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ABSTRACT: Mineral dust produced by wind erosion of arid and semiarid surfaces is a major 
component of atmospheric aerosol that affects climate, weather, ecosystems, and socioeconomic 
sectors such as human health, transportation, solar energy, and air quality. Understanding these 
effects and ultimately improving the resilience of affected countries requires a reliable, dense, 
and diverse set of dust observations, fundamental for the development and the provision of 
skillful dust-forecast-tailored products. The last decade has seen a notable improvement of dust 
observational capabilities in terms of considered parameters, geographical coverage, and delivery 
times, as well as of tailored products of interest to both the scientific community and the various 
end-users. Given this progress, here we review the current state of observational capabilities, 
including in situ, ground-based, and satellite remote sensing observations in northern Africa, the 
Middle East, and Europe for the provision of dust information considering the needs of various 
users. We also critically discuss observational gaps and related unresolved questions while pro-
viding suggestions for overcoming the current limitations. Our review aims to be a milestone for 
discussing dust observational gaps at a global level to address the needs of users, from research 
communities to nonscientific stakeholders.
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Mineral dust impacts on Earth and society

S and and dust storms produced in arid and semiarid regions can transport mineral dust 
far away, making mineral dust a global phenomenon. Mineral dust is a major component 
of atmospheric aerosol affecting many aspects of the Earth system, including climate, 

weather, atmospheric chemistry, and ecosystems (Prospero and Lamb 2003; Knippertz and Stuut 
2014; Shi et al. 2015; UNEP 2020), but also human health and multiple socioeconomic sectors.

Mineral dust affects the Earth’s radiation budget directly through the absorption and 
scattering of solar and terrestrial radiation (Tegen et al. 1996; Haywood and Boucher 
2000; Myhre and Stordal 2001; Slingo et al. 2006; Pérez et al. 2006; Balkanski et al. 2007; 
Miller et al. 2014; Kok et al. 2017; Ginoux 2017; García et al. 2018; Kawai et al. 2021; Kok 
et al. 2023). By acting as cloud condensation nuclei (CCN) (Levin et al. 1996; Karydis et al.  
2017) and ice-nucleating (IN) particles (DeMott et al. 2003; Hoose and Möhler 2012;  
Murray et al. 2012; Mamouri and Ansmann 2015; Kaufmann et al. 2016; López et al. 2018; 
Sanchez-Marroquin et al. 2020), dust also influences cloud formation and the associated 
indirect radiative forcing (Chen et al. 2019; Barreto et al. 2022). A larger number of ice and 
cloud condensation nuclei existing under favorable atmospheric conditions (Stephens et al. 
2004; Creamean et al. 2013; Jiang et al. 2018; Gibbons et al. 2018; Cziczo et al. 2013) may 
trigger and/or increase the severity of the hazard, such as ice nucleation, high precipitation, 
and hail (Yuan et al. 2021; Nickovic et al. 2021). This type of dust hazard is still little studied 
and needs further investigation. Through both direct and indirect effects, dust perturbs the 
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hydrological cycle (Min et al. 2009; Zhao et al. 2011; Skiles et al. 2012; Painter et al. 2012, 
2018; Gautam et al. 2013; Matt et al. 2018; Dagsson-Waldhauserova et al. 2015; Wittmann 
et al. 2017; Dumont et al. 2017; Di Mauro et al. 2019). Mineral dust has both positive and 
negative impacts on ecosystems (e.g., Okin et al. 2004; Yu et al. 2015; Rizzolo et al. 2017; 
Gross et al. 2021; Prospero et al. 2020) and the environment (Painter et al. 2012, 2007;  
Mahowald et al. 2010; Jickells et al. 2005; Arnalds et al. 2014; Ito and Shi 2016). Otherwise, 
it has been shown that the chemical reactions involving more than one matter phase (i.e., 
heterogeneous reactions) are paramount among the factors that drive dust’s chemical evo-
lution in the atmosphere (Riemer et al. 2019; Schwartz 1986; Dentener et al. 1996; Bauer 
et al. 2004, 2007; Vlasenko et al. 2006; Fairlie et al. 2010; Karydis et al. 2016). Dust het-
erogeneous reactions happen mostly when mineral dust mixes with anthropogenic pollut-
ants in urban and industrial areas mostly on the formation of aqueous coatings around the 
particles (Krueger et al. 2003; J. Li et al. 2009) and the reaction of gases with the particle’s 
surface bulk minerals (Dentener et al. 1996; Goodman et al. 2000).

All these dust interaction processes (i.e., radiative and chemical) are sensitive to dust 
mineralogy (e.g., Jeong and Achterberg 2014), as dust is, rather than a homogeneous spe-
cies, a mixture of different minerals with varying physicochemical properties. The chemi-
cal composition of mineral dust at local and regional scales depends on the mineralogy of 
the emitting sources (Claquin et al. 1999; Nickovic et al. 2013, 2012; Journet et al. 2014; 
Gonçalves Ageitos et al. 2023) as well as on aging in the atmosphere (Scheuvens et al. 2013; 
Formenti et al. 2011). In this sense, dust emitted from high-latitude dust sources has associ-
ated physico-chemical properties that differ from the crustal dust of the Sahara or American 
deserts (Shepherd et al. 2016; Arnalds et al. 2014; Bachelder et al. 2020; Baldo et al. 2020; 
Crusius 2021). Mineralogy also affects the hygroscopic properties of atmospheric particles 
and thus the indirect radiative forcing by dust (Usher et al. 2002), but as well impacts the 
ice nucleation process (Atkinson et al. 2013; Boose et al. 2016, 2019). Additionally, climate 
change is one of the potential causes of the increase of anthropogenic sand and dust sources 
because the increasing temperature could lead to desertification processes extending the 
dust source, for example, to Europe and high latitudes by the accelerating the melting of the 
permafrost (Bullard et al. 2016; European Court of Auditors 2018; Dagsson-Waldhauserova 
et al. 2019; Meinander et al. 2022).

Mineral dust is also recognized as a key player affecting several socioeconomic sectors 
(Shepherd et al. 2016; Middleton and Kang 2017; Al-Hemoud et al. 2019; Middleton et al. 
2019; ESCAP-APDIM 2021; Middleton 2020; Wu et al. 2021; Monteiro et al. 2022). On aver-
age in the Middle East and North Africa, welfare losses from mineral dust are estimated in  
approximately $3.6 trillion USD, where costs are about $150 billion USD and over 2.5% of 
gross domestic product (GDP) (World Bank 2019). Monteiro et al. (2022) showed that an event 
of few hours in Crete caused losses of at least 3.4 million euros, showing the potential high  
impact of such events in long-range transport regions. It is largely acknowledged that mineral 
dust impacts human health (e.g., Querol et al. 2019; Giannadaki et al. 2014; Goudie 2014; Pérez 
García-Pando et al. 2014a,b; De Longueville et al. 2013; Karanasiou et al. 2012; Kuciauskas  
et al. 2018; Pérez et al. 2012; Pu and Jin 2021; Tao et al. 2012; Ueda et al. 2012; Prospero et al. 
2008; Derbyshire 2007; Thomson et al. 2006; Yang et al. 2005; Gross et al. 2018; Tong et al.  
2023). Short-term effects of high PM10 and PM2.5 (i.e., aerosol particles measured near- 
ground with an aerodynamic diameter less than 10 and 2.5 μm, respectively) levels include 
increases in asthma episodes, particularly in children (Cadelis et al. 2014), and mortality due 
to acute coronary syndrome (Behcet et al. 2018; WHO 2021). The increase of the PM10 and 
PM2.5 levels can be very high, even in highly polluted cities, for example, in northwest and 
even southwest China, where Taklimakan dust events have shown to significantly increase 
mass concentrations of PM10 (11%–173%) and PM2.5 (21%–172%) compared with non-dusty 
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days (X. Li et al. 2018). Long-term exposure to dust episodes may increase premature mortality  
due to cardiopulmonary effects in the so-called “dust belt” extending from North Africa  
across the Middle East and South Asia to East Asia (Giannadaki et al. 2014). Dust par-
ticles are also associated with morbidity and mortality rates due to respiratory and car-
diovascular diseases in regions highly affected by such particles, as in the Canary Islands 
(Dominguez-Rodriguez et al. 2020), the Middle East (e.g., Al-Hemoud et al. 2018), or Japan 
(El-Askary et al. 2017). Additionally, dust can carry bacteria, viruses, and spores (e.g., Angulo 
and González 2007; Ah Sharidah 2021). Dust is hypothesized to be a risk factor for Valley 
fever (coccidioidomycosis), which is endemic in Arizona and California (Tong et al. 2022) 
and other parts of Latin America (Hector and Laniado-Laborin 2005; Urrutia-Pereira et al. 
2021). Potential infection occurs when a dry spell desiccates the soil-dwelling fungus, and 
subsequent wind erosion releases the spores (Garfin et al. 2013; Comrie 2005; Tong et al. 
2017; Weaver and Kolivras 2018; Comrie 2021). In the African Sahel, dust, low humidity, 
and temperature have been associated with meningococcal meningitis outbreaks (Pérez 
García-Pando et al. 2014a,b; Martiny and Chiapello 2013; Oumar Bah et al. 2019; Thomson 
et al. 2006). Moreover, during dust storms, reduced visibility can cause road traffic accidents 
resulting in injury and death (e.g., Burritt and Hyers 1981; Novlan et al. 2007; J. Li et al. 2018; 
Bhattachan et al. 2019; Rawashdeh et al. 2021; AlKheder et al. 2022).

Mineral dust can damage buildings and infrastructure (Miri et al. 2009) but also can 
cause negative impacts on electricity and solar power generation. Continuous monitoring 
of the impact of dust aerosols on solar energy has become an important activity at many 
research and operational centers due to the growing interest in the solar energy industry 
(Jiang et al. 2011; Mani and Pillai 2010; Goossens and Van Kerschaever 1999; Sarver et al. 
2013; Schroedter-Homscheidt et al. 2013; Bergin et al. 2017; Prasad et al. 2022; Fountoulakis 
et al. 2021; Papachristopoulou et al. 2022). Mineral dust reduces solar irradiance and thus 
the energy generation potential of solar plants by absorbing and scattering light, reducing 
the strength mainly of the direct beam (e.g., Kosmopoulos et al. 2018; Hanrieder et al. 2019) 
or indirectly favoring the formation of high cirrus (Soret et al. 2016; Ilić et al. 2022; Barreto 
et al. 2022). Moreover, the dust deposition on the solar installations reduces their efficiency  
(e.g., Costa et al. 2016; Maghami et al. 2016; Wolfertstetter et al. 2014; Rao et al. 2014;  
Smestad et al. 2020).

Mineral dust can cause significant problems in aviation, such as rerouting due to poor 
visibility, disturbances in airport operations (including workers’ safety and cleaning in-
stallations), and canceling of scheduled flights (e.g., Baddock et al. 2013; Al-Hemoud et al. 
2017; Weinzierl et al. 2012; Cuevas et al. 2021; Monteiro et al. 2022), and also has safety and  
maintenance implications on aircraft operations such as erosion, corrosion, pitot-static tube 
blockage, melting or engine flame out in flight (Clarkson and Simpson 2017; Lekas et al. 2014). 
Ice crystals formed by the interaction of dust particles and supercooled water can also block 
the pitot tubes or sensors on the engine nose cones (e.g., Nickovic et al. 2021). Otherwise, 
due to increased working turbine temperatures in recent years, the melting of dust in engines  
and associated problems is as important as the melting of volcanic ash (Wood et al. 2017; 
Bojdo and Filippone 2019). These identified aircraft’s impacts are a function of exposure time 
and concentration (e.g., Bojdo et al. 2020), as well as dust mineralogical composition (Bojdo 
and Filippone 2019).

The effects of dust storms on ground transportation systems (e.g., Miri and Middleton 
2022) include traffic accidents associated with the reduction of visibility (e.g., Middleton et al. 
2019; Ashley and Black 2008; Lader et al. 2016) and sand and dust on the road (or railroads)  
can result in vehicle tires losing traction, a tendency to skid and lose control of the vehicle 
(Pan et al. 2021) and increases the distance. Consequently, the maintenance costs of the 
infrastructures (i.e., road and railroads) increase.
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In semiarid regions, dust storms have many negative impacts on agriculture (Hojan et al. 
2019; Hladil et al. 2008) and ecosystems (Arnalds 2015): reducing crop yields by burial of 
seedlings under sand deposits, the loss of plant tissue and reduced photosynthetic activity 
as a result of sandblasting, delaying plant development, increasing end-of-season drought 
risk, causing injury and reduced productivity of livestock, and increasing soil erosion and 
accelerating the process of land degradation and desertification among others (Stefanski 
and Sivakumar 2009). The deposition of nutrients is considered among the positive impacts 
of dust up on both land and marine ecosystems. The deposition of dust benefits marine 
biomass production in parts of the oceans suffering from a shortage of such nutrients. This 
could also have a negative socioeconomic impact through the formation of marine algae 
(Lekunberri et al. 2010) for tourism because of the closing of recreative beach areas or a 
positive one through the growth of phytoplankton (e.g., Gallisai et al. 2014; Meskhidze et al. 
2005) and consequently having impacts on the fisheries management. The mixing of dust 
with acid pollutants can also increase the solubility of iron and other key metals leading to 
an overfertilization of the ocean (Rodríguez et al. 2021). Also, dust deposited on snow can 
deteriorate its quality for sports activities and can cause avalanches (e.g., Dumont et al. 
2020; Kutuzov et al. 2019; Monteiro et al. 2022), with consequent potential effects on the 
winter tourism sector (e.g., ski resorts).

The multiplicity and interdisciplinary nature of the impacts related to mineral dust have 
aroused considerable interest both in the research community and in different socioeconomic 
sectors, which call for a better monitoring of the dust cycle (including its emission, transport, 
and deposition, as well as associated atmospheric and biochemical processes) and for better 
identifying and quantifying the associated impacts and which can develop mitigation and 
adaptation strategies to reduce its associated risks.

A common effort toward a global coordination
While there are some positive effects, overall, sand and dust storms have severe negative  
impacts, particularly in countries downwind of major sources (Middleton et al. 2019;  
Shepherd et al. 2016; UNCCD 2022) in northern Africa, the Middle East (e.g., Vukovic Vimic 
et al. 2021; Miri et al. 2009; Sunnu et al. 2008), and Central and East Asia (e.g., ESCAP-APDIM 
2021). Although mineral dust emitted in the Sahara during an intense dust storm can reach 
remote regions such as Europe and Arctic (e.g., Varga et al. 2021; Barkan and Alpert 2010), 
the Americas (e.g., Denjean et al. 2016; Doherty et al. 2008; Pu and Jin 2021; Prospero et al. 
1981; Prospero and Mayol-Bracero 2013; Yu et al. 2019; Zuidema et al. 2019), and Asia (e.g., 
Park et al. 2005; Sugimoto et al. 2019), emphasizing the global character of this phenom-
enon. The challenge of mitigating the impacts of sand and dust storms is recognized globally. 
The United Nations (UN) agencies are promoting measures to confront the problem and their 
inclusion in national policies through the UN Coalition for Combating Sand and Dust Storms 
(Pitkanen-Brunnsberg 2019).

Given the scientific importance of mineral dust in the Earth system as well as the numer-
ous socioeconomic impacts, it is clearly reflected in the imperative need to monitor and 
forecast dust. This is the main objective of the World Meteorological Organization (WMO) 
Sand and Dust Storm-Warning Advisory and Assessment System (SDS-WAS; WMO 2007). 
The SDS-WAS searches to enhance the ability of countries to deliver timely and good-quality 
sand and dust storm forecasts, observations, information, and knowledge to users through 
an international hub of research and operational communities (Terradellas et al. 2015; Basart 
et al. 2019). Despite many recent advancements, there is still much to be improved, especially 
in the harmonization of dust information and the development of dust products tailored to 
specific applications, which can only be achieved by enabling collaborations among research-
ers, operational communities, and end-users. This was the main aim of the International 
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Network to Encourage the Use of Monitoring and Forecasting Dust Products (inDust; Nemuc 
et al. 2021). Because of the negative impacts identified in multiple socioeconomic sectors, 
accurate and adapted dust information is needed. This is a fundamental step for the creation 
of services that ultimately can support decision-makers and other users. Table 1 overviews 
the key dust products, already available as operational or sometimes still in research mode, 
that can be of interest for different communities in identified socioeconomic sectors, while 
Fig. 1 is a graphical representation of mineral dust impacts on various socioeconomic sec-
tors and related observational products of interest for assessing/managing such impacts.

Benedetti et al. (2018) discussed the observational needs for global aerosol operational 
modeling and literature reports of recent advancements in the integration of new dust 
surface parameterization in air quality models (e.g., Klose et al. 2017, 2021). Here, we pro-
vide an extended overview of the current dust observational capability from near-surface 

Table 1. Main dust parameters needed for different dust impacts identified in selected socioeconomic 
sectors.

Dust products Socioeconomic sector

Vertical distribution Aviation

Deposition Agriculture, fishery, ground  
transportation, aviation, tourism

Icing (dust derived diagnostic related with the dust-IN concentrations) Aviation, agriculture

PM concentrations in different size ranges (including PM10, PM2.5, PM1) Air quality, health

Soiling (accumulated dust deposited on the solar plants—this parameter  
depends on the technology of the solar plant)

Solar energy

Solar irradiance (including dust and clouds effects) Solar energy

Visibility Aviation, ground transportation

Fig. 1. Graphical representation of mineral dust impacts on various socioeconomic sectors and related 
observational products of interest for assessing/managing such impacts (see also Table 1). In regions 
close to the desert dust sources, dust particles can severely affect human health and agriculture, impact 
the local transportation and cause the closure of airports, and strongly affect solar energy production.  
At long distances, the presence of dust can affect health, air quality, and solar energy production  
(reducing solar insolation). Even far away from the source, dust can impact aviation, reducing the 
lifetime of airplanes and stopping traffic because of visibility reduction. Dust can have also positive  
impacts on agriculture and fishery because of fertilization capabilities on marine and terrestrial ecosystems. 
The figure is an adapted version of the inDust leaflet.
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measurements to remote sensing observations suitable for user-oriented applications  
(including monitoring and forecasting) covering Europe and its surrounding regions of 
northern Africa and the Middle East. Europe is in fact a mineral dust receptor because of 
its proximity to the largest desert on a global scale (i.e., the Sahara) and long-range trans-
ported dust from Asia (especially the Middle East deserts). Also, the European continent has 
its sources as the one located in countries surrounding the Mediterranean (i.e., Spain and 
Turkey) and in high latitudes (i.e., Iceland, Norway, Finland, and Greenland). The frequent 
arrival of dust outbreaks to Europe (particularly affecting southern Europe; see Pey et al. 
2013; Gkikas et al. 2016) and the increase of local dust emissions (e.g., Meinander et al. 2022) 
impacts several socioeconomic sectors, including health, air quality, energy, transportation, 
and agriculture (e.g., Monteiro et al. 2022; Cuevas et al. 2021). A recent analysis (Gavrouzou 
et al. 2021) indicates that in the 2005–19 period, the frequency of dust observations from 
satellites doubled in the Mediterranean area. This emphasizes the need for adaptation to 
the presence of sand and dust storms considering a broad regional perspective (i.e., includ-
ing source but also long-range transported regions) and the requirement to build mitiga-
tion strategies considering local, regional but also global scales. For all these reasons and 
considering that Europe contributes to 15% of global gross domestic product (EUROSTAT 
2020) and the Mediterranean population is expected to increase to more than 500 million 
by 2030, socioeconomic impacts are relevant even at global level. All these aspects and the 
presence in Europe of numerous research infrastructures makes a review of dust observing 
capabilities and gaps identification from user need perspectives a good starting point for 
a discussion at a global level about observations and products needed for handling dust 
impacts and fostering international cooperation on this topic.

This paper reviews the current observational capabilities from a European perspective 
for the provision of dust information considering the needs of various users (i.e., health, air 
quality, energy, transportation, agriculture, and tourism). Also, we will discuss the currently 
unresolved scientific–technological questions and existing observational gaps, providing, 
when possible, suggestions for their solution. This critical overview is a fundamental step 
toward setting up a comprehensive global dust observation system, with large geographical 
coverage and availability of different related parameters, suitable to meet the needs of vari-
ous users, from research communities to nonscientific stakeholders.

Current capabilities
The mineral dust presence in the atmosphere and its impact on socioeconomic sectors is a 
complex issue. As reported in literature (e.g., Prospero and Mayol-Bracero 2013; Richter and 
Gill 2018), synergy among advanced techniques and long-term measurements are needed 
for increasing our knowledge. To manage and forecast the related risks, improvements in 
models’ capability are essential. Many aspects related to small-scale process in the dust 
formation [micrometeorology, the effect of soil surface conditions (crusting), fracture me-
chanics parameterization for dust production, issues with shear stress, turbulence, salta-
tion dynamic], lifting, and transportation are key in this context. This primarily implies the 
need of multi-instrumental, extended, and long-term measurements in the source region of 
thermodynamic parameters and soil characteristics including soil moisture, atmospheric 
dust size distribution, and mineralogy.

A wide range of observational platforms have been utilized to describe mineral loads’  
spatiotemporal and physicochemical features, which are highly variable due to the  
heterogeneity of emission, transport, and deposition processes governing the dust life  
cycle (Schepanski 2018). Two main categories of observational products can be identi-
fied: 1) coordinated measurements at network level and satellite datasets, which pro-
vide standardized and sustained observations based on well-established protocols for 
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quality assurance and often working on a long-term perspective, and 2) observations in the  
framework of experimental campaigns providing extensive observations (that usually  
incorporate innovative experimental setups) at key sites typically during short time pe-
riods. They are both precious elements for cutting-edge research and for developing new  
products. Figure 2 reports examples of advanced observations of desert dust size distribution 
obtained by aircraft in situ measurements during the Saharan Aerosol Long-Range Trans-
port and Aerosol–Cloud-Interaction Experiment (SALTRACE) 2013 measurement campaign, 
vertical profiles of volume concentrations for fine and coarse particles obtained combin-
ing lidar and photometer observations, and desert dust plume image captured with a very  

Fig. 2. Highlights of (top left) mineral dust observations from in situ instruments, (top right) satellite observations, and (bottom) 
ground-based remote sensing techniques. For in situ measurements, the number concentration of mineral particles reported as 
a function of the particle size as measured from airborne sensors on 17 Jun 2013 in the Cape Verde region during the SALTRACE 
campaign in 2013 is shown. The dimensional range between 0.01 and about 40 μm is investigated combining different experi-
mental and retrieval methods (Weinzierl et al. 2017). Shaded areas report the uncertainty in the size distribution. The top-right 
panel shows the satellite image provided by TROPOMI on board Sentinel-5P (resolution of 3.5 × 7 km2) on 31 Mar 2018 capturing 
a desert dust event with a surprising level of detail. In the bottom panel, lidar data are reported together with lidar–photometer 
combined products for observations collected at Finokalia, Greece, on 4 Jul 2014 during a dust event. Multiwavelength Raman 
lidar products are the profiles of aerosol backscatter (three wavelength) and extinction (two wavelength) coefficient, the linear 
particle depolarization ratio, and the Ångström backscatter related coefficient. The combination of these measurements with 
collocated photometer observations allows the determination of aerosol size distribution and single-scatter albedo with the 
GARRLiC retrieval and of fine and coarse volume concentration profiles with both GARRLiC and LIRIC.
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tiny resolution by the recently available Tropospheric Monitoring Instrument (TROPOMI) on 
board the Sentinel-5P satellite. Despite that the most common aerosol remote sensing products 
(as aerosol optical depth and aerosol extinction) are not directly useable for user communities, 
these products are fundamental for producing accurate and user-oriented dust datasets such as 
the Dust Constraints from Joint Observational-Modeling-Experimental analysis (DustCOMM; 
Adebiyi et al. 2020) dataset. DustCOMM combines an ensemble of global model simulations 
with observational and experimental constraints on the dust size distribution and shape to 
obtain constraints on four-dimensional (4D, i.e., in space and time) atmospheric dust proper-
ties than it is possible from global model simulations alone. For example, ground-based and 
satellite dust-derived remote sensing products are used to produce model analyses for fore-
cast initialization (Di Tomaso et al. 2017; Escribano et al. 2022) and reanalyses through data 
assimilation (Di Tomaso et al. 2022) and to evaluate their forecasting skill (Binietoglou et al. 
2015; Mona et al. 2014; Yumimoto et al. 2008), as well as further improvements (Georgoulias 
et al. 2018; Ansmann et al. 2017; Cuevas et al. 2015; Basart et al. 2012; Gliß et al. 2021).

From the ground, valuable information about dust particles’ optical (extensive and inten-
sive), microphysical and chemical properties have been acquired from lidars, sunphotometers, 
and other in situ instruments. Through the deployment and operation of the aforementioned 
sensors, in which passive and active remote sensing techniques are applied, it has been 
realized the description of airborne mineral particles’ load (i.e., AOD) and nature (i.e., size, 
absorptivity, composition) at high accuracy but at a local scale. The latter drawback has been 
complemented to some degree by spaceborne instruments, which provide long-term colum-
nar and vertically resolved dust observations at a global level. Nevertheless, in contrast to 
ground-based measurements, the primary reliable information is limited, consisting of dust 
load in optical terms, the identification of mineral particles relying on their depolarization 
signal, and optical properties related to dust absorptivity. Therefore, the optimum approach 
toward a better characterization of the dust burden and, subsequently, an improved assess-
ment of the related impacts, requires synergistic actions.

Dedicated campaigns are of great value for developing new methodologies, in particular 
for multiplatform and multisensor synergistic approaches, and for getting better insight of 
dust related processes thanks to the extended observational capabilities typically deployed 
on purposes for specific and focused experiential campaigns (Formenti et al. 2019; Weinzierl 
et al. 2017).

Here, we report an overview of the current status of coordinated and long-term dust- 
derived observational products considering remote sensing products (from ground-based 
networks or satellite platforms), as well as in situ near-surface and aircraft measurements 
covering the region of Europe, northern African, and the Middle East. Long-term and coor-
dinated measurements are indeed recognized as key, for example, for model validation and 
development (e.g., Prospero and Mayol-Bracero 2013; Richter and Gill 2018).

We expand the scope of previous reviews, focused on specific techniques and/or platforms 
for deriving dust information (e.g., Mahowald et al. 2007; Basart et al. 2009; Mona et al. 2012; 
Rodríguez et al. 2012; Amiridis et al. 2015; Gkikas et al. 2016), by providing a more compre-
hensive and extended overview, centered on Europe, northern African, and the Middle East, 
of the current state of observational dust-derived capabilities (at regular basis and at regional 
scale) focusing on key dust variables for user interests like size-resolved mass concentration, 
physicochemical properties, and deposition. The data availability review presented here is 
based on the information collected by the following catalogs:

• the collaborative dust products catalog developed in the framework of the European COST 
Action inDust and available through the WMO Barcelona Dust Regional Center (i.e., the 
WMO SDS-WAS Regional Center for Northern Africa, the Middle East, and Europe);
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• the overview of satellite aerosol data products (not specific for dust products) of the WMO 
Global Atmosphere Watch (GAW) Program at the World Data Center for Remote Sensing of 
the Atmosphere; and

• the observation metadata collection developed within the European Gap Analysis for  
Integrated Atmospheric ECV Climate Monitoring (GAIA-CLIM) project.

In addition to these observations, the ones performed by the European Facility for  
Airborne Research (EUFAR; Formenti and Wendisch 2008) and the In-Service Aircraft for a  
Global Observing System (IAGOS; Petzold et al. 2016) are to be considered as relevant for dust 
particle observations, providing aerosol data from research campaigns and systematic data 
collected during in-service flight, respectively.

In situ measurements. A detailed description of methods and techniques mainly used for 
the in situ near-surface dust characterization is provided by Rodríguez et  al. (2012) and 
WMO (2016) includes the WMO-GAW measurement procedures, guidelines, and recommen-
dations for aerosol measurements, and in particular, for mineral dust. Here, only a brief 
description is provided, while the strengths and weaknesses of each available dust measure-
ment are shown in Table 2, together with the main networks and programs that provide 
these data.

To date, PM10 and/or PM2.5 mass concentrations are the most widely used observations 
to estimate the dust contribution at ground level on a routine basis. These measurements 
are mostly provided by air quality networks (see Fig. 3a) using automatic instruments [such 
as beta attenuation gauges, tapered element oscillating microbalances (TEOM), or optical 
particle sizers (OPS)]. To obtain a rough estimation of the net contribution of dust, the appli-
cation of ad hoc developed methodologies is required (see, e.g., Gama et al. 2020; Escudero 
et al. 2007; Barnaba et al. 2022). More robust estimation can be obtained by its chemical 
composition analysis from particle sampling collection and offline laboratory analyses by 
techniques such as X-ray fluorescence (XRF), inductively coupled plasma-optical emission 
spectroscopy (ICP-OES), or ion chromatography (IC). Recently, XRF systems working in 
real time become available (e.g., Furger et al. 2020). The determination of the mineralogi-
cal composition is typically derived from X-ray diffraction of dust aerosol or deposition 
samples (Marsden et al. 2019; Lequy et al. 2018; Nowak et al. 2018; Engelbrecht et al. 2017; 
Formenti et al. 2011; Klaver et al. 2011; Formenti et al. 2008; Caquineau et al. 1998), and 
energy dispersive scanning and transmission electron microscopy of individual dust par-
ticles along with statistical cluster (e.g., Ueda et al. 2020; Rodriguez-Navarro et al. 2018; 
Kandler et al. 2011, 2009; Chou et al. 2008). Both techniques sample mostly the particle 
surface, which may include coatings of other species. A compilation of measurements of 
dust mineralogical composition since the 1960s can be found in Perlwitz et al. (2015b). 
Automatic online analyzers have also been used for short-term (∼weeks) campaigns, but 
these still need technological improvements to be able to provide standardized real-time 
data on a long-term basis (Furger et al. 2017; Dall’Osto et al. 2004). In addition to the 
mass concentration and the chemical composition parameters described above, optical 
properties and size distribution (see, e.g., Fig. 2) are also measured by in situ measure-
ments. The determination of the former generally involves absorption photometers and 
nephelometers (see references in Rodríguez et al. 2012). The latter requires using at least 
two instruments: a differential mobility particle sizer (DMPS) and an aerodynamic/optical 
particle sizer (APS/OPS; Sunnu et al. 2008). Recently, a polarization optical particle counter 
(POPC), which measures the size and shape (depolarization ratio) of single particles, has 
also been used for studying the mixing states (external and internal mixing) of dust and 
air pollution aerosols (Pan et al. 2017; Wang et al. 2017).
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An alternative way to infer surface dust concentrations is based on the use of horizon-
tal visibility (inversely proportional to the surface aerosol extinction) data obtained from  
meteorological reports [meteorological terminal air report (METAR) and synoptic observa-
tion (SYNOP)] and empirical equations that relate these data to PM dust concentrations 
(e.g., Camino et al. 2015). Climatologies based on human-observer reports of dust storms 
in SYNOPs are discussed in several studies (e.g., Mahowald et al. 2010; Cowie et al. 2014; 
Klose et al. 2010; O’Loingsigh et al. 2010), along with several issues related to the recording 
and archiving of SYNOP dust codes (O’Loingsigh et al. 2010), the effects of changes in the 
interpretation and recording protocols of dust events through time (O’Loingsigh et al. 2014), 

Table 2. Strengths and weaknesses related to dust measurements available at ground level. The table also reports in alphabetic 
order the main scientific networks/programs providing each of the types of dust measurement. Legend: O = operational,  
R = research, Y = yes, N = no, S = some, RR = registration required.

Parameter Concept Strengths Weaknesses
Network/
programs

Product 
type (O, R)

Open  
access 

(Y, N, RR)

PM bulk 
concentrations

Dust contribution  
to the collected PM  
can be estimated 
considering that dust 
particles are big  
particles and that  
intrusions are  
anomalies in the 
PM records

High spatial  
density in  
developed  
countries

Not able to directly 
distinguish dust from 
other aerosol types

ACTRIS in situ O Y

EMEP O Y

Different instruments, 
measurement  
techniques and dust 
contribution calculation 
methodologies

ESRL R Y

GAW-WDCA O Y

Full-size range of dust 
not always encompassed 
by the PM metrics

INDAAF R RR

Standardized  
measurement  
within air quality  
networks

EANET O N

Low spatial density in 
developing countries

EIONET O Y

EPA O Y

IMPROVE O Y

SPARTAN O Y

PM chemical 
composition

Presence of mineral  
elements in PM 
samples allows the 
dust contribution 
estimation

Very reliable  
estimates of dust  
component

Very expensive and 
laborious

ACTRIS in situ O Y

EMEP O Y

Difficult to apply 
routinely

GAW-WDCA O Y

EANET O Y

Limited availability, 
mostly limited to 
short-term campaigns

EIONET O Y

EPA O N

IMPROVE O RR

Visibility Visibility in absence  
of clouds and  
precipitation is related 
to aerosol

Good spatial and  
temporal coverage

Visibility reduction  
due to the presence of 
hydrometeors  
(fog, rain, etc.)

NOAA ISD O Y

Site-dependent 
relationships

IMPROVE O N

Dust  
deposition  
fluxes

Deposition on filters 
or concentration at 
surface in dust source 
region can be simply 
regarded as dust

Heavy measurement  
load

Limited data availability CARAGA R Y

EMEP O Y

Data heterogeneity INDAAF R RR

EANET O Y

Dust physical 
properties

Absorption  
photometers,  
nephelometers,  
APS and OPC  
instruments derived 
size distribution

Standardized  
measurement  
techniques

Variable spatial density GAW-WDCA O Y

Distinctive dust  
optical properties
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Fig. 3. Geographical coverage of the networks of interest for mineral dust observations: (a) in situ 
near-surface, (b) photometer, and (c) lidar networks. The inset reports operational corresponding  
networks for lidar and near-surface observations, while MAN available datasets are reported in the 
photometer inset as expansion on the sea for the photometer networks present instead on the land. 
The locations of the stations and datasets are collected from the GAIA CLIM observation metadata  
collection (https://ciao.imaa.cnr.it/research/projects/#gaiaclim) or from network websites when not avail-
able in the GAIA CLIM collection.
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and the difference in the reporting of dust events between METAR and SYNOP observers 
(O’Loingsigh et al. 2017), as well as some difficulties in the classification of dust events  
(e.g., Dagsson-Waldhauserova et al. 2013, 2014).

Measurements of dust deposition fluxes have been obtained directly by weighting the 
deposited mass on filters or indirectly from aluminum deposition measurements (e.g., Guieu 
et al. 2002; Anderson et al. 2016; Laurent et al. 2015; Stuut et al. 2022) or by measuring 
atmospheric aerosol concentrations and assuming the dust dry deposition velocity and 
scavenging ratio (e.g., Le Bolloch et al. 1996). Although there have been many studies that 
characterize the physical and chemical composition of deposited dust, only a few of them 
have dealt with synthesizing these observations (e.g., Lawrence and Neff 2009). These quan-
tities have been measured in Europe and the Mediterranean basin (e.g., Vincent et al. 2016; 
Pey et al. 2020; Castillo et al. 2017), as well as northern Africa (e.g., McTainsh 1980; Audoux 
et al. 2022), during the last 50 years. Dust deposition measurements (both dry and wet) have 
been systematically provided in the western Mediterranean basin (CARAGA; Laurent et al. 
2015), northeastern Spain (DONAIRE; Pey et al. 2020), and the Sahel (INDAAF; Marticorena 
et al. 2017). Another source of deposition information is the one obtained from paleo records 
(e.g., McGee et al. 2013) from ice cores, marine sediments, loess-paleosol sequences, lake 
sediments, and peat bogs as the global compilation of temporally resolved records of dust 
mass accumulation rates and particle grain size distributions (that help to establish that the 
data considered represent changes in dust deposition) considered in the Dust Indicators and 
Records from Terrestrial and Marine Palaeoenvironments (DIRTMAP; Albani et al. 2015) 
dataset. Such information as dust deposition in ice cores can provide long-term information 
on the concentrations of atmospheric dust as well as on the strengths of the dust sources and 
their changes on long temporal scales (e.g., Kutuzov et al. 2019; Varga 2020). The lack of an 
international standard for deposition sampling (including size resolved deposition) is a lim-
iting factor for the achievement of a harmonized dataset of dust deposition flux. Therefore, 
more efforts are required for a better understanding of the spatial and temporal variability 
of dust deposition.

Finally, the investigation of the role of dust in ice nucleation mechanisms and the  
quantification of the giant coarse dust particles in the atmosphere are cutting-edge topics. 
For example, aircraft measurements of ice-nucleating particles (INPs) along with chamber 
laboratory observations (Boose et al. 2016, 2019; Cziczo et al. 2013) are essential for a better 
explanation of the nucleation processes and for developing INP parameterizations in the pre-
diction of ice and mixed-phase clouds. Data availability is mainly limited to field experiments. 
An overview of INPs is provided in Kanji et al. (2017), whereas a review of the history of their 
measurements is reported in Cziczo et al. (2017). Chamber experiments showed how mineral-
ogy, milling, and temperature are key factors in determining the IN properties of dust particles. 
Importance of organics and crystal water content was also showed (Boose et al. 2016, 2019).

As for giant dust particles (diameter > 20 μm), they have been observed during long-range 
transport (van der Does et al. 2018) but the explanation of mechanisms behind their presence 
at large distances from the source is still unclear. More measurements are needed for improv-
ing our knowledge and for understanding their specific impacts, for example, on radiation 
budget, and ice nuclei and grain: specific inlet systems for giant particle samples are needed 
(Wendisch et al. 2004).

Remote sensing.
Ground-based networks.  Remote sensing ground-based networks (Table 3) are based on 
passive and active remote sensing instruments like photometers and lidars. Photometers 
are passive sensors that automatically measure the attenuation of the direct solar spectral 
irradiance due to the aerosols from the top of the atmosphere to the photometer at different  
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Table 3. Strengths and weaknesses related to ground-based dust measurements using remote sensing. The table also reports  
in alphabetic order the main scientific networks/programs providing each of the types of dust measurement. Legend:  
O = operational, R = research, Y = yes, N = no, S = some.

Parameter Concept Strengths Weaknesses
Networks/
programs

Product 
type (O, R)

NRT  
(Y/N/S)

24/7  
(Y/N/S)

Open  
access  
(Y/N)

Dust  
optical  
depth

Dust contribution  
to the AOD  
(primary  
measurement)  
is obtained  
considering that  
coarse particles  
are dust  
particles

High spatial 
density in 
developed 
countries

Different methods  
(and uncertainty) in dust  
component evaluation

AERONET R Y Y Y

Cutoff in retrieval  
algorithm (50 μm) not  
covering the complete  
dust size distribution

SkyNet R N Y Y

Based on 
well assessed 
primary 
products

Asphericity of the dust  
particle is still a critical  
point for inversion  
products (depending on  
the used algorithm for  
the dust contribution  
estimation)

PFR-GAW R Y Y Y

Data are typically limited 
to daytime condition and 
not cloudy scenes

Dust 
backscatter 
profiles

Particle  
depolarization 
measurements 
enable to  
identify the dust 
component in the 
aerosol backscatter 
profiles obtained  
by lidar 
measurements

High vertical 
resolution

No other depolarizing 
particles considered in 
the dust attributions

ACTRIS/
EARLINET

R S S Y

AD-net O Y Y Y

Possibility to 
investigate 
co-presence 
of different 
aerosol type 
at different 
altitudes

Different setups  
mean different  
assumptions and 
uncertainties

LALINET R N N N

Typically, not  
available 24/7

MPLnet R Y Y Y

Possibility  
to investigate  
layer  
below clouds

Lower uncertainty in 
nighttime condition

GALION R S S N

Low clouds and  
precipitation inhibit  
the measurement

E-PROFILE (for 
ceilometers)

R Y Y N

Dust mass 
concentration 
profiles

Dust backscatter  
profiles are used  
typically as input  
for deriving the  
extinction profiles  
and then  
through some  
assumptions  
(algorithm)  
the mass  
concentration  
profile

High vertical 
resolution

30%–60% for  
Raman/HSRL lidars

ACTRIS/
EARLINET

R S S Y

Main required 
information 
for aviation 
purposes

Additional uncertainty 
for backscatter lidars 
due to further  
assumptions (lidar ratio)

AD-net R Y Y Y

Synergy of 
lidar and 
photometer 
plus retrievals 
can reduce 
the total 
uncertainties

Errors of advanced 
retrieval algorithms still 
to be quantified

LALINET R N N N

Typically not  
available 24/7

MPLnet R Y Y Y

Lower uncertainty in 
nighttime condition

GALION R S S N

Low clouds and  
precipitation inhibit  
the measurements
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wavelengths and provide columnar multiwavelength aerosol optical depth (AOD) and  
related (aerosol size linked) Ångström exponent (AE) through retrieval algorithms. (e.g., WMO 
2016). Recently, daytime condition limitation is overcome by an innovative instrument and 
algorithm for nighttime AOD measurements (Barreto et al. 2019, 2017). Dust aerosol optical 
depth (DOD) can be estimated mainly through three approaches: 1) based on the AE value 
(Basart et al. 2009; Todd et al. 2007; Wang et al. 2004; Dubovik et al. 2002); 2) based on the 
AOD coarse mode fraction estimated through inversion algorithms (O’Neill et al. 2003); 3) us-
ing advanced products obtained by sophisticated algorithms like the Generalized Retrieval of 
Aerosol and Surface Properties (GRASP) (Dubovik et al. 2014). All three approaches include 
uncertainties when calculating DOD. While GRASP is a very innovative research methodology 
and therefore not yet fully characterized in terms of uncertainty, the first approach has the ad-
vantage of being applicable for all possible stations because of the AE availability and the low 
related uncertainties, especially in high AOD regions (as the ones strongly affected by mineral 
dust). On the contrary, the AE thresholds may filter out some dust intrusions for regions where 
dust intrusions are sporadic, and other aerosol types are predominant (Cuevas et al. 2015; 
Di Tomaso et al. 2022). In these regions, the second (coarse mode fraction) approach is the 
most suitable. In this case, a source of uncertainty is related to the assumption that all coarse 
mode particles are mineral dust aerosols: other coarse particles like fresh smoke, sea salt, and 
volcanic ash can be present mixed or not with mineral dust aerosol and therefore contribute 
to the coarse mode and erroneously be attributed to DOD. Apart from sparse measurements 
available worldwide, three main networks provide data to estimate DOD (see Fig. 3b): the  
Aerosol Robotic Network (AERONET; Holben et al. 1998; Giles et al. 2019), the Skynet  
(Takamura and Nakajima 2004; Nakajima et  al. 2020), and the GAW Precision Filter  
Radiometer (GAW-PFR) network (Kazadzis et al. 2018a). A comprehensive comparison be-
tween reference instruments for these three networks showed low AOD differences, demon-
strating a promising framework to achieve homogeneity, compatibility, and harmonization 
among the different spectral AOD networks (Cuevas et  al. 2019; Kazadzis et  al. 2018b).  
Alternatively, AOD and AE can be also estimated in the near-infrared (NIR) and shortwave 
infrared (SWIR) spectral regions from ground-based Fourier transform infrared (FTIR) so-
lar spectrometry (Barreto et al. 2020) which operates within two international networks for 
atmospheric composition monitoring: NDACC (Network for the Detection of Atmospheric 
Composition Change; De Mazière et al. 2018) and TCCON (Total Carbon Column Observ-
ing Network; Wunch et  al. 2011). More recently, these high-resolution FTIR observations 
have been extended by COCCON (Collaborative Carbon Column Observing Network; Frey 
et  al. 2019), which is a research infrastructure of portable, compact, and low-resolution  
FTIRs set up as a supplement to TCCON. The Maritime Aerosol Network (MAN), the marine 
component of AERONET, complements these networks on the land (Smirnov et  al. 2009). 
There are other networks not specifically designed for aerosol measurements, which may  
provide aerosol and DOD as secondary products like the Australian aerosol network (Bureau 
of Meteorology Radiation Network and CSIRO/AeroSpan; Mitchell et al. 2017), the National 
Oceanic and Atmospheric Administration Earth System Research Laboratory’s (NOAA 
ESRL) Surface Radiation Network (SURFRAD; Augustine et al. 2000), the European Brewer 
Network EUBREWNET; López-Solano et al. 2018), and the Pandonia Global Network.

The lidar technique has the unique capability of providing information on the particle 
vertical distribution. A detailed review of lidar capabilities for mineral dust investigation is 
reported in Mona et al. (2012). There are different techniques for investigating aerosol proper-
ties using lidar: from the easiest and widely distributed simple, automatic elastic backscatter 
lidar (e.g., Welton et al. 2001) to the complex and advanced multiwavelength Raman lidar 
and high spectral resolution lidar (HSRL). A key element for the investigation of mineral dust 
is the retrieval of the particle depolarization ratio profiles that can be achieved by adding 
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specific detection channel(s) (e.g., Sugimoto et al. 2003). After an accurate calibration of a 
depolarization lidar system (Freudenthaler et al. 2009), the particle linear depolarization 
ratio (providing information on the particle shape) allows the discrimination of mineral dust 
within an atmospheric volume and the consequent derivation of the pure-dust backscatter 
coefficient profile (Ansmann et al. 2012; Marenco and Hogan 2011) and, in case of Raman/
HSRL lidar systems, the dust extinction coefficient profile (Shimizu et al. 2017; Tesche et al. 
2009; Yumimoto et al. 2008) and DOD by the integration of the dust extinction profile. Micro-
physical properties such as the refractive index and size distribution can be retrieved by the 
multiwavelength Raman and HSRL lidar dataset using sophisticated algorithms to provide 
higher-level profile products (e.g., Müller et al. 2019).

Ceilometers (elastic backscatter lidars with very low signal-to-noise ratio and different 
instrumental characteristics in wavelength, laser energy, and resolution) are 24 h/7 day in-
struments designed for cloud height determination but can be used with certain limitations 
for aerosol investigation (Wiegner et al. 2014). Backscatter profiles and other higher-level 
products can be obtained by combining ceilometers and elastic lidars with sun/sky pho-
tometers (Berjón et al. 2019; Román et al. 2018; Cazorla et al. 2017; Titos et al. 2019) or 
with aerosol models (Dionisi et al. 2018). The depolarization capability became recently 
available for ceilometers and is expected to further enhance the added value of ceilom-
eter measurements, but more research is currently needed to characterize depolarization 
measurements from ceilometers.

Dust mass concentration can be estimated after the evaluation of dust backscatter pro-
files: the uncertainty is 30%–60% for Raman measurements but reaches up to 100% in the 
case of very large particles (>15 μm) and can be even larger for elastic backscatter systems  
(Ansmann et al. 2012). Indeed, the combination of advanced lidar and photometer observa-
tions is found to be highly valuable and meets the need for vertically resolved information 
on the mass concentration of suspended particles and their fine and coarse components (see 
example in Fig. 2). Furthermore, the Generalized Aerosol Retrieval from Radiometer and Lidar 
Combined data (GARRLiC; Lopatin et al. 2013) and Lidar-Radiometer Inversion Code (LIRIC; 
Chaikovsky et al. 2016) algorithms allow the estimation of fine and coarse mode volume 
concentrations, which are very useful for distinguishing mineral dust layers in the column 
(Tsekeri et al. 2017). In addition, a multiwavelength Raman/depolarization system with the 
addition of a detection channel for Raman return signals from silicon dioxide (used as a 
tracer of mineral dust) allowed the derivation of mineral dust concentrations in East Asian 
dust plumes (Tatarov et al. 2011; Müller et al. 2010; Tatarov and Sugimoto 2005). There are 
several aerosol lidar networks (Fig. 3c) providing coordinated standardized observations at 
a regional level: the European Aerosol Research Lidar Network/Aerosol, Clouds, and Trace 
Gases Research Infrastructure (ACTRIS/EARLINET; Pappalardo et al. 2014, www.earlinet.org); 
the Asian Dust Network (AD-Net; Shimizu et al. 2017; Murayama et al. 2001, https://www-lidar.
nies.go.jp/AD-Net/); the Latin America Lidar Network (LALINET; Antuña-Marrero et al. 2017; 
http://lalinet.org/index.php); and the global NASA Micropulse Lidar Network (MPL-Net; Welton 
et al. 2001; https://mplnet.gsfc.nasa.gov/). For what concerns dust-related products, the dust 
partitioning method is incorporated in the real-time AD-Net data analysis system, and the 
dust extinction coefficient is included in the standard data product (Shimizu et al. 2017). 
Some prototypes of dust products are currently under investigation in terms of uncertainty 
and provided in research mode within ACTRIS/EARLINET. Additionally, the feasibility of 
providing an ACTRIS/EARLINET lidar-derived product for mitigating aviation risks in the 
case of mineral dust and volcanic ash intrusions has been recently proved (Hirtl et al. 2020; 
Papagiannopoulos et al. 2020).

As complementary to more advanced lidars, there is a large number of ceilometers distrib-
uted worldwide potentially providing valuable information about aerosol vertical layering 
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(Fig. 3c). Aerosol profile information is being provided in NRT by an increasing number of 
ceilometers of the E-PROFILE operational network of the European Meteorological Services 
Network (EUMETNET; Illingworth et al. 2019).

Harmonization and coordination among these regional networks are fostered by the 
GAW Aerosol Lidar Observation Network (GALION) promoted by the WMO (GAW 2007). 
Further, GALION cooperating networks are the National Oceanic and Atmospheric  
Administration (NOAA) Cooperative Science Center for Earth System Sciences and  
Remote Sensing Technologies (CESSRST, also known as CREST, https://noaacrest.umbc.
edu/crest-lidar-network/) lidar network, and the Network for the Detection of Atmospheric 
Composition Change (NDACC).

satellite-derived products.  Satellite-derived aerosol products have always played a key 
role in describing the horizontal and vertical distribution of dust plumes. Such information 
has been acquired, for long-term periods and at a global scale, either by passive or active 
sensors, providing columnar and vertically resolved aerosol retrievals, respectively. For ex-
ample, MODIS (Moderate Resolution Imaging Spectroradiometer; Levy et al. 2013) aerosol 
observations, available since 2000, have been fundamental for aerosol studies and mineral 
dust investigation (e.g., Boucher et  al. 2013; Logothetis et  al. 2021). On the other hand, 
CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations; Winker et al. 
2009), relying on active remote sensing techniques, depicts the vertical structure of dust lay-
ers worldwide since 2006 (Winker et al. 2013; Marinou et al. 2017), through the provision of 
highly accurate backscatter and depolarization retrievals.

Many operational products are available nowadays from low-Earth-orbiting (LEO) and 
geostationary (GEO) satellites, which, if harmonized, can fill the observational gaps of 
the individual sensors thus extending the spatial coverage of dust observations. Indeed, 
combining the once or twice daily higher information content observations from LEO sat-
ellites (currently providing better spectral and/or spatial resolution than GEO satellites) 
with the high-frequency, lower-information content of the GEO satellites would be of high 
added value for desert dust research. Table 4 lists the sensors providing dust-related prod-
ucts that are widely used for dust investigation. Through the intercomparison of satellite 
dust aerosol products, it has been revealed that they often agree well in their dominant 
large-scale patterns, but not quantitatively or in detail. This is mainly due to differences 
in (i) information content and technical constraints of instruments, (ii) satellite overpass 
time, (iii) frequency sampling, (iv) algorithms for aerosol classification, and (v) cloud 
masking. Significant improvements and evaluation of the different algorithms for aerosol 
investigation through satellite measurements have been realized, for example, in the 
framework of the ESA Aerosol_cci project (e.g., Kylling et al. 2018; Sogacheva et al. 2020; 
Popp et al. 2020).

A critical aspect that must be clarified is that identifying dust from space is not straight-
forward, especially away from the sources, since the mineral particles are mixed with other 
aerosol species, and it is difficult to discriminate. Important advancements have been achieved 
to retrieve quantitative information on desert dust from satellite observations, using fea-
tures of the mineral particles such as the coarse dimension (threshold on AE; e.g., MODIS); 
nonsphericity [impact on the phase function and polarization, e.g., Cloud-Aerosol Lidar 
with Orthogonal Polarization (CALIOP), or measurements at different angles, e.g., the Along 
Track Scanning Radiometers (ATSR), the Multi-Angle Imaging Spectroradiometer (MISR), 
and the Polarization and Directionality of the Earth’s Reflectances (POLDER)]; UV/visible 
aerosol absorbing index [AAI; e.g., from the Ozone Monitoring Instrument (OMI; Torres et al. 
2007, 2013) or the Tropospheric Monitoring Instrument (TROPOMI)], allowing to separate  
absorbing (volcanic ash, mineral dust, and biomass burning) from nonabsorbing aerosols 
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Table 4. Satellite-borne sensors providing dust-related observations. The table reports the most relevant information about  
the dust products provision for passive and active (CALIOP, CATS, and ALADIN) sensors, reported in alphabetical order. Legend: 
O = operational, R = research, Y = yes, N = no.

Sensor
Dust-related 

variables
Covered  
period Resolution

Wavelength  
(μm)

Product type  
(O, R)

Open  
access  
(Y/N)

Main  
dust retrieval 
publications

AIRS DOD 2003–11 Monthly 0.55; 10 O Y Peyridieu 
et al. (2010)Dust altitude O

Effective radius 1° × 1° R

ATSR-2/ 
AATSR

AOD 1995–2012 Daily 0.55 O Y Bevan et al. 
(2012), Poulsen 

et al. (2012), 
North (2002), 

Veefkind 
et al. (1998)

Fine mode 
aerosol optical 
depth (FMAOD)

1° × 1° and 
10 km × 10 km

O

DOD R

GOME-2 AAI 2007–present Daily,  
monthly

0.34–0.38 O Y Tilstra 
et al. (2013)

1° × 1°

IASI DOD 2007–present Twice a 
day, monthly

0.55; 10; 11 O Y Clarisse 
et al. (2019), 
Callewaert 

et al. (2019), 
Capelle et al. 
(2018), Klüser 
et al. (2015)

Dust 
altitude/profile

12 km × 12 km O

Dust parameters 
(size, mineralogy)

R

MISR AOD 2002–present Subdaily,  
daily, 

monthly, etc.

0.55 O Y Kahn et al. 
(2010), 

Martonchik 
et al. (2009)Aerosol typing 4.4 km × 4.4 km O

DOD (nonspherical 
fraction)

0.5° × 0.5° O

MODIS  
dark target

AOD 2000–present 5 min, daily 0.55 O Y Levy 
et al. (2013)3 km × 3 km O

AE 10 km × 10 km R

1° × 1°

MODIS  
deep blue

AOD 2000–present 5 min, daily 0.55  O Y Hsu et al. 
(2004), Hsu 
et al. (2013), 

Gkikas 
et al. (2021)

AE 3 km × 3 km O

SSA 10 km × 10 km O

DOD (obtained by 
synergy with external 

datasets)

1° × 1° R

OMI AOD 2004–present Subdaily, 
daily, 32 days

0.35–0.50 O Y Torres 
et al. (2013)

AAI 13 km × 
12 km (24 km)

O

SSA 0.25° × 0.25° O

1° × 1°

POLDER AOD 2005–13 Daily, monthly,  
seasonally, yearly

0.44–1.02 O Y Dubovik 
et al. (2014)

AE 6 km × 6 km O

DOD (coarse) O

SSA 0.1° × 0.1° O

Aerosol mean  
layer altitude

O

(Continued)
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(e.g., de Graaf et al. 2005); or specific spectral signature of desert dust in the thermal infrared 
[e.g., Infrared Atmospheric Sounding Interferometer (IASI) and Spinning Enhanced Visible 
and Infrared Imager (SEVIRI)]. Examples of the application of the aforementioned techniques 
are reviewed hereunder.

SeaWIFs 
deep blue

AOD 1997–2010 Subdaily, 
daily, monthly

0.55 O Y Hsu et al. 
(2012), Sayer 
et al. (2012)AE 13.5 km ×  

13.5 km
O

SSA 0.5° × 0.5° O

1° × 1°

SEVIRI AOD 2004–present Hourly, 
daily, monthly

0.55 O Y Luffarelli  
and Govaerts 

(2019), Clerbaux 
et al. (2017), 
Schepanski 
et al. (2007)

FMAOD 4 km × 5 km R

Dust index 0.1° × 0.1° R

Dust RGB maps 1° × 1° O

SLSTR AOD 1995–2012 Daily 0.55 O Y Bevan et al. 
(2012), Poulsen 

et al. (2012), 
North (2002), 

Veefkind 
et al. (1998)

FMAOD 10 km × 10 km O

1° × 1°

TOMS AOD 1979–2004 Subdaily, 
daily, monthly

0.34–0.38 O Y Torres et al. 
(1998), Torres 
et al. (2002)50 km × 50 km

AAI 1° × 1.5°

7 km × 3.5 km

TROPOMI AAI 2017–present Subdaily 0.34–0.38 O Y Veefkind 
et al. (2012)7 km × 3.5 km

ALADIN Backscatter 
profiless

2018–present Daily 0.355 O N Flamant 
et al. (2007)

Extinction profile O

CALIOP Backscatter 
profiles

2006–present Daily, monthly 0.532–1.064 O Y Amiridis 
et al. (2013, 

2015), Winker 
et al. (2009), 
Omar et al. 

(2009), Zheng 
et al. (2022)

Depolarization 
profiles

O

Aerosol typing 
profiles

O

Dust/mixed 
dust layers

O

Pure dust  
extinction  

profiles

R (post-processed)

Pure DOD R (post-processed)

CATS Backscatter 
profiles

2015–17 Daily 1.064 O Y McGill et al. 
(2015),  

Proestakis et al. 
(2019), Yorks 
et al. (2016)

Depolarization 
profiles

O

Aerosol typing 
profiles

O

Table 4. (Continued).

Sensor
Dust-related 

variables
Covered  
period Resolution

Wavelength  
(μm)

Product type  
(O, R)

Open  
access  
(Y/N)

Main  
dust retrieval 
publications

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 12/14/23 10:59 AM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y D E C E M B E R  2 0 2 3 E2242

The observational capabilities of MODIS and VIIRS (Visible Infrared Imaging Radiom-
eter Suite) have been recently combined with novel retrieval algorithms for dust detection  
over oceans (Zhou et al. 2020a), in which the nonsphericity of the probed mineral particles 
(Zhou et al. 2020b) is taken into account. This is also done in the new PARASOL (Polarization 
and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a 
Lidar) retrieval utilizing the GRASP algorithm (Dubovik et al. 2014).

A second example is the unprecedented high spatial resolution (3.5 × 7 km2) information 
on aerosol plumes (see Fig. 2) UV AAI, along with height, obtained from TROPOMI on board  
Sentinel-5P. It extends the temporal availability (nearly 40 years) of the corresponding  
measurements acquired from the TOMS (Total Ozone Mapping Spectrometer) and OMI instru-
ments since the 1980s and 2004, respectively. Positive AAI observations are associated with 
the presence of absorbing particles (dust or biomass burning) (Herman et al. 1997), and they 
have been utilized either for the identification of global dust sources (e.g., Prospero et al. 
2002) or for monitoring dust activity (e.g., Gassó and Torres 2019).

A third example is the exploitation of the specific sensitivity of thermal infrared (TIR) 
radiances [as measured, for example, by IASI on board the Metop satellite series, SEVIRI on 
board the Meteosat Second Generation satellites, Geostationary Operational Environmental 
Satellite (GOES), Himawari, Geostationary Ocean Color Imager (GOCI)] to mineral aerosols 
(dust and volcanic ash) through vibrational resonance peaks of silicates (Ackerman 1997), 
making their observations specific in nature. Qualitative dust products have been obtained 
from the infrared bands of SEVIRI, GOES, and Himawari in the form of a dust index or a dust 
red–green–blue (RGB) product (e.g., www.eumetsat.int; Schepanski et al. 2007) covering most 
of Africa and Europe since 2002. Taking advantage of the high spectral resolution of IASI 
TIR observations, global long-term (since 2007) daily dust distributions have been obtained 
with four different algorithms (Callewaert et al. 2019; Capelle et al. 2018; Clarisse et al. 
2019; Klüser et al. 2015). However, the TIR observations are sensitive only to coarse mode 
dust aerosols. In addition, if the DOD is needed at visible wavelengths (e.g., to compare with 
other instruments) a spectral dependence conversion is needed to convert the TIR coarse 
mode DOD to visible coarse mode DOD. The TIR instruments also provide observations at 
night, relying only on Earth’s thermal emissions. In addition to the dust optical depth, two 
operational IASI algorithms provide a mean altitude of the aerosols (Callewaert et al. 2019; 
Capelle et al. 2018), and one algorithm retrieves vertical profiles with up to 2 degrees of free-
dom (Callewaert et al. 2019). Both SEVIRI and IASI dust products have been used to analyze 
dust sources (e.g., Schepanski et al. 2007; Vandenbussche et al. 2020; Chédin et al. 2020), 
for dust identification and dust plumes’ movements (e.g., Banks et al. 2013), and climatologi-
cal studies (e.g., Banks and Brindley 2013; Banks et al. 2017). Finally, IASI high-resolution 
spectra can also be used to derive information on the mineralogical composition of dust (e.g., 
Klüser et al. 2012; Alalam et al. 2022).

The example of recent work on satellite dust-specific products is the Lidar Climatology 
of Vertical Aerosol Structure for Space-Based Lidar Simulation Studies (LIVAS) study of 
the European Space Agency (ESA), using CALIOP 532-nm backscatter and depolarization 
products in synergy with the ground-based typical values of mineral particle depolarization 
and lidar ratios (i.e., the extinction-to-backscatter ratio) derived from EARLINET (Amiridis 
et al. 2013, 2015). LIVAS delivers pure dust optical depth and extinction profiles useful for 
describing the 3D transport of dust over Europe (Marinou et al. 2017), the 3D structure of 
dust over Southeast Asia (Proestakis et al. 2018), and dust ice-nucleating particle concen-
trations (Marinou et al. 2019). A similar approach can be followed for deriving pure-dust 
products from the NASA Cloud-Aerosol Transport System (CATS) mission (Yorks et al. 2014) 
on board the International Space Station (ISS), which operates at 1,064 nm. Vertical pro-
files of aerosol extinction and backscatter are also provided by the ongoing Aeolus mission 
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(Kanitz et al. 2019; Straume et al. 2019) and are expected from the forthcoming Earth Cloud, 
Aerosol and Radiation Explorer (EarthCARE; Illingworth et al. 2015) mission of the ESA, at 
355 nm, and furthermore from the Atmosphere Observing System of NASA at 532 nm. These 
missions will substantially upgrade the altitude-resolved observational capabilities in the 
troposphere and stratosphere. In contrast to CALIOP, the High Spectral Resolution Lidar 
(HSRL) Atmospheric Laser Doppler Instrument (ALADIN) and the Atmospheric Lidar (ATLID) 
instruments on board Aeolus and EarthCARE, respectively, will acquire vertical profiles of 
aerosol optical properties without requiring a priori assumption of the lidar ratio. However, 
in the case of ALADIN (Flamant et al. 2007), degradation of its performance for the back-
scatter (underestimation) and lidar ratio (overestimation) is expected when nonspherical 
mineral particles are recorded due to the misdetection of the cross component of the return 
lidar signals (Gkikas et al. 2023).

Beyond the measurement techniques applied for dust retrievals from space, multisensor 
and/or multiparameter approaches have been suggested for identifying dust presence and 
contribution to total AOD. A promising approach for deriving DOD from columnar AOD has 
been demonstrated through the synergistic implementation of spaceborne retrievals and  
reanalyses/model outputs. Gkikas et al. (2021, 2022) developed a global fine resolution  
(0.1° × 0.1°) dataset [MODIS Dust Aerosol (MIDAS)], over the period 2003–17, via the combina-
tion of MODIS-Aqua AOD and Modern-Era Retrospective Analysis for Research and Applica-
tions, version 2 (MERRA-2), dust fraction. A similar methodology was applied by Ridley et al. 
(2016), who adjusted the bias-corrected coarse-resolution AOD, derived by multiple satellite 
platforms, to DOD by utilizing the dust contribution to the total load, in optical terms, simu-
lated by four state-of-the-science global models, over 2004–08. Recently, Voss and Evan (2020) 
provided a long-term record of DOD relying on MODIS (2001–18) and AVHRR (Advanced Very 
High-Resolution Radiometer; 1981–2018) AOD retrievals, AERONET fine mode fraction, and 
MERRA-2 wind fields. Synergistic use of different sensors offers the possibility for accurate 
dust identification as recently demonstrated by the combined use of lidar and infrared imag-
ing radiometer on board CALIPSO (Zheng et al. 2022).

It is important to mention that some follow-up sensors will continue those dust-related 
observations. In some cases, the successor instruments are already in orbit such as Suomi 
NPP [Visible Infrared Imaging Radiometer Suite (VIIRS)] replacing MODIS and the Sea and 
Land Surface Temperature Radiometer (SLSTR) for the Advanced Along-Track Scanning  
Radiometer (AATSR), while in other cases they are scheduled within the next few year, such 
as the Multi-viewing Multi-channel Multi-polarization Imaging (3MI) for POLDER, Infrared 
Atmospheric Sounding Interferometer, New Generation (IASI-NG) for IASI, the Infrared 
Sounder (IRS) for SEVIRI in the Meteosat Third Generation (MTG) series, and the EarthCARE 
for CALIOP and CATS. Potential new insight will be offered by the NASA PACE (Plankton, 
Aerosol, Cloud, Ocean Ecosystem) mission planned for launch in 2024 (Werdell et al. 2019). 
Through polarimetric observations, PACE will provide, among other variables, aerosol fine 
fraction and therefore also an indication of the presence of dust which combined with ocean 
products, will reveal how dust might fuel phytoplankton and algae growth at the ocean sur-
face. The recent launch of the Earth Surface Mineral Dust Source Investigation (EMIT) mission 
(Green 2022) will bring more information on the mineralogical composition of dust over the 
sources, while the Atmosphere Observing System (AOS) of NASA (Vane et al. 2022) is expected 
to provide more advances on dust retrievals from forthcoming multisensor synergies.

The way forward: Gaps and recommendations
The current maturity of the observational and forecasting systems for monitoring and fore-
casting sand and dust storms allows for a better identification and assessment of dust-related 
impacts on socioeconomic sectors and, consequently, allows for the definition of the user’s 
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needs. This is a fundamental step for the design and creation of services that can support 
reducing the negative impacts of dust occurrences and enhancing the positive ones. The 
improved observational capability opens new frontiers and poses new scientific questions, 
increasing the level of request and need for observational capabilities. Nonetheless, there 
are still gaps in the observational system and room for improvements, as described hereafter.

Scarcity of observations.  Satellite measurements described above provide global infor-
mation on dust plumes, but they require more precise ground-based instruments for their 
validation under all possible conditions and as a reference for harmonizing datasets from 
different sensors/satellites. Additionally, satellites do not provide all the dust parameters 
of interest, making ground-based remote sensing and near-surface measurements essen-
tial. Figure 3 shows a very good coverage in coordinated measurements in the Northern 
Hemisphere, yet a limited number of available ground-based observations close to the main 
mineral dust source regions. Few observations are also available for the high-latitude dust 
sources, contributing at least 5% of the global dust budget (Bullard et al. 2016; Meinander 
et al. 2022). In this respect, it must be underlined here that the reported geographical cover-
age can suffer from missing information. This, however, underlines that in the case of avail-
able measurements, there is still a gap in their advertisements and a need to strengthen the 
link between the different regions.

The lack of ground-based measurements in dust-source areas, as well as the lower reli-
ability of dust satellite products over the typically bright source areas, introduces limitations 
from several points of view: for improving understanding of the processes of dust genera-
tion and its injection into the troposphere, for the initialization of dust models, then for the 
model assimilation and evaluation, and finally for the analysis of dust impacts in the most 
affected dust regions. Additionally, these areas are crucial for satellite validation because of 
an often-complex vertical distribution and high temporal and spatial variations. For example, 
AOD datasets from FTIR could be, as well, a valuable validation system for satellite sensors 
incorporating IR spectral bands, as IASI on board the EUMETSAT/Metop platforms, or the 
Operational Land Imager (OLI) aboard Landsat-8, and VIIRS aboard Suomi NPP. In addition, 
some recent works have demonstrated the potentiality of low-cost radiometers (Almansa  
et al. 2017, 2020) and all-sky cameras. All-sky cameras can retrieve AOD by applying GRASP  
(Román et al. 2017; Antuña-Sánchez et al. 2021; Román et al. 2022; Antuña-Sánchez et al. 
2022). The main advantage these all-sky camera retrievals offer compared to photometers is 
to select alternative sky points when clouds contaminate the standard sky points from hy-
brid or almucantar scans of sunphotometers. Ground-based aerosol measurement networks 
worldwide are generally motivated for the purposes of air quality and health and specific 
adverse PM effects on human populations. Therefore, PM measurements are generally col-
lected where the people are in cities, and not in dust source areas which are almost all far 
removed. There is also a lack of coordinated deposition measurements. Distributed instru-
mental deployments such as those of the CARAGA (Collecteur Automatique de Retombées 
Atmosphériques insolubles à Grande Autonomie) deposition collector (Laurent et al. 2015; 
Vincent et al. 2016) should be widely applied to improve the availability of total (dry and 
wet) atmospheric deposition of insoluble dust in remote source areas. At the international 
level, common measurement protocols for deposition must be established to have comparable 
databases and to better constrain deposition budgets.

Specific and reliable measurements of deposition and simultaneously of aerosol/cloud 
vertical resolved profiles supporting new products such as the aerosol–cloud coincidences 
based on dust model reanalysis could be of interest in areas like North Africa, where the solar 
energy production potential is very high due to infrequent cloudiness and high insulation, 
and dust is a serious mitigating factor, would also facilitate the management of solar power 
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plants, including the planning of new facilities. This observational gap is hard to fill, espe-
cially in North Africa, due to challenging political and socioeconomic conditions, as well as, 
in more general terms, due to the extreme environmental and operational conditions (high 
temperatures, access to electricity). Specific instrumental adaptations and approaches for 
reducing expensive maintenance and operation costs are needed.

A potential solution for filling this observational gap is the development of Lower- 
Cost Medium Precision (LCMP) instruments, as the zenith looking narrow-band radiometer 
(Almansa et al. 2017, 2020), with no mobile parts, specifically designed to measure desert 
dust, and land low-cost sensors operated by national weather services or even transportable 
on unmanned vehicles or drones (e.g., Morys et al. 2001; Guirado et al. 2014; http://www.
calitoo.fr; Pikridas et al. 2019; Kezoudi et al. 2021). These instruments could benefit from 
more advanced instrumentation for testing, validation, and quality assessment (Giordano 
et al. 2021). Otherwise, the support of research infrastructure, networks, and international 
initiatives, such as ACTRIS and WMO SDS-WAS, will be key for developing those activities. 
A global coverage can be provided at a certain level of confidence only through integrat-
ing satellite global measurements with models through reanalysis procedures: although  
reanalyses cannot be considered a replacement for long-term observations, they provide 
no-gap datasets covering the whole globe at an increasingly higher spatial resolution. Exam-
ples of such reanalyses, including dust estimates, are the Copernicus Atmosphere Monitoring 
Service (CAMS) Interim Reanalysis (Inness et al. 2019; Flemming et al. 2017) and MERRA-2 
(Gelaro et al. 2017; Randles et al. 2017).

Hidden small-scale, short, and intense dust storms. There are several meteorological mech-
anisms involved in the occurrence of sand and dust storms, each with its own diurnal and 
seasonal features, occurring at a wide range of spatiotemporal scales (i.e., synoptic, meso-
scale, and microscale) that may control strong winds and cause dust storms (Knippertz and 
Stuut 2014). Overall, global and synoptic-scale sand and dust storms are well tracked by 
satellites and models. Meanwhile, our knowledge about the occurrence and contribution 
to the global aerosol budget of smaller-scale phenomena, such as dust devils and haboobs, 
is limited (e.g., Jemmett‐Smith et al. 2015; Marsham and Ryder 2021). Haboobs are often 
caused by an atmospheric gravity or density current, such as thunderstorm outflow, but can 
also occur as a result of strong synoptic gradient winds, such as following a dryline or dry 
frontal passage. A haboob may transport huge quantities of sand or dust, which move as a 
dense wall that can reach a height of 1,000 m (about 3,300 ft) and more, has a lifetime of 
several hours, and can cause important damage (e.g., Vukovic et al. 2014; Rooney 2017;  
Vukovic Vimic et al. 2021). Local, short, and intense convective dust storm development, 
movement, and shape are difficult to be estimated using satellite data because of the presence 
of clouds in these systems, creating a gap in the nowcasting (e.g., Dempsey 2014; Vukovic 
Vimic et al. 2021) and hazard management for such cases, but also, because the dust clouds 
are generally carried within the boundary layer or otherwise very close to the ground where 
satellite dust detection is typically difficult. Additionally, only geostationary satellites with 
high-temporal resolution (as MSG, <15 min) can be considered for nowcasting. Radars with  
dual-polarization technology have the ability to characterize these events by combining  
reflectivity, Doppler velocity, and co-polar correlation coefficient (i.e., the correlation be-
tween reflected horizontal and vertical polarized signals from each scatterer in a volume 
sample). Some urgent issues for improving information acquired in the dust forecast mod-
els have been identified. A haboob’s forecast quality depends on the explicitly resolving of 
the convection (Vukovic et al. 2014; Gasch et al. 2017; Vukovic Vimic et al. 2021), which 
is highly dependent (i.e., spatial resolutions of a few kilometers) on the model resolution 
and the dust source definition (Vukovic et  al. 2014; Vukovic Vimic et  al. 2021). On one 
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hand, some efforts have been made for the development of more simple parameterizations 
of haboobs for models with parameterized convection, based on the downdraft mass flux of 
convection schemes (see Pantillon et al. 2016). On the other hand, the sensitivity of fore-
cast quality of such severe dust events to surface data proves that dust sources need regular 
updates using high-resolution (<5 km) observations [e.g., normalized difference vegetation  
index (NDVI) or enhanced vegetation index (EVI), as well as land cover and soil moisture 
data observed by satellites]. There is a need to identify specific dust source types such as 
alluvial sources that have been identified as particularly active, in addition to dry lake beds 
(e.g., Feuerstein and Schepanski 2019). Dried lakes and glaciogenic sediments that may 
increase because of changing climate conditions can provide small-scale dust sources that 
must be identified. Such identifications have so far been frequently obtained by visual iden-
tification of dust plumes in satellite images of desert surfaces. It has been estimated that an-
thropogenic playa sources (i.e., the exposed beds of shrinking water bodies) contribute 85% 
of global anthropogenic dust emissions (Zucca et al. 2021). Land degradation and deserti-
fication processes play an important role on dust emission from playa sources which is fre-
quently triggered or increased by human activities such as unsustainable land and water use 
upstream, reduced vegetation cover on and around playas, and mechanical disturbance of 
the playa surfaces. The problem of appropriate high-resolution specification of dust sources 
has been recognized by the United Nations Convention to Combat Desertification (UNCCD) 
as a major problem in the management of hazardous conditions. In this context, UNCCD 
promoted the development of a global high-resolution dust source database, the Sand and 
Dust Storms Source Base-map, as a part of the work considered in the Sand and Dust Storm 
toolkit coordinated by UNCCD (2022). Another critical local phenomenon is the formation 
of nocturnal low-level jets related to the reduced surface friction during stable nighttime 
conditions—a process typically underestimated by models because of a poor boundary layer 
description (Fiedler et al. 2013). This may be improved by increasing the number of meteo-
rological observations but also requires model development, specifically concentrating on 
arid areas. International actions are needed to improve both dust aerosol and meteorological 
networks, possibly with low-cost sensors, and to develop specific strategies for maintaining 
continuity of observations in remote or extreme environments.

Missed physicochemical dust properties. Improving the description of the chemical compo-
sition is urgent for various applications, including climate and weather modeling. The avail-
ability of more size-resolved measurements of dust chemical composition, particularly close 
to the source regions, would be beneficial for understanding and better quantifying the dust 
impact. The degree of abrasion and melting that an aircraft suffers is a function of exposure 
time, dust mineralogical composition, and its concentration. Each mineral has its own physico-
chemical characteristic regarding hardness (Clarkson and Simpson 2017) and melting points 
(Wood et al. 2017). Feldspars and quartz (Atkinson et al. 2013; Harrison et al. 2019; Ilić et al. 
2022) are efficient ice nuclei. The increase of ice nuclei due to the presence of dust has direct 
implications for solar energy (i.e., cirrus formation) and aviation (i.e., icing). The mineralogy 
can help to advance our understanding of the role of dust in health (WHO 2021) and agricul-
ture (e.g., Stefanski and Sivakumar 2009; Zia-Khan et al. 2014). Focusing on current activi-
ties on mineralogical modeling at regional and global scales, it is also important to mention 
the need for detailed and high-resolution (<1 km) global databases of soil physicochemical 
properties and textures, which are commonly used in soil classification systems such as those 
reported by the UN Food and Agricultural Organization (FAO) Digital Soil Map of the World 
(DSMW; FAO 1974; Batjes 1997) or the Harmonized World Soil Dataset (HWSD; Nachtergaele  
et  al. 2009) both at a spatial resolution of ∼10 km at midlatitudes. Here it is worth men-
tioning that combining both versions of DSMW (from 1974 and 1997), there are a total of  
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211 different soil units with potential mineralogical content. Soil map composition from  
Claquin et al. (1999), Nickovic et al. (2012), and Journet et al. (2014) represents the initial 
efforts to represent the mineralogy by mode. These works identify 8 and 12 minerals relevant 
for various dust impacts (e.g., to climate, marine productivity, cloud formation), in the clay 
and silt fractions of the soil. The accuracy of model representations of the mineral dust com-
position linked to soil mineralogy is expected to be drastically improved by novel hyperspec-
tral imaging spectroscopy over the coming decade thanks to the NASA EMIT (Green 2022) 
and the German Environmental Mapping and Analysis Program (EnMAP; Chabrillat et  al. 
2022) missions. The resulting spectroscopically derived mineral composition will be used to 
update the dust source region initialization of models (Green 2018) and will enhance the cur-
rent efforts of the atmospheric research community to better represent and understand dust 
mineralogy (Perlwitz et al. 2015a; Scanza et al. 2015; Pérez García-Pando et al. 2016, 2019). 
A recent paper (Go et al. 2022) showed the possibility to use the EPIC (Earth Polychromatic 
Imaging Camera) measurements as a tool for retrieving hematite and goethite concentrations 
in pre-identified dust plumes, providing important information about dust composition.

Other initiatives such as the European Research Council (ERC) projects FRAGMENT  
(Frontiers in Dust Mineralogical Composition and Its Effects Upon Climate; Pérez García- 
Pando et al. 2019) will provide complimentary ground- and laboratory-based observations 
and analyses of soilborne and airborne dust composition needed to develop the parameter-
izations of the soil-to-aerosol transfer functions.

Dust size distribution is also key for understanding the effects of dust (e.g., Kok et al. 
2017). Mineral dust has a wide dimensional range from fine (Fratini et al. 2007) to giant 
particles (Ryder et al. 2019). Typically, attention is focused on the coarse mode of min-
eral dust because it is the most abundant, but fine fraction, even if smaller as an aerosol 
load, is an important fraction because of its potential impacts on the health: the smaller 
the particles, the deeper they penetrate inside the human body. The presence of giant 
particles is typically neglected in the study of mineral dust plumes, but recent studies 
suggest that these particles should be considered (van der Does et al. 2018; Varga et al. 
2021). Giant particles are commonly found over the Mediterranean (D > 40 μm in the 
2.5–4-km altitude range and >80 μm below), over the Atlantic (>75 μm in the Saharan  
aerosol layer) (Ryder et al. 2019; Marenco et al. 2018; Renard et al. 2018; Betzer et al. 
1988), in the Caribbean (20–30-μm particles) (Weinzierl et al. 2017), and in the Arctic (up 
to 90-μm Saharan quartz particles) (Varga et al. 2021). These large particles may be of high 
importance because they can act as giant cloud condensation nuclei (GCCN) and ice nuclei 
(IN), determining the concentration of the initial cloud droplets, the clouds’ albedo and 
lifetime, and the precipitation formation, especially through warm rain processes (Koren 
et al. 2012; Feingold et al. 1999; Eagan et al. 1974). In a recent study, Ryder et al. (2019) 
showed that omitting giant particles leads to a significant underestimation of shortwave 
and longwave extinction over the Sahara. However, the main remote sensing instru-
ments used nowadays in measuring aerosols (i.e., lidars and photometers) cannot retrieve  
aerosol microphysical properties for particles larger than a few microns (Müller et al. 2012), 
while cloud radars seem to be able to detect giant particles also at a large distance from  
the source (Marenco et al. 2018; Ryder et al. 2018; Madonna et al. 2013, 2010). First simula-
tion studies show that cloud radar can detect mineral particles with a minimum effective 
radius of about 50 μm and number concentrations larger than 0.1–1.0 cm−3 (Madonna et al. 
2013), while smaller particles down to a few microns can be detected in the presence of 
higher number concentration in the 20–130 cm−3 range (Guma-Claramunt 2016). Further 
investigations on this topic are needed, but it is clear that a synergistic use of photometer, 
aerosol lidar, and cloud radar could open new opportunities to measure and study the 
presence of dust in the whole relevant dimensional range.
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Additional ground-based and airborne in situ measurements of the size dust spectrum 
(from ultrafine to large giant particles) are needed. For in situ ground-based and airborne 
measurements of giant particles, specific inlet systems should be used, and the detection of 
the whole dimensional range has to be obtained by integrating different methods (Wendisch 
et al. 2004). Ultimately, a better description of the dust physicochemical properties will deal 
with a better characterization of some key parameters used for monitoring sand and dust 
storms, such as visibility, AOD, or extinction provided by models or remote sensing retrievals.

What are the users looking for? The several impacts of dust have led to a growing interest 
from various stakeholders—such as air quality managers, health professionals, solar energy 
plant operators, aviation, and policy makers—for dust products tailored to their specific 
needs. The undertaken actions through inDust (Nemuc et al. 2021) for better connecting 
researchers and user communities allowed for a first identification of needs and require-
ments per socioeconomic sector. There is a clear and general interest to have regionally and 
time-resolved chemical characterization of mineral dust to improve our understanding on 
the identification of dust impacts on ecosystems, as well as, on agriculture, fishing, and tour-
ism (skiing and beach activities). More specific requests from sectors more advanced in the 
assessment of the dust impacts are as follows:

• For health, the first is a lack of monitoring in many countries of the world and inadequate 
monitoring in rural areas or outside of major cities in many countries; second is the lack 
of standardized dust-related measurements (including size distribution and chemical 
composition) to perform assessment studies that can contribute to understand the different 
relationships between dust and health impacts (i.e., differences in composition of tropical 
versus high-latitude deserts, or the enhancement of some atmospheric chemical reactions 
that can increase the pollution levels).

• For air quality management, one of the current main difficulties is related to the method-
ologies applicable for quantifying the mineral dust contribution to the total PM10/PM2.5 
and PM1 concentrations observed, typically based on back-trajectories analyses, forecast, 
and satellite image analysis and gravimetric measurements (Querol et al. 2019; Barnaba 
et al. 2022). There are some heterogeneities and/or difficulties in applying such method-
ologies, particularly in near-real-time (NRT) scales. Moreover, a relevant concentration of 
mineral dust particles larger than 10 μm in size can be observed (Reynolds et al. 2016). 
Even if less severe with respect to smaller particle ones, >10-μm particles could have an 
impact on human being wellness, which investigation can require to go further respect to 
standard air quality measurements of PM10 and PM2.5 (Reynolds et al. 2016). Particular 
attention should be paid when the PM is measured with instruments based on different 
methods (i.e., gravimetric and equivalent methods) and take into account the influence 
that the wind speed could have on the measurements even when using the same type of 
instrument, especially in conditions of high wind speed (Sharratt and and Pi 2018). Novel 
XRF spectrometers providing chemical composition of PM in different size classes (Furger 
et al. 2020) could be relevant for improving source apportionment, but are still research 
systems available in few laboratories.

Alerts based on the magnitude of dust events (based on monitoring and modeling 
results) could help local authorities to manage the effects related to such events, for 
example, by reducing anthropogenic emissions on critical days. A good example is the 
Dust Warning Advisory System provided by the WMO Barcelona Dust Regional Center 
developed in the framework of the WMO CREWS project. Finally, a better understanding 
of the role of dust in atmospheric chemistry can deal with the improvement of air quality 
forecasting systems.
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• For transportation, visibility is widely used because it is directly connected with safety 
protocols. Accurate forecast of dust visibility requires a better understanding of the role 
of optical properties and size distribution (particularly the contribution of giant particles 
at sources). In particular, for aircraft maintenance, 4D concentration, chemical and 
size-resolved atmospheric dust properties are demanded to advance the understanding 
of dust impacts on the engines. Furthermore, for safety and cleaning management of the 
infrastructures (i.e., airports, roads, and railroads) estimates on the dust deposition are 
required. In this framework, PM and dust deposition routinely measurements at airports 
could support the management of the visibility-related risks at airport and improve the 
assessment of the visibility and dust deposition forecast.

• For solar energy, meanwhile more accurate solar irradiance forecasts (including the direct 
and indirect effect of the presence of dust) are being considered by different European 
providers (as Copernicus), soiling information is still far from being available for the final 
user in a solar plant. Current soiling information is scattered in solar plants around the 
world and there are no standards for their measurement. Therefore, the available soiling 
measurements are highly dependent on the technology (e.g., solar concentrated or pho-
tovoltaic) used in the measurement point (i.e., solar plant). To overcome this limitation, 
it would be desirable to incorporate simultaneous deposition, surface concentration and 
soiling measurements in solar plants.

To bring things together
In recent years, developments in Earth observation, fostered by coordinated international 
initiatives and programs such as WMO SDS-WAS, led to great advances in the observational 
capabilities of mineral dust particles. Wide collected information opens new possibilities 
for facing the increasing request of tools for improving management and resilience of dust 
related impacts, more and more relevant because of climate change. This paper aims to be a 
milestone in matching available information and knowledge demand, providing an overview 
of current dust observations and taking into consideration first collected user needs.

Here, we seek to provide an overview of the state-of-the-art of operational and distrib-
uted observations in northern Africa, the Middle East, and Europe. Potential developments 
are underlined and highlighted in view of the user needs currently identified thanks to 
the inDust international initiative. Observational gaps are identified in terms of cover-
age but also of specific information like additional data about deposition (wet and dry), 
visibility, dust vertically resolved information, dust chemical composition, and giant 
particle presence.

First, the most relevant source regions are scarcely equipped with instruments for dust 
monitoring. The situation could be improved through the support of international initiatives 
like WMO SDS-WAS and UN coalition, and the use of low-cost sensors for key information 
acquisition (deposition, visibility, and meteorological parameters). Research infrastructure, 
networks, and international initiatives should support such activities, providing a platform 
for checking and validating low-cost sensors. The latter is crucial for improving the models 
in terms of accuracy and uncertainty evaluation in the vertical dimension. Additionally, 
satellite observations are currently providing aerosol descriptions with better and higher 
spatiotemporal resolution.

Research products and synergistic approaches are paving the way for addressing observa-
tional gaps in terms of specific information (e.g., giant particles). In addition to these relevant 
aspects, there are three main topics which are crucial for the dust observation and impact 
quantification and management: the dust speciation, data availability, and data traceability. 
These needs are transversal to many user communities and call for international cooperation 
and synergy.
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For dust model evaluation purposes to the aim of planning action for air quality man-
agement, it is fundamental to have observations of dust-only quantities. The review of the 
existing observations underlines that many new products give the possibility of investigat-
ing the presence of mineral dust, but there is currently the need to harmonize the aerosol 
classification or, whenever this is not possible, to identify translating rules among the wide 
range of existing classifications. Comparison of typing algorithms is not trivial even when the 
same kind of observations are used (Voudouri et al. 2019), but such a harmonization process 
would lead to the integration of the existing dust-only datasets in a coherent and consistent 
global dataset describing the mineral dust 4D distribution on a global scale. Some initia-
tives are currently facing this issue, like the International Satellite Aerosol Science Network 
(AEROSAT). In this context, mineral dust has been considered the first category for facing the 
typing harmonization process.

NRT and open access availability of data are a common requirement for model assimilation 
and verification (which is in NRT) and any kind of warning/short-term impact sector, calling 
for more operational dust-only products from space and ground-based platforms. Dust-related 
observations are not under any protocols of NRT data exchange under WMO or other UN 
agencies that would ensure the reliability and efficiency of the operational system. While 
the timeliness of observations is not a strict requirement for reanalysis and evaluation of the 
forecast models, spatially/temporally distributed observations, uncertainty characterization 
of the observations, and homogeneity of the datasets are essential (Benedetti et al. 2018). 
It is important that observations used in reanalysis and evaluation are well calibrated and 
accurate and that long time series are provided whenever possible (e.g., Cuevas et al. 2019).

Traceability, quality assurance, and quality control of the data are strictly needed. Met-
rological approaches can help to improve data quality for in situ and remote sensing tech-
niques, in evaluating sensor characteristics, calibration and measurement uncertainties, 
and defining data quality and target uncertainties. Full traceability of the data, uncertainty 
characterization, and harmonization of the data availability in terms of policies, procedures, 
and interoperability are fundamental for advancing the atmospheric dust field. This can be 
supported through programs like the WMO-GAW initiative in terms of observational proce-
dures and by the Research Data Alliance, concerning data FAIRness (i.e., Findable, Accessible, 
Interoperable, and Reusable data).

In synthesis, this paper clearly shows that the development of observational techniques 
improved the knowledge of mineral dust particles, their global distribution, and their proper-
ties. The improved observational capability opened new frontiers and scientific questions to 
be addressed, increasing the level of requests and needs in terms of observational capabilities. 
Only international cooperation and synergy can foster the achievement of these objectives of 
a global, interconnected topic such as atmospheric dust.
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