the collision energy and Ebind(J) is the binding energy
of the formed molecule at a given total angular momentum, J, as
displayed in Fig. 1.

When the potential energy is deep enough, like in the case
of the HCN/HNC molecule, then the value of ωmax can be cho-
sen smaller than that demanded by the possible maximum binding
energy of the molecule with a given angular momentum. Such sim-
plification is possible since for a general molecule the C–H, O–H and
N–H stretching are the largest frequency harmonic modes (see e.g.,
Table I). Furthermore, the overtones and the combination bands of
these largest and other lower frequency harmonic modes can give a
considerable radiative contribution up to ωtop ≈ 10 000–15 000 cm−1

for a general molecule. Therefore, we may approximate the upper
limit of the frequency integral in Eqs. (7) and (9)–(11) asωmax = ωtop.
However, when the potential well of the molecule is shallow (less
than 15 000 cm−1 deep), we have to optimize Ebind(J) at constant
J values. In the remainder of this section, we give a practical solution
how to estimate the maximum of Ebind(J) which changes from col-
lision to collision, owing to the varying total angular momentum in
different trajectories.

First, we assume that the total internal energy of the molecule
– measured from the bottom of the potential well – is separable:
Emol = Evib + Erot, where

Evib =
3N−6

∑
i=1
(1

2
+ ni)h̵νi (A2)

is assumed to be the sum of quantum mechanical harmonic
mode energies, where ni is the vibrational quantum number and
νi is the frequency of the ith mode. The rotational energy can be
approximated as the energy of a classical 3D rigid-rotor (RR)

Erot =
1
2

JTI−1J, (A3)

where J is the total angular momentum of the formed molecules in
the A + B → AB + hω collisions, and I is the tensor of inertia of the
AB molecule. By considering that the emitted photon takes away 1h
angular momentum, owing to its bosonic nature, the total angular

momentum of the formed molecules in the A + B → AB + hω
collisions is

J = Lorb + JA + JB − h̵E (A4)

where Lorb is the orbital angular momentum, JA and JB are the rota-
tional angular momenta of the fragment A and B. Furthermore,
E is a unit vector that determines the direction of the angular
momentum of the emitted photon. The rotational quantum num-
bers, jA and jB determine the magnitude of ∣JA∣ = h̵

√
jA( jA + 1) and

∣JB∣ = h̵
√

jB( jB + 1), while their orientation is sampled randomly,
which means it is different for each trajectory. The impact para-
meter, b and collision energy determine the magnitude of the orbital
angular momentum

∣Lorb∣ = b
√

2μEc, (A5)

while its well-defined orientation depends on the simulation setup.
Moreover, the orientation of the angular momentum, E, taken by
the photon is also supposed to be sampled randomly. Based on these
considerations, the possible energy content of the molecules formed
in the RA process depends on the initial conditions of the reactants,
owing to the varying orientation of the angular momenta. In order to
find ωmax, we have to minimize Emol = Evib + Erot at certain J values.
By using the harmonic oscillator (HO) approximation in Eq. (A2),
we have to minimize Emol along the normal mode coordinates.
Hence, by optimizing the value of vibrational quantum numbers,
(n1, n2, . . . , n3N−6) as well as the rotational energy along the normal
coordinates at each fixed set of vibrational quantum numbers, we
obtain the maximum frequency as

h̵ωmax = Ec + Eeq
0 −min [Evib + Erot], (A6)

where Eeq
0 is the depth, to the global minimum, of the potential

well. Furthermore, the amplitude of the normal modes is deter-
mined by the vibrational quantum numbers. This procedure can
provide the exact ωmax within the HO-RR approximation. This min-
imization is supposed to be done for every trajectory, which can be
computationally expensive for bigger molecules.

In order to provide a simpler estimation of ωmax, we assume
that the minimum of Emol is at the zero-point vibration level of
the lowest energy isomer of the formed molecule (corresponding
to the absolute minimum of the PES) regardless of the rotational
energy. Furthermore, to avoid the minimization along the nor-
mal coordinates, we may assume that the minimum of the rota-
tional energy (at a given J) is at the equilibrium structure of the
molecule. Hence, the maximum frequency of the emitted photon in
a polyatomic RA process can be estimated as

h̵ωmax ≈ Ec + Eeq
0 −

1
2

3N−6

∑
i=1

h̵νi −
1
2

JTI−1
eq J, (A7)

where Ieq is the tensor of inertia at the equilibrium geometry.

APPENDIX B: CORRECTION OF THE DIPOLE
FOR NON-INTERACTING REACTANTS

When one wants to use Eq. (11) to obtain the correct radia-
tive power that results in molecule formation, then the radiation of
the non-interactive reactants can be eliminated by using the induced
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dipole outside the interaction zone and the total dipole inside the
zone. Thus, the corresponding dipole is

D(q, t) =
⎧⎪⎪⎨⎪⎪⎩

D̃(q, t) − D̃0(q, 0) if q ∉ [int. zone]
D̃(q, t) if q ∈ [int. zone],

(A8)

where D̃0(q, 0) is the dipole of the non-interacting fragments at a
given q molecular arrangement at time t = 0. This is illustrated by
non-zero value of Dz for H far away in Fig. 4(a). In the transition
from inside to outside the interaction zone a switching function is
applied as described for the alternative method in Sec. III B 1.

APPENDIX C: QUANTUM MECHANICAL
PERTURBATION THEORY

The quantum mechanical perturbation theory treatment of the
radiative stabilization yields a Golden rule-like formula for the cross
section2,98

σ(Ec) =
64π5 fstat

3k2
ini4πϵ0

∑
J,j ′ ,v′

SJ,j ′

λ3
J,j ′ ,v′ ,Ec

∣MJ,j ′ ,v′ ,Ec
∣2, (A9)

where the sum runs over the initial angular momentum (J)
and final rotational (j′) and vibrational (v′) quantum numbers.
kini =

√
(2 μEc)/h̵ is the wavenumber, where μ is the reduced mass

of the colliding fragments, SJ,j′ is the Hönl–London factor, λJ,j ′ ,v′ ,Ec
is

the wavelength of the emitted photon. The transition dipole matrix
elements are defined as

MJ,j ′ ,v′ ,Ec
= ⟨φfin

j ′ ,v′(r)∣D̂(r)∣χ
ini
J,Ec(r)⟩, (A10)

where D̂(r) is the operator of the dipole moment function, χini
J,Ec(r)

is the radial part of the energy normalized scattering wavefunc-
tion of the initial state and φfin

j ′ ,v′(r) is the radial part of the final
ro-vibrational wavefunction, normalized to unity.
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