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Abstract: NOMAD is a suite of spectrometers on the board of the ESA-Roscosmos Trace Gas Orbiter
(TGO) spacecraft and is capable of investigating the Martian environment at very high spectral
resolution in the ultraviolet–visible and infrared spectral ranges by means of three separate channels:
UVIS (0.2–0.65 µm), LNO (2.2–3.8 µm), and SO (2.3–4.3 µm). Among all channels, LNO is the only
one operating at infrared wavelengths in nadir-viewing geometry, providing information on the
whole atmospheric column and on the surface. Unfortunately, the LNO data are characterized by an
overall low level of signal-to-noise ratio (SNR), limiting their contribution to the scientific objectives
of the TGO mission. In this study, we assess the possibility of enhancing LNO nadir data SNR
by applying the Minimum Noise Fraction (MNF), a well-known algorithm based on the Principal
Components technique that has the advantage of providing transform eigenvalues ordered with
increasing noise. We set up a benchmark process on an ensemble of synthetic spectra in order to
optimize the algorithm specifically for LNO datasets. We verify that this optimization is limited by
the presence of spectral artifacts introduced by the MNF itself, and the maximum achievable SNR
is dependent on the scientific purpose of the analysis. MNF application study cases are provided
to LNO data subsets in the ranges 2.627–2.648 µm and 2.335–2.353 µm (spectral orders 168 and
189, respectively) covering absorption features of gaseous H2O and CO and CO2 ice, achieving a
substantial enhancement in the quality of the observations, whose SNR increases up to a factor of
10. While such an enhancement is still not enough to enable the investigation of spectral features
of faint trace gases (in any case featured in orders whose spectral calibration is not fully reliable,
hence preventing the application of the MNF), interesting perspectives for improving retrieval of
both atmospheric and surface features from LNO nadir data are implied.

Keywords: noise reduction; minimum noise fraction technique; infrared spectroscopy; Mars;
atmosphere; surface
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1. Introduction

The ExoMars Trace Gas Orbiter (TGO) spacecraft launched in 2016 towards Mars as
a joint ESA-Roscosmos mission and is still currently operating. Its main scientific objec-
tives are to search for and investigate several trace gases in the Martian atmosphere [1],
with a particular focus on methane, thanks to a set of spectrometers at very high spectral
resolution. Following the heritage of previously flown high-resolution spectrometers, like
SOIR-SPICAV on the Venus Express spacecraft [2] and PFS [3] and SPICAM [4] on the Mars
Express mission, the TGO spacecraft carries two spectrometers: the Atmospheric Chem-
istry Suite (ACS, [5]) and the Nadir and Occultation for Mars Discovery (NOMAD, [6,7]).
Both instruments can take advantage of solar occultation observations to achieve a signal-
to-noise ratio (SNR) high enough for detecting the narrow and shallow spectral lines
diagnostic of trace gases and isotopologues. In particular, the NOMAD instrument con-
sists of three channels operating in different spectral ranges and with different observing
modes (Section 2). In the present study, we focus on the data registered by the NOMAD-
LNO (Limb, Nadir, and Occultation) infrared channel in nadir-viewing geometry, which
is characterized by an overall low SNR level (Section 2.1) and would therefore benefit
from noise-reduction procedures. A well-known technique that is commonly adopted to
improve SNR within spectroscopic data is the Principal Component (PC) transform. The PC
algorithm diagonalizes the spectral covariance matrix of a statistically meaningful ensemble
of data and transforms it into a new space of eigenvectors ordered with decreasing variance.
This diagonalization enables us to discriminate between the transform components of the
signal due to the source, characterized by correlated variations, and those due to the noise,
randomly fluctuating without correlation (see [8] for a comprehensive review). However,
this approach does not provide a definite trend for how the noise increases with the number
of components adopted in the transformation [9].

The Minimum Noise Fraction (MNF) transform is a PC-based technique that, instead,
provides transformation components (eigenvectors) ordered with the content of increasing
random, uncorrelated noise [9–11]. This estimation relies on the comparison between the
data and a sample of purely random noise that must be provided to the algorithm as well.
The MNF is usually applied to hyperspectral imaging datasets to improve performance in
spectral classifications of surface minerals or for other geological applications (e.g., [11–15]).

Here, we apply the transform to high-spectral-resolution data of the Martian surface
and atmosphere acquired by the LNO channel in nadir-viewing. Our goal is to assess the
improvement of SNR achievable by applying the MNF technique to these observations,
establishing both the gain and the limitations of the approach. In Section 2, we provide
some details on the instrument characteristics and operations necessary to understand
the rationale behind the analysis. Section 3 deals with MNF’s theoretical background and
tuning of its parameters, while the test on LNO observations is presented in Section 4.
Results are discussed in Section 5, while Section 6 is dedicated to the conclusions.

2. The NOMAD Instrument

NOMAD spectrometers each have their own optical bench but share the same inter-
face with the satellite. Two channels operate in the infrared (LNO and SO, covering the
spectral ranges 2.2–3.8 µm and 2.3–4.3 µm, respectively) and one in the ultraviolet–visible
spectral range (UVIS, covering the 0.2–0.65 µm range). UVIS operates in nadir-viewing,
limb-viewing, and solar occultation geometries, whereas the SO channel is dedicated to
solar occultation measurements, directly observing the Sun’s extinction through the atmo-
sphere during every sunset and sunrise for each TGO polar orbit. The Limb, Nadir, and
Occultation channel (LNO) can work in all three observing modes, with most of the mea-
surements dedicated to the nadir geometry, that is, looking at the sunlight reflected from
the surface and atmosphere of Mars at an emission angle close to 0◦. Nadir acquisitions are
limited to latitudes between −75◦ and 75◦ in order to avoid dealing with too large solar
incidence angles.
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Among the three NOMAD spectrometers, LNO is the only one operating at infrared
wavelengths in nadir-viewing geometry. With respect to the Solar Occultation channel (SO),
whose sounding altitude is limited by the increased atmospheric extinction at low heights,
LNO is conceived to provide information on the whole atmospheric column and, hence,
also on species that could be only present close to the surface (e.g., CH4 [16]). Potentially, it
can also be used to investigate surface features, even if the instrumental characteristics (i.e.,
high spectral resolution, low spatial resolution, and limited instantaneous spectral range)
are not optimized for such a purpose.

The design of both infrared channels is inherited from the Venus Express/Solar Oc-
cultation in the InfraRed (SOIR) spectrometer and consists of an échelle grating combined
with a passband Acousto-Optical Tunable Filter (AOTF, see Section 2.1). This configura-
tion enables a very high spectral resolution, about 0.15 cm−1 and ~0.3 cm−1 for SO and
LNO, respectively.

While in-depth technical descriptions of NOMAD channels can be found in [6,7,17,18],
in Sections 2.1 and 2.2, we provide basic information about LNO channel data calibration
and noise in order to give context to the presented analysis.

2.1. LNO Instrumental Characteristics and Noise

The LNO channel’s main instrumental characteristics related to the nadir observing
mode are given in Table 1.

Table 1. Instrumental characteristics of the NOMAD LNO channel for nadir observing
geometry [6,7,19].

LNO Channel Instrumental Characteristics (NADIR)

Wavelength range λ 2.3–3.8 (µm)
Wavenumber range k 2630–4250 (cm−1)

Resolving power λ/∆λ 104

Field of view (FOV) 4 × 150 (arcmin2)
Instantaneous footprint (400 km orbit) 0.5 × 17.5 (km2)

Integration time per order 15
number of simultaneously acquired orders (s)

Detector HgCdTe, 320 × 256 pixel
Signal-to-noise ratio (SNR) 20 (average)–80 (maximum)

The size of the slit of the LNO spectrometer provides a compromise between maximizing
the signal entering the instrument and limiting the footprint size. With a 4 × 150 arcmin2 slit,
LNO reaches a spectral resolution of 0.3 cm−1 at 3000 cm−1 (resolving power λ/∆λ∼10,000)
and an instantaneous footprint of 0.5 × 17.5 km2. The actual footprint is significantly
enlarged by motion smearing during the integration time and through spatial binning if
performed on the acquisitions. The detector is a mercury–cadmium–telluride (HgCdTe)
focal plane array (FPA), made up of 320 pixels along the spectral axis and 256 rows in the
spatial direction.

Although the LNO detector is overall sensitive to the full 2.3–3.8 µm (2630–4250 cm−1)
spectral interval, the actual spectral range of an individual observation is defined by the
AOTF transmission curve, which has a main central lobe about 22 cm−1 wide, with the
central wavelength selected through an internal radiofrequency generator. The AOTF’s
response spectral width is matched to the width of one single order of diffraction of the
échelle grating, and, for this reason, from now on, we will refer to each spectral window as
“order”. Given this configuration, the data are not acquired simultaneously in the whole
spectral range, and each order is characterized by a different spatial and temporal coverage.

Initially conceived to be actively cooled down to −100 ◦C, the instrument actually
operates at about 0 ◦C due to a descoping that forced the removal of the cryo-radiator [6].
As a result, the instrument’s thermal background is the dominant SNR-limiting factor since
it both increases the shot noise and prevents the use of long exposures, which could saturate
the detector. As a noise mitigation strategy, on-board frame co-adding is used instead,
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adopting integration times shorter than 200 ms for each frame [18], even if detector readout
impacts the number of acquisitions that can be made in a single measurement. For nadir
observations, the resulting integration time for a LNO spectrum is obtained by dividing
the duration of an observation cycle (15 s on average) by the number of diffraction orders
contextually measured (6 at maximum). Such a configuration is able to yield SNR average
values of about 20, taking into account the whole LNO spectral range. This moderate
SNR value is the main factor preventing a wider exploitation of NOMAD infrared data
in exploring the Martian surface and low-altitude atmosphere at a very high spectral
resolution, and it is the reason for which we attempt to apply a noise reduction technique
to the dataset (Section 3).

2.2. LNO Data Calibration

The in-depth calibration process for LNO data can be found in [20]. In short, raw
data are radiometrically calibrated in radiance by taking into account optic transmission
and detector sensitivity and incorporating the effects of the instrument’s temperature. On
the other hand, no assumptions are made about the transmission curves of the AOTF
and of the échelle grating (i.e., the Blaze function), whose peaks and shapes change from
one order to the next and are not easily determined. As a result, the spectral shape of a
LNO radiance spectrum is modulated by the shapes of these functions. The Blaze function
is well approximated by a sinc function, while the AOTF transmission curve is better
described by a combination of a sinc function with a Gaussian [19] and is characterized by
the presence of secondary peaks (side-lobes) in addition to the main one. These side-lobes
allow photons with wavelengths not pertaining to the selected order range to fall on the
detector. This yields a partial mixing of the spectral information that cannot be removed by
the calibration procedure and is more relevant at the edges of any order’s nominal spectral
range. Conversion to reflectance is performed by using the direct Sun’s observations,
occasionally acquired through the LNO occultation mode with very short integration times.
The radiance is then converted to reflectance factor RF by dividing it by the solar flux at
Mars and by the cosine of the solar incidence angle:

RF(λ) = fSN
πL(λ)

φSun(λ)d2
Mars

× 1
µ0

where L(λ) is the nadir spectral radiance (W cm−2 sr−1 cm), φSun(λ) is the spectral solar
flux at 1 astronomical unit (AU), dMars is the Sun–Mars distance in AU, µ0 = cos(θ) with θ

being the solar incidence angle, and fSN a conversion factor taking into account the slightly
different optical path between Sun and nadir observation modes. In principle, apart from
a small residual coming from additive contributions from side-lobes, the instrumental
modulations affecting the signal should cancel out in reflectance spectra, being present in
both the Mars and the Sun observations. However, even if this turns out to be often the case
in the central part of the orders’ range, where a nearly flat spectral reflectance continuum is
found, it is not true in general. In fact, the AOTF- and blaze-induced modulations are found
to significantly change among observations; hence, they also propagate to the reflectance
factor conversion in the form of low-frequency oscillations of the spectral continuum,
making the direct comparison of these data with radiative transfer simulations not trivial.
In this study, we do not attempt to remove these modulations with any continuum fitting
processing since this could potentially alter the low-frequency spectral signatures related
to surface or aerosol features (see Section 4.3.1). Also, the spectral calibration has been
found to slightly change among observations due to the thermal-induced mechanical stress
of the detector. In this regard, reliable wavenumber calibration can only be obtained by
fitting the positions of well-known solar lines, giving slightly different results for each
observation [19].
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3. Method Description and Synthetic Data Analysis

In this section, we describe the method behind our analysis. Section 3.1 provides
a brief description of the MNF transform, while a test application of the technique to a
synthetic dataset is provided in Section 3.2 and its subsections.

3.1. The Minimum Noise Fraction Transformation

In this study, we use the generalized MNF algorithm described in [9,11], consisting of
two separate PC rotations. In-depth descriptions of the MNF transform are given in several
dedicated papers (e.g., [21,22]) so we report only some basic information here.

Let us represent the LNO reflectance factor dataset as a two-dimensional array X
consisting of a statistically significant number of observations, each having 320 spectral
bands b. In the presence of a random noise N, the measured signal X can be written as:

X = S + N (1)

where S represents the signal from the target. Under the assumption that the two compo-
nents are uncorrelated, the covariance matrix of the dataset, ∑X, is:

∑X = ∑S + ∑N (2)

where ∑S and ∑N are the covariance matrices of S and N, respectively. It is now possible to
introduce the so-called noise whitening matrix W, which orthonormalizes ∑N and contains
the eigenvectors of ∑N∑X

−1:
WT∑N W = I (3)

W∑N ∑X
−1 = EW (4)

where E is a diagonal matrix of eigenvalues. By linearly transforming the initial dataset X
with the noise whitening matrix W, we can obtain a new dataset Y in which the 320 bands
are uncorrelated:

Y = WTX (5)

Let us now define the noise fraction, F, as the ratio of the variance of the noise, νN, to
that of the total signal, νX, for each spectral band b:

F(b) = νN (b)/νX (b) (6)

The eigenvalues in E, which by convention can be ordered as monotonically increasing,
give the noise fraction of Y. Conversely, they provide the quantity (SNR + 1)−1, giving
information on the signal-to-noise ratio, ordered as decreasing. By keeping only the first
Ne eigenvalues and inverting the transformation back to the initial data space, we can
therefore obtain a dataset Z with enhanced SNR:

Z = (W−1)TI*Y (7)

where I* is an identity matrix in which all diagonal elements, except for the first Ne ones,
have been zeroed. It is worth noting that those pieces of information that are only present
in a limited number of initial spectra could correspond to eigenvalues with values close
to 1, hence providing SNR~0 [11]. Nevertheless, this issue can be overcome by applying
the algorithm to data subsets in which the information content is more homogeneously
distributed among observations (provided that the data statistics are still enough to ensure
the computation of the ∑X and ∑N matrices; see Section 5.2). For our applications, we take
advantage of the implementation of the MNF transform algorithm included in the ENVI®

software package, version 5.7 (Exelis Visual Information Solutions, Boulder, CO, USA,
https://www.nv5geospatialsoftware.com/Products/ENVI, accessed on 7 December 2023).

https://www.nv5geospatialsoftware.com/Products/ENVI
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3.2. Synthetic Dataset Test

In order to test the MNF performances on LNO spectral data, we first apply it to a fully
supervised, LNO-like synthetic dataset. Our purpose is to track the information content
throughout the processing and, in particular, to study the optimal number of eigenvalues
needed to be retained to meaningfully reconstruct the spectra (Section 3.2.1). The test also
allows for verifying the spatial coherence between the reconstructed data and the original
ones (Section 3.2.2).

We build three-dimensional synthetic datasets (cubes) with two spatial dimensions
(100 by 100 pixels) and a third spectral one with 320 spectral channels (consistent with the
number of bands of LNO; Section 2.1). The first cube contains correlated data in the form
of an absorption band of variable intensity (Figure 1A), to which random Gaussian noise
is added in order to simulate SNR values as low as 5 (Figure 1B). Such values set up the
basis for reproducing some of the most critical noise conditions in LNO nadir data. The
added noise is stored in a second cube (Figure 1C) and used for the noise covariance matrix
computation. In the data cube, a Gaussian-shaped absorption band (denoted as band β
from now on) is spectrally centered on channel 120 (the choice is arbitrary) and spatially
located only inside a circular region with a radius of 50 pixels (Figure 1A). The band depth
is set to decrease radially from the center (where it is 0.5, Figure 1F) to the boundaries of
the circle, while its width is kept constant. Outside that, the band is not present at all, so
this can be used as a zero control region (see Figure 1D,E).

We apply the MNF to the cubes shown in Figure 1B,C, respectively, to compute the co-
variance matrices ∑X and ∑N required by the algorithm. In output, we obtain 320 eigenval-
ues, which are ordered with an increasing noise fraction (Section 3.1). By back-transforming
the data and retaining an increasing number of eigenvalues, it is possible to investigate
how the information content is processed. If only a few eigenvalues are used (Figure 2B),
very small fluctuations arise in the reconstructed spectra, yielding a very high SNR gain.
However, it is worth noting that some spurious spectral features appear (shaped as both
absorption and emission lines) in the zero control region, probably due to a selection effect
acting on random fluctuations induced by the β band itself (Figure 2C). The presence of
these artifacts represents a warning about information processing since they can potentially
bias the distribution of spectral features in the transformed dataset. On the other hand,
increasing the number of retained eigenvalues yields larger and larger fluctuations in the
transformed spectra, making the artifacts less statistically meaningful but decreasing the
SNR gain. We can therefore take advantage of such a phenomenon to estimate the number
Ne of eigenvalues that need to be adopted for a statistically viable determination of the
output noise.

3.2.1. Best SNR Gain

In order to estimate the statistical significance of the artifacts with respect to the
number of MNF eigenvalues, for every spectrum in the zero control region, we compare
the equivalent width values of β (derived by evaluating the spectral integrals of the band
and of the continuum across the absorption) with those of the fluctuation amplitude of
the spectral continuum (denoted as γ and evaluated far from the β band location). These
two quantities are normally distributed with mean and standard deviation values (µ and σ,
respectively) that depend on the number Ne of eigenvalues. As shown in Figure 3, due to
the presence of the artifacts in the MNF-reconstructed data, we have systematically:

|µβ ± σβ| > |µγ ± σγ| (8)



Remote Sens. 2023, 15, 5741 7 of 27Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 29 
 

 

  
(A) (D) 

  
(B) (E) 

  
(C) (F) 

Figure 1. (A) Structure of the clean (devoid of noise) synthetic data cube used for MNF tests, dis-
played on spectral channel 120. The red circle indicates the region where a spectral feature centered 
on this channel is present with a radial gradient. (B) Same as in panel (A) but with random Gauss-
ian noise added in order to simulate a SNR = 5. (C) Noise cube for the noise covariance matrix 

Figure 1. (A) Structure of the clean (devoid of noise) synthetic data cube used for MNF tests, displayed
on spectral channel 120. The red circle indicates the region where a spectral feature centered on this
channel is present with a radial gradient. (B) Same as in panel (A) but with random Gaussian noise
added in order to simulate a SNR = 5. (C) Noise cube for the noise covariance matrix computation of
the MNF. (D–F) Comparison between the spectra selected on the colored Xs in panel (A) (colored
lines) and the corresponding spectra in panel (B) (grey lines).
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Figure 2. (A) MNF-processed data cube reconstructed with only 1 eigenvalue. (B) Comparison 
between the spectra on the green X in panel (A), related to the data cube in Figure 1B (grey line), to 
the clean cube in Figure 1A (black line), and to the MNF-reconstructed spectrum in panel (A) 
(green line). (C) Same comparison as in panel (B), but here referred to the red and orange pixels 
taken outside the red circle in panel (A). 

Figure 2. (A) MNF-processed data cube reconstructed with only 1 eigenvalue. (B) Comparison
between the spectra on the green X in panel (A), related to the data cube in Figure 1B (grey line), to
the clean cube in Figure 1A (black line), and to the MNF-reconstructed spectrum in panel (A) (green
line). (C) Same comparison as in panel (B), but here referred to the red and orange pixels taken
outside the red circle in panel (A).

with |µγ ± σγ| that approaches |µβ ± σβ| as Ne increases. In Section 3.2.2, we will
see how we can equate these two quantities in a conservative way; here, we report a more
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relaxed approach aimed at maximizing the SNR gain. Taking into account separately the
+ and – signs in (8), we derive the numbers Ne+ and Ne− for which the two sides of the
equation become comparable within their errors (Figure 3), obtained by propagating the
uncertainties of the normal distributions’ Gaussian fits. Then, the final number Ne for the
data reconstruction is set as the maximum between Ne+ and Ne−. In our example, Ne+ = 3,
Ne− = 4, and, hence, Ne = 4, yielded a SNR gain of 12 (output SNR = 60). This gain implies
that, while in the non-processed cube (SNR = 5) β is already comparable to the noise when
it is still 25% of its maximum equivalent width, the MNF processing can decrease this value
down to 3%, in fact lowering the detection limit of β.
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|µβ ± σβ| and |µγ ± σγ| become comparable within their uncertainties (see Section 3.2.1).

Such a criterion ensures the largest SNR gain while making the artifacts statistically
not significant. It also provides the basis for practically characterizing the output noise
in the reconstructed spectra. However, it is worth stressing that this method removes the
spectral artifacts only statistically and is not totally reliable with individual observations,
thus preventing, for example, the retrieval of atmospheric variations at the single spectrum
level (see Section 3.2.2). Of course, this approach cannot be applied to real observations
as it is since, in that case, we cannot know a-priori whether a particular spectral feature
should be present or not in a given spectrum. Nevertheless, this analysis sets the basis to
modify the control region method in order to manage real LNO data as well (Section 4).

3.2.2. Reconstructed Data Coherence and Scientific Case

The same synthetic dataset also allows for checking for eventual biases in the spatial
distribution of spectral features in MNF-reconstructed data since it is possible to verify if
the radial gradient of β is preserved after the processing. To this purpose, we evaluate the
β equivalent width for both the noise-added initial cube (βnoisy) and the MNF-processed
one (βMNF), reconstructed with Ne = 4 as in Section 3.2.1. The comparison with the nominal
noise-free band area, βclean, quantifies the absorption bias for each spectrum before and
after MNF application. Once averaged over coronal regions of different radius, which
share the same values of βclean, we obtain the bias profiles βnoisy − βclean and βMNF − βclean
shown in Figure 4. The mean values are very close to 0 for all βclean values (black dashed
curve), indicating that no bias emerges on average and that the reconstructed data are
spatially coherent with the original ones. The spread of values associated with both profiles
(shaded areas) is indicative of the band area uncertainties, which appear, of course, reduced
in the MNF case. The large spread at small values of βclean is expected due to the presence
of the gradient, which makes the band comparable to the noise as the boundaries of the red
circle are approached.
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Figure 4. Average differences between the synthetic dataset’s equivalent widths βnoisy and βMNF and
the nominal band depth βclean (see Section 3.2.2), considering pixels of equal band depth. βmax on
the abscissa indicates the maximum band depth of the clean dataset (Figure 1A). Uncertainties are
shown as colored regions, while the black dashed line represents the average of βMNF − βclean at all
band depths.

The tests described here and in the previous section shed light on the possible per-
formances and limitations of MNF processing on NOMAD LNO data. In particular, we
have seen how eventual MNF-induced spectral artifacts can only be statistically removed
by adopting a suitable number of eigenvalues. As a consequence, a smaller Ne yielding
a more efficient noise reduction can only be adopted when dealing with average trends
of ubiquitous species’ spectral signatures. This is the case, for example, of gases like CO2,
H2O, and CO, which are widespread in the Martian atmosphere, and, hence, the accuracy
of their geographical or climatological mapping would benefit from the MNF application.

By definition of the MNF, increasing Ne results in enhanced fluctuations, which can
progressively embed the spectral artifacts, in fact removing them, as is evident from
Figure 5A–E. The trend of artifact occurrence and SNR gain with respect to Ne is shown
in Figure 5F. The overall monotone decrease in the two curves is a general property of
the MNF that allows us to select the number of eigenvalues on the basis of the purpose
of the analysis. It is indeed possible to decrease the spectral artifacts’ significance at the
cost of reducing the SNR gain. This enables us to more reliably deal with species less
statistically represented in the dataset, hence requiring more eigenvalues for a robust
spectral information reconstruction (e.g., CO2 ice; see Section 4.1).

In summary, we can identify two main regimes of Ne, whose threshold value needs
to be determined case by case: (1) smaller values providing a high SNR gain and mostly
useful for the investigation of spectral features that are more widespread in the dataset
and (2) larger values high enough to make the spectral artifacts irrelevant for the analysis,
yielding a moderate SNR gain but enabling the possibility to better characterize non-
ubiquitous features (see Section 4.3.1).
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4. Results: Application to LNO Nadir Data

As described in Section 2.1, LNO acquires data in spectral orders about 22 cm−1 wide,
each covering different species’ spectral signatures related to gases, aerosols, and ices (an
overview of the spectral ranges and features covered by all orders can be found in [23]).
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The SNR performance worsening caused by the cryocooler removal is, of course, more
significant for all spectral ranges where the Martian radiance level is low. This is particularly
evident with orders 149–165, covering the wavelength range of 2.58–2.70 µm, which is
affected by strong CO2 and H2O absorption bands, and with orders 119–136 (3.24–3.74 µm),
in which the instrumental performances are so reduced to yield an average SNR of <2.

4.1. Methane and Other Trace Gases

The wavelength range covered by orders 134–136 (3.24–3.32 µm) is diagnostic for
methane, whose presence on Mars is still debated nowadays. Recent TGO limb measure-
ments from both ACS and NOMAD instruments did not succeed in detecting this gas [24],
providing constraints on its airborne abundance (upper limit of 20 ppt for altitudes above
10 km [25]). On the other hand, in situ measurements from the Curiosity rover’s SAM-TLS
spectrometer suggest that it could be circumscribed at low altitude and released during
nighttime seepage events happening in Gale crater [16]. In this context, LNO nadir ob-
servations, contrary to limb viewing, offer a unique opportunity for methane detection,
being sensitive to the whole atmospheric column down to the surface. Therefore, these
observations would definitely benefit from the application of a noise-reduction technique
such as the MNF, which could potentially reduce their noise and expand the possibilities
for their investigation.

However, it is worth stressing that the detection of methane lines with the abundances
described above would require a SNR of the order of thousands, way beyond the maximum
value achievable thanks to the MNF gain (see Figure 5F). Moreover, in these orders, the
SNR is so low that the spectral calibration described in Section 2.2 is not applicable since
no solar or gaseous lines can be identified. In turn, a non-reliable wavenumber calibration
can alter the statistical behavior of the signal, thereby preventing the MNF’s capability of
identifying spectral correlations in the observations.

The above problems, related to both the spectral calibration and the too high SNR
requirement for the identification of faint gaseous lines, are not specific for methane only
but apply, in general, to other spectroscopically weak species (like HCl and HDO, covered
by order 121). As a consequence, the application of the MNF to these data, at least with the
assumptions made here, unfortunately does not provide a significant enhancement for the
detection and analysis of Martian trace gases.

4.2. Widespread Species

On the other hand, MNF appears more useful in the LNO orders covering the solar-
reflected part of the spectrum, at wavelengths lower than 2.7 µm (orders above 165). In
this case, the observations are characterized by an overall higher signal, which, in most
cases, allows for robust spectral calibration. Their SNR spans from very low (less than 2)
to moderate/high (about 70), hence providing a good framework to test the MNF with
different regimes of noise.

For our analysis, we focus on LNO data in orders 168 and 189 acquired from March
2018 to February 2023 (more than 420,000 spectra for each order, covering several TGO
orbits), hence from the second half of Mars year 34 (MY34) to the beginning of MY37 (see
Table 2). These orders are diagnostic of different spectral features related to both gases and
surface ice. Order 168 encompasses several gaseous absorption lines of H2O as well as
some weaker ones of CO2,while order 189 covers different CO gas absorption lines and
a CO2 ice absorption band (see Section 4.3.1). In particular, the latter has been recently
investigated to spot surface frost on Mars polar caps and high-altitude CO2 ice clouds in
sporadic LNO observations [23]. High-latitude observations are particularly interesting
for the detection of CO2 ice on the surface, although their SNR is strongly affected by the
poor polar illumination conditions. Therefore, the application of the MNF is particularly
desirable to achieve an enhancement of their SNR.
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Table 2. LNO spectral orders selected for the MNF application.

LNO Order Spectral
Features λ Range (µm) wn Range

(cm−1) Mean SNR

168 H2O/CO2 2.627–2.648 3776.32–3806.49 8

189 CO2 ice/CO 2335–2353 4248.36–4282.30 10

In Section 4.3, we take as an example order 189 data to present updated methods (that
also apply to order 168) for selecting Ne with LNO data and show how this number relates
to the scientific goals of the investigation.

4.3. Concept for Eigenvalues Selection

For the purpose of MNF application, we arrange LNO data of a given order as a
stacked three-dimensional array, keeping only those spectra in which the radiometric and
spectral calibrations are reliable (Figure 6A). Since no dark measurements are available
(background subtraction is performed onboard), we build the noise dataset from a series of
LNO spectra acquired in nightside, where no signal from the target is present. For LNO
data, this approach is expected to be more reliable than noise estimations based on the
signal dataset itself, which retain dependences on the spatial distribution of the signal
(e.g., [26]).
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Figure 6. (A) Spectral cube of order 189 data (incidence angle less than 90◦) from March 2018 until
February 2023, displayed at wavenumber k = 4265 cm−1 (i.e., the center of the order). (B) Noise cube
for the application of the MNF, consisting of all order 189 observations having an incidence angle
larger than 90◦.

Such a setting allows for easy computation of both the signal and noise statistics
required by the MNF. As already discussed in the synthetic dataset testing (Section 3.2),
a way to check for the eventual presence of spectral artifacts induced by the technique
is required. We achieve this by appending to the data cube a further column randomly
filled with spectra from the noise cube. Since we know that this control column contains
only noise, it can be used for probing the emergence of unwanted signals after the MNF
application. As in the synthetic dataset case, a too small Ne value makes some non-
negligible spectral features appear in the control column, which are clearly larger than the
continuum fluctuations (i.e., having SNR values larger than 1). The high-gain Ne selection
approach described in Section 3.2.2 is not equally applicable with the high-resolution LNO
data since these are widespread with absorption lines of variable depth and intensity that
prevent a robust definition of the spectral fluctuations of the continuum (the γ quantity in
Section 3.2.2). Therefore, in order to ensure that the features in the control column become
statistically negligible, in this case, we increase the number of eigenvalues until the average
SNR over the whole column drops below 1. This threshold (referred to as “threshold 1”
from now on) yields quite high SNR gain and makes the spectral artifacts statistically
meaningless within the reconstructed noise. It represents the minimum number Nmin of
eigenvalues to be adopted for a reliable reconstruction of the data (Nmin = 6 and 7 for LNO
orders 168 and 189, respectively, yielding an average SNR gain of about 10 in both cases).
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However, the MNF being a PC-based technique (Section 3.1), in the case of statistically
less-represented spectral features (e.g., low frequency modulations pertaining to surface
mineralogy and aerosols), whose presence in the dataset is non-uniform and less corre-
lated with other widespread ones, the information content is likely spread over several
eigenvectors, and, hence, it is possibly lost if threshold 1 is adopted. Therefore, we also
define a more conservative threshold (that we call “threshold 2”) based on the change in
the spectral shape between two successive reconstructions with Ne and Ne + 1 eigenvalues.
Indeed, the average spectral residual δ of adjacent Ne and Ne+1 reconstructed spectra is
a monotonically decreasing function of Ne for Ne > Nmin, while the spectral fluctuation
ε of the Ne reconstructed observation is an increasing function. The optimal number of
eigenvalues is then obtained as the maximum Ne value for which δ > ε. As we will see in
the next section and in Section 5.3, such a method is mostly effective if applied to subsets of
the data in which the investigated spectral feature is already expected to be present more
frequently. This enhances its statistical significance and allows a reliable reconstruction of
the spectral information with a limited number of eigenvalues. This is the case, for example,
of the CO2 ice on the surface of Mars, which is mostly located on the planet’s polar caps.

4.3.1. Thresholds 1 and 2 Case Studies

As mentioned above, the choice of which threshold is to be preferred depends on the
scientific purpose of the analysis. Taking into account order 189 data as an example, if the
investigation is aimed at seasonally quantifying the abundance of gaseous CO, threshold 1
might be preferred. Indeed, CO is produced by the photolysis of CO2, which is predominant
in the Martian atmosphere, and is therefore a species widespread on the whole planet with
an abundance (800 ppm on average) that makes it quite easily retrievable from remote
sensing observations (e.g., [27–32]). Narrow lines belonging to the CO first overtone band
at 4256.2 cm−1 (first transition of the P branch) and 4263.8, 4267.5, 4271.2, 4274.7, and
4278.2 cm−1 (first five transitions of the R branch) are detectable in LNO order 189 nadir
data, even if the limited SNR can often make their identification difficult at the single
spectrum level. Instead, the second transition of the P branch, at 4252.3 cm−1, is mostly
buried in the nominal noise of the observations. In Figure 7A, we give an example of
a comparison between a sample mid-latitude’s order 189 spectrum (black line; note the
modulation induced by the reflectance factor calibration discussed in Section 2.2) and the
corresponding MNF-processed spectrum reconstructed with 7 eigenvalues (red line). A
CO absorption simulation performed with the MITRA radiative transfer tool [6,28] is also
shown as a reference for the position of CO absorption lines (in cyan). From the image, it is
evident how the reduced noise fluctuations in the reconstructed spectrum allow for a more
accurate measurement of these signatures and even make the 4252.3 cm−1 line detectable.
The same enhancement is also true for gaseous H2O and CO2 absorption lines falling in the
range of order 168 (shown in Figure 7B) after MNF processing with Ne = 6. CO2 lines in
particular are very weak (owning to hot band 2ν1 − ν1) and mostly superimposed to the
stronger H2O ones (mainly part of water ν1 and ν3 fundamental bands). Nevertheless, after
the MNF application, it is possible to identify lines as faint as the CO2 line at 3792.0 cm−1,
only 0.8 cm−1 away from the center of the 2ν2 H2O line at 3792.8 cm−1.
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deed, considering the 4278 cm−1 band as an example, the blue and green spectra provide 
equivalent widths that are only 40% and 65% of the nominal LNO ones, while a 90% 
value is exceeded with the red spectrum. 

Better results in terms of SNR gain can be achieved if we select only observations 
falling in a latitude range that encompasses the polar caps (e.g., latitudes larger than ± 
50°). The significance of exposed ice features in this subset is of course larger, and, in this 
case, more than 99% of the observations are reliably reconstructed (i.e., threshold 2 con-
dition is met) with Ne ≤ 13 (Figure 7E), allowing a significant SNR gain for the CO2 ice 
feature investigation. With such an approach, taking into account the same South polar 
ice spectrum as in Figure 7C, we show in Figure 7D how it can now be reconstructed with 
only 8 eigenvalues. The equivalent width of the 4278 cm−1 band is now about 95% of the 
nominal one, demonstrating a robust preservation of the ice spectral shape with en-
hanced precision.  

Figure 7. (A) Comparison between a sample spectrum from LNO order 189 (black), its MNF-
reconstructed counterpart (red), and a simulation of CO absorption (cyan) obtained with the MITRA
RT tool [33]. (B) As in panel (A), but the black spectrum is related to LNO order 168, and the
simulations are related to H2O (cyan) and CO2 (purple) absorptions. The inset zooms around the
3792 cm−1 CO2 absorption line to show how it becomes detectable after the MNF application.
(C): sample order 189 South polar spectrum (black) compared to MNF spectra reconstructed with
Ne = 7 (blue), 100 (green), and 300 (red). The eigenvalues here are computed considering the
whole global LNO dataset in this order (see Section 4.3.1). A CO2 ice simulation with ice effective
radius reff = 0.3 mm, performed with the SNICAR tool [34] and convolved with LNO response
functions (hence also showing the CO2 ice “ghost” band at 4278 cm−1; see Section 4.3.1), is displayed
as a reference in cyan and is offset for clarity. (D) As in panel (C), but the MNF-reconstructed
spectra are provided for Ne = 1 (blue) and 8 (red), and the eigenvalues are computed from a high-
latitudes dataset (Section 4.3.1). (E) Probability of having a reliable MNF reconstruction by adopting
threshold 2 (see Section 4.1) in the case of the high-latitude dataset computation. The blue dashed line
indicates Nmin = 7, derived from threshold 1, while the red dashed line indicates the value Ne = 13,
corresponding to a 99% probability.

Different is the case of CO2 ice, whose 4255 cm−1 absorption band (replicated at
4278 cm−1 by the LNO response function; see Section 2.2 and also [23]) is as large as the
whole order 189 spectral range (see cyan lines in Figure 7C,D offset for clarity). In the
NOMAD dataset, it is mostly observed on the polar caps or in specific locations pertaining
to either residual nighttime surface frost or high-altitude CO2 ice clouds [23]. For the above
reasons, its spectral correlation within the whole dataset is smaller than that of gaseous
CO, such that to avoid loss of information in the MNF reconstruction, it would require a
very large number of eigenvalues, yielding no SNR gain and hence making the algorithm
application worthless, even if threshold 2 is selected in this case. An example of this
behavior is given in Figure 7C, in which a LNO spectrum taken on the Martian South pole
and showing an evident CO2 ice absorption (black line) is reconstructed taking into account
MNF statistics’ eigenvalues computed from the whole global dataset of order 189. The blue,
green, and red spectra in Figure 7C, obtained by adopting very different Ne values (7, 100,
and 300, respectively), show how the information related to the ice band spectral shape
is correctly preserved only with Ne = 300, while lower eigenvalues provide reconstructed
spectra with underestimated absorptions at both 4255 and 4278 cm−1. Indeed, considering
the 4278 cm−1 band as an example, the blue and green spectra provide equivalent widths
that are only 40% and 65% of the nominal LNO ones, while a 90% value is exceeded with
the red spectrum.

Better results in terms of SNR gain can be achieved if we select only observations
falling in a latitude range that encompasses the polar caps (e.g., latitudes larger than
±50◦). The significance of exposed ice features in this subset is of course larger, and, in
this case, more than 99% of the observations are reliably reconstructed (i.e., threshold 2
condition is met) with Ne ≤ 13 (Figure 7E), allowing a significant SNR gain for the CO2 ice
feature investigation. With such an approach, taking into account the same South polar
ice spectrum as in Figure 7C, we show in Figure 7D how it can now be reconstructed
with only 8 eigenvalues. The equivalent width of the 4278 cm−1 band is now about 95%
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of the nominal one, demonstrating a robust preservation of the ice spectral shape with
enhanced precision.

To summarize, in general, threshold 1 can be used to deal with ubiquitous spectral
features and can be applied to the full dataset of a given order, yielding an average
minimum number of eigenvalues that ensures a high SNR gain. On the other hand,
threshold 2 is the best way to proceed if a robust reconstruction of spectral signatures with
weaker spectral correlation is needed, at the cost of having to deal with limited subsets of
data at once and a potentially reduced SNR gain.

5. Discussion

In the previous section, we have seen how the MNF allows for the enhancement of the
average SNR of orders 168 and 189 by about one order of magnitude. This improvement
is expected to enable more accurate retrievals of physical quantities in the study of global
or seasonal trends (for example, water vapor and CO abundances), which are achievable
through dedicated radiative transfer investigations capable of correctly dealing with all the
physical and instrumental parameters involved (e.g., surface albedo, airborne dust content,
illumination and observing geometry, AOTF, and Blaze functions). Such an analysis is
beyond the scope of the present paper, but in the next sections, we discuss how the increased
data SNR is expected to improve the evaluation of these trends.

5.1. Example of a Seasonal Gas Trend: Water Vapor

As far as order 168 is concerned, the improvement in the accuracy of MNF processing
can be quantified by computing the equivalent width of one of the covered H2O absorption
lines. The band depth correlates with the column density of water vapor in the atmospheric
column and is affected by the observing conditions, in particular by altimetry. The strongest
lines in the order 168 range, at 3779.5, 3784.6, 3796.4, and 3801.4 cm−1, are all pertaining to
the ν3 fundamental stretching band and are overlayed with other weaker H2O and CO2
lines. Here, we focus on the one centered at 3796.4 cm−1 (see Figure 7B) and separate the
MY34, 35, and 36 data to derive the respective seasonal trends. In order to mitigate the
band depth dependence on altimetry, we consider only those observations related to the
Hellas basin, characterized by the lowest surface altitudes on Mars. We then compare
the original and the MNF-processed band depths (threshold 1 is adopted; see Sections 4.1
and 4.2), averaging them in bins of Ls of 20◦, wide enough to homogeneously cover all
seasons in the three Mars years. In the results shown in Figure 8, it is evident how some
bins of the original dataset (grey shaded areas) are characterized by very large standard
deviations (e.g., 150◦ < Ls < 170◦ in MY34 and 60◦ < Ls < 160◦ in MY35; 50◦ < Ls < 100◦,
150◦ < Ls < 230◦, and 260◦ < Ls < 300◦ in MY36). In general, the average values (black
and green dashed lines in the figure) are not affected by the MNF processing, but it is
evident how their uncertainties are consistently reduced after the MNF application, up to
90%. Such an enhancement helps greatly improve the accuracy of these seasonal trends, in
fact, enabling the possibility of exploiting LNO nadir data to study water vapor columnar
densities down to the surface.

5.2. Example of Global Mapping: The Case of Gaseous CO

Several CO absorption lines of variable intensity fall within the order 189 spectral
range. As we have seen in Section 4.3.1, the strongest ones are found at 4252.3, 4256.2, 4263.8,
4267.5, 4271.2, 4274.7, and 4278.2 cm−1 (see cyan spectrum in Figure 7A) and are all part of
the R branch of the ν = 0–2 band of 12C16O. As a benchmark for our analysis, we selected
the 4267 cm−1 line since it is the strongest one close to the center of the order, hence less
affected by instrumental modulations (Section 2.2). In order to test the SNR enhancement
induced by the MNF, we build longitude-latitude global maps of the line’s equivalent
width (one for the initial dataset and another for the dataset processed with threshold 1),
providing a proxy for the CO-integrated column. The best approach to comparing these
maps would be to select ensembles of data as homogenous as possible, that is, considering
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observations related to narrow ranges of solar longitude (Ls), local time, incidence, and
phase angle. However, the spatial and temporal coverage of LNO observations would
only allow comparing very limited regions or periods of time (Section 2.1). For this reason,
we bin all data in steps of 1◦ × 1◦ of longitude and latitude, regardless of the season,
local time, and observing geometry, at the cost of increased fluctuations among adjacent
bins. As in the case of water vapor (see previous section), the CO band depth variation is
expected to be mostly driven by the altimetry of the surface, to which the total column is
anti-correlated. This behavior is evident in Figure 9A,B, showing, respectively, a simulation
of the CO-integrated column obtained from the Mars Climate Database (version 6.1, [35])
and the averaged LNO observations’ surface altimetry obtained from the Mars Orbiter
Laser Altimeter (MOLA) data [36]. The equivalent width maps related to the initial and
processed datasets are shown in Figure 9C,D. In Figure 9C, a dichotomy between regions
of high and low width (corresponding to low and high altimetry regimes; see Figure 9A,B,
respectively) is barely appearing but largely scattered by the noise. On the other hand,
the contrast is enhanced in the MNF-processed map (Figure 9D), showing a more definite
correspondence with both the MCD CO column map (Figure 9A) and the LNO surface
altimetry one (Figure 9B). This is also confirmed by the scatter plots in Figure 9E,F, showing
how, after the application of the MNF, the spread between the MCD-predicted densities
and the computed equivalent widths is greatly reduced.

It is indeed possible to better identify the increased CO band depth (i.e., larger colum-
nar abundance) associated with the northern lowlands of Arcadia (47◦N, 175◦W), Acidalia
(49◦N, 20◦W), and Utopia Planitia (46◦N, 119◦E) as well as in the southern depressions of
Argyre (50◦N, 44◦S) and Hellas Planitia (42◦S, 70◦E). Similarly, a particularly reduced CO
column is observed, as expected, on the Tharsis volcanoes region (0◦N, 110◦W), which is
characterized by the highest surface altitudes on the planet (see Figure 9B). It is interesting
to note that the MNF-processed map in Figure 9D also allows to correctly spot the strongly
depauperated CO column above both Olympus Mons (18◦N, 134◦W) and Elysium Mons
(25◦N, 147◦E), whose peaks extend to about 20 and 13 km, respectively.
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This test demonstrates how the characterization of ubiquitous spectral features (like
the CO absorption lines considered here) can benefit from the application of the MNF.
The enhanced SNR can be exploited to increase the accuracy in the retrieval of the most
common Martian gaseous species’ abundance (e.g., CO2, H2O, and CO), in turn enabling
more accurate estimates of their detection limits, seasonal trends, climatological cycles,
and chemical patterns. For example, [38] recently exploited LNO nadir observations from
orders 189 and 190 to derive the CO climatology across MY34 and MY35, demonstrating
how these high-resolution data provide significant insights into our understanding of
the Martian atmosphere. The application of the MNF would enhance the accuracy of the
retrieved abundances, enabling a more fruitful comparison with other observations of Mars’
atmosphere and contributing to the improvement of climatological models.

5.3. Example of Regional Mapping Features: The Case of CO2 Ice

We now discuss the application of the MNF to a spectral feature that is less frequent
in the dataset, that is, the CO2 ice absorption band centered at 2.35 µm (4255 cm−1). As
already discussed in [23], this is quite a narrow and shallow combination band located
in the 2.1–2.5 µm CO2 ice transparency window. Being not a widespread feature, we
adopt threshold 2 for eigenvalues’ selection (Section 4.1). Furthermore, as described in
Section 4.3.1, we reduce the dataset in order to preserve the statistical significance of the ice
feature and consider only observations limited to latitudes below 50◦S, wide enough to
encompass the maximum extension of the southern polar cap.

In this case study, an effective way to verify the MNF outcome is to investigate the
seasonal trend of CO2 ice condensation and sublimation phases, which define the outer
boundary of the southern cap. For this purpose, we build Ls-latitude maps of the 2.35 µm
equivalent width that we can compare to MCD simulations of the average Martian CO2 ice
monthly integrated column, as shown in Figure 10C.

The maps in Figure 10A,B contain data from all Martian years MY34, 35, and 36
averaged together in bins of 1◦ × 1◦ of Ls and latitude from the initial and MNF-processed
datasets, respectively. The original data map displays an overall dichotomy of either large
or small equivalent width values, but their distribution is quite noisy, resulting in polar
cap edges that are barely detectable. On the other hand, in the MNF-processed map, the
contrast between icy and non-icy terrains is enhanced, making the polar cap boundary
much better identifiable. For example, this map agrees with the low ice content predicted
by the climatological model at solar longitudes lower than 50◦ and larger than 300◦, while
the original data map does not. The main discrepancy between the MNF-processed map
in Figure 10B and the MCD model in Figure 10C is seen at 190◦ ≤ Ls ≤ 210◦, where the
observed values are systematically lower. This is mainly due to a LNO coverage bias
(Section 2.1), which makes the map bins not uniform in terms of observing conditions. In
fact, in that Ls range, the South polar cap is characterized by its strongest longitudinal
asymmetries in ice content (e.g., [39]). Such a behavior is evident in the scatter plots in
Figure 10J,K, in which the MCD-derived densities are compared to the ice equivalent widths
from the original and the MNF-processed observations, respectively. After the application
of the technique, there is an increasing trend at low densities (less than about 200 kg/m2).
However, this trend is lost for higher density values (related to the southernmost regions of
the polar cap) due to the non-uniform coverage of LNO observations in this Ls range. This
issue can be resolved once additional observations are available, allowing us to produce
more homogenous datasets less affected by non-consistent spatial/temporal coverage of
the observations. This would also enable the possibility to separate the data of future Mars
years for investigating inter-annual differences in the ice seasonal trends. For example, a
qualitative investigation of the inter-annual variations of the polar cap boundaries from the
currently available dataset is shown in Figure 10D–I, related to the original and processed
observations, respectively. The enhancement due to the MNF application is evident and
highlights some differences, like, for example, a more equatorward cap boundary at



Remote Sens. 2023, 15, 5741 23 of 27

Ls = 220◦ in MY36 with respect to MY34, demonstrating the potential of the technique even
for the investigation of non-ubiquitous species in LNO nadir data.
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Figure 10. (A) Equivalent width of the CO2 ice 4255 cm−1 absorption band computed on all MY34-
35-36 LNO order 189 original data. (B) Same as in panel (A), but the equivalent width is computed
on all MY34-35-36 MNF-processed data. (C) MCD simulation of the monthly integrated CO2 ice
column in kg/m2. Panels (D–F) are the same as panel (A), but the data are separated into MY34, 35,
and 36, respectively. Similarly, panels (G–I) show the MNF-processed equivalent width for MY34, 35,
and 36, respectively. Panels (J,K) provide the density scatter plots between the quantities in panels
(C)/(B) and (C)/(A), respectively, considering observations in the Ls range of 190◦–210◦.
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6. Summary and Conclusions

In this study, we have investigated the possibility of increasing the SNR of TGO/NOM
AD LNO infrared channel nadir data through the application of the Minimum Noise
Fraction algorithm. A preliminary test on a synthetic dataset (Section 3) allowed us to better
understand the expected performances of the technique as well as its intrinsic limitations,
mostly related to the possible emergence of artifacts triggered by selection effects on the
spectral fluctuations. In this way, we derive two statistically robust criteria to select the
suitable number of eigenvalues for LNO data processing, specifically crafted to provide a
trade-off between SNR gain and artifact mitigation. This number results in being dependent
on the scientific purpose of the analysis: a small number of eigenvalues provides a high
SNR gain and is the best option for the analysis of spectral features globally widespread in
the considered dataset; on the other hand, a larger number of eigenvalues is desirable for
non-ubiquitous or sporadic features, reducing the SNR gain but ensuring a more reliable
reconstruction of the spectral information.

Some LNO orders, although very worthy of investigation (like, e.g., order 134, diag-
nostic of methane, or order 121, which covers HCl and HDO lines), are currently poorly
spectrally calibrated due to the lack of spectral lines strong enough to drive wavenumber
fine tuning, hence preventing a meaningful spectral covariance analysis for MNF process-
ing. In any case, even if a reliable spectral calibration was available, the potential spectral
features covered by these orders are so faint (e.g., methane absorption bands covered by
order 134 would require a SNR of the order of thousands) that they would still be unde-
tectable within the reduced noise obtained through the MNF processing (Section 4.1). On
the other hand, we tested the MNF application to observations of LNO spectral orders 168
and 189 (Section 4), covering several H2O and CO absorption lines and a broad CO2 ice
absorption band and encompassing both ubiquitous (H2O and CO) and non-ubiquitous
(CO2 ice) cases. To verify the enhancement between the initial and processed datasets
(Section 5), we compute equivalent widths for a H2O line at 3976 cm−1 (order 168), a CO
line at 4267 cm−1, and the CO2 ice band peaked at 4255 cm−1 (order 189), providing
information on the respective column integrated densities. After the MNF application, un-
certainties are reduced up to 90%, yielding an average SNR gain of about 10 for both orders.
Such an enhancement even allows to identify a weak CO2 absorption line (3972 cm−1;
part of the ν2ν3

12C16O2 hot band) that was fully masked by the noise in the initial order
168 observations, providing interesting perspectives in the application of the technique.
We demonstrate that MNF processing is able to significantly improve the accuracy of H2O
and CO equivalent width maps. In particular, in the case of CO global mapping, the
technique reveals the expected correlation with the Martian altimetry, which was only
barely identifiable in the original dataset. Similarly, in applying MNF to CO2 ice spectral
features, we verify the enhanced detectability of the South polar cap boundary and its
seasonal average behavior, allowing us to potentially compare its trend in different Martian
years (MY34, 35, and 36). CO2 and H2O ices have been recently studied in NOMAD data,
which detected both abundant surface deposits and thick clouds [23,40]. However, those
analyses have been strongly affected by the observations’ SNR. The enhancement deriving
from the MNF application would potentially enable the study of more localized or transient
phenomena, like smaller and thinner frost deposits in shadowed craters’ rims or clouds
characterized by lower optical depth.

The analyses presented in this paper demonstrate how the MNF algorithm can be
applied to LNO nadir data to enhance their SNR, even if the processing needs to be
tuned depending on the scientific purpose of the analysis, hence yielding a variable gain.
Unavoidable constraints for further SNR improvements come from the sparse spatial and
temporal coverage of LNO data due to the observing strategy that alternates the acquisition
of different spectral orders (Section 2.1), in turn impacting the statistical significance of the
spectral signatures that can be helpfully investigated.
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