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Abstract Non-methane volatile organic compounds (NMVOCs) have a significant impact on air quality in
urban areas. Detecting NMVOCs emission with its proxy HCHO on urban scales from space, however, has been
limited by the lack of discernible enhancement. Here we show clear urban HCHO plumes from 16 cities over
the globe by rotating TROPOspheric Monitoring Instrument HCHO pixels according to wind directions. We

fit the downwind structure of the plumes with the exponentially modified Gaussian approach to quantify urban
HCHO effective production rates between 7.0 and 88.5 mol s~!. Our results are in line with total NMVOC
emissions from the EDGAR inventory (r = 0.76). Our work offers a new measure of total NMVOC emissions
from urban areas and highlights the potential of satellite HCHO data to provide new information for monitoring
urban air quality.

Plain Language Summary Non-methane volatile organic compounds (NMVOCs) play an
important role in urban air quality. Formaldehyde (HCHO) satellite observations have been shown to be able
to reliably track and quantify NMVOC emissions at global and regional scales. Here, we use state-of-the-art
satellite sensors to quantify effective HCHO production rates in 16 global cities and further constrain total
NMVOC emissions. Our results are broadly consistent with current emissions inventories, implying that
satellites may be able to provide new information for urban air studies.

1. Introduction

Atmospheric formaldehyde (HCHO) is an intermediate produced via primary emission and secondary formation
from the oxidation of a range of volatile organic compounds (VOCs). Therefore, the production rate of HCHO
provides a potential constraint on the underlying VOC emissions (Barkley et al., 2013; Bauwens et al., 2022;
Shen et al., 2019; Zhu et al., 2014). Previous field measurements show that anthropogenic non-methane VOC
(NMVOC) emissions are critical drivers of urban HCHO production rates (Liu et al., 2023; Zeng et al., 2019).
Here, we present the first attempt to apply satellite HCHO columns to estimate effective HCHO production rates
and to infer total anthropogenic NMVOC emissions in urban areas over the globe by analyzing the downwind
structures of their HCHO plumes.

Regional and local HCHO enhancements are due to NMVOCs emitted by plants (Barkley et al., 2013; Millet
et al., 2006; Palmer et al., 2003; Wells et al., 2020; Wolfe et al., 2016), fires (Alvarado et al., 2020; Cao et al., 2018;
Holzinger et al., 1999; Yokelson et al., 1999), and human activities (Bauwens et al., 2022; Pu et al., 2022; Shen
etal., 2019; Sun et al., 2021; Zhu et al., 2014; Zhu, Mickley, et al., 2017). In urban areas, the use of natural gas,
diesel, gasoline, and solid fuels results in direct emissions of HCHO and secondary production of HCHO from
various anthropogenic NMVOCs (Alzueta & Glarborg, 2003; Clairotte et al., 2013; Green et al., 2021).

Satellites observe HCHO from space in a column manner. Previously, HCHO tropospheric columns have been
used in the inversion framework to constrain NMVOC emissions from biogenic sources (Barkley et al., 2013;
Millet et al., 2006, 2008; Palmer et al., 2006; Wu et al., 2023) and fires (Cao et al., 2018; Fu et al., 2007; Gonzi
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et al., 2011). However, applying HCHO columns to derive anthropogenic NMVOC emissions is challenging
due to the (a) high uncertainty in the a priori estimations (Huang et al., 2017; Zheng et al., 2018), (b) lack of
discernible enhancement on urban scales (Zhu et al., 2014), and (c) highly nonlinear small-scale chemistry that
makes using atmospheric chemistry transport models challenging (Laughner & Cohen, 2019; Valin et al., 2013).

For gases (mainly NO, and SO,) emitted from point sources (e.g., megacities or power plants), the combined
analysis of satellite observations and wind fields reveals the downwind decay of plumes and has been further used
to estimate their lifetimes and emissions (Beirle et al., 2011; de Foy et al., 2015; Fioletov et al., 2016; Goldberg
et al., 2019; Lee et al., 2022; Lu et al., 2015). However, similar observation-based approaches have long been
recognized as missing for NMVOCs, which are equally important for urban air pollution (von Schneidemesser
et al., 2023). In this study, we show evident downwind decay of urban plumes over the globe with the state-of-the-
art TROPOspheric Monitoring Instrument (TROPOMI) instrument (Veefkind et al., 2012) and the wind rotation
technique. By fitting HCHO plumes with the exponentially modified Gaussian (EMG) function, we obtain the
effective HCHO production rates and lifetimes, reflecting the emission and rapid photochemical oxidation of
NMVOCs.

2. TROPOMI HCHO Columns and Wind Rotation Approach

Onboard the Copernicus Sentinel-5 Precursor platform, TROPOMI is a nadir-viewing spectrometer launched in
October 2017, which scans the whole globe within a day at a local passing time of 13:30 and a nadir resolution
of 5.5 x 3.5 km (7 X 3.5 km before August 2019). It achieves a spectral resolution of 0.55 nm in the 328-359 nm
band range where HCHO retrieval is performed. We use 2019-2022 TROPOMI HCHO tropospheric vertical
column product (De Smedt et al., 2018), which has been thoroughly validated (Chan et al., 2020; De Smedt
et al., 2018; Vigouroux et al., 2020) and used to study NMVOC emissions (Pu et al., 2022; Sun et al., 2021; Wang
et al., 2022). To ensure data quality, we select level 2 pixels with quality assurance value greater than 0.5, cloud
fraction less than 0.3, and solar zenith angle less than 60°.

To investigate the downwind structures of urban HCHO plumes, we associate each pixel with its wind direction
and speed, sampled from the ECMWF Reanalysis v5 (ERAS) hourly data (Hersbach et al., 2020). We use the
average ERAS wind fields in the bottom 5 levels (~up to 1.0 km above sea level), following Fioletov et al. (2015).
We then apply the wind rotation technique (de Foy et al., 2015; Fioletov et al., 2015; Lu et al., 2015; Pommier
et al., 2013; Valin et al., 2013) to rotate each TROPOMI pixel around the city center (apparent source) accord-
ing to wind direction. Figure S1 in Supporting Information S1 illustrates the schematic of such a wind rotation
approach.

First proposed by Valin et al. (2013) in their study of NO, urban plumes, the wind rotation approach effectively
redistributes satellite observations near the source along the downwind direction. After rotation, all TROPOMI
pixels have a common wind direction and thus can be analyzed together, which helps us to accumulate a statisti-
cally significant TROPOMI HCHO data set while preserving the upwind-downwind characteristics of each pixel.
Another advantage of wind rotation is that it makes the central source more pronounced while attenuating the
signals of the surrounding sources (Fioletov et al., 2015), which is particularly helpful for the capture of HCHO
urban plumes, as for HCHO the background levels are much higher and the sources are less localized than NO,
and SO,.

3. Observing and Fitting Urban HCHO Plume: An Example From Riyadh

Our attempt starts with Riyadh (Saudi Arabia), one of the largest cities on the Arabian Peninsula and is usually
considered as an ideal place for satellite detection of urban plumes (e.g., NO, and CO) due to its isolated loca-
tion, large emission, and frequent clear sky conditions (Beirle et al., 2011; Lama et al., 2022; Valin et al., 2013).
It is also an optimal spot to observe the HCHO urban plume as it is surrounded by desert and has low biogenic
VOC emissions. Figure 1a shows the 2019-2022 mean TROPOMI HCHO tropospheric columns around Riyadh
with a 0.02° x 0.02° (~2 X 2 km) resolution. The oversampling method we use is a weighted average of the
satellite pixels on each grid, with weights obtained based on the overlap area of the pixels with the grid (Zhu,
Jacob, et al., 2017). Wind rotation allows us to see a distinct urban HCHO plume above the regional background
(Figure 1b). By integrating the two-dimensional HCHO plume (Figure 1b) along the cross-wind direction, we
obtain the one-dimensional HCHO line densities, which exhibit a Gaussian shape and decay pattern (black circles
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Figure 1. TROPOspheric Monitoring Instrument (TROPOMI) HCHO columns and downwind plume structure in Riyadh. (a) TROPOMI HCHO oversampled to
0.02° x 0.02° (~2 x 2 km) resolution from 2019 to 2022, with the black cross marking the city center. Gray lines denote trunk roads and motorways. (b) Wind-aligned
HCHO plume in Riyadh. (c) Line densities (black circles) of HCHO columns as a function of downwind distance from the city center. Each circle represents the

TROPOMI HCHO line density integrated along the cross-wind direction (+100 km). The red curve (Q

Jine(X), see Section 3) is the exponentially modified Gaussian

(EMGQ) fitting result, with the averaged wind speed (w) from ERAS data, fitted effective HCHO production rate (P), fitted effective lifetime (z*), and fitting

determination coefficient (R?) insert.

in Figure 1c). We find that the maximum enhancement of HCHO (~27 k mol km~') occurs at about 75 km
downwind of Riyadh, which is almost three times the distance of NO, maximum enhancement under fast wind
conditions (Valin et al., 2013). This highlights the difference in lifetimes of HCHO and NO,, which implies the
additional secondary production for HCHO from NMVOC:s.

The exponential modified Gaussian (EMG) method has been widely applied in fitting the downwind plumes of
NO, (Goldberg et al., 2019; Jin et al., 2021; Laughner & Cohen, 2019; Lu et al., 2015; Pommier, 2023) and SO,
(Beirle et al., 2014; Fioletov et al., 2015; McLinden et al., 2016). This method assumes an approximate point
source elevated from the background (Fioletov et al., 2022; Lange et al., 2022), which can be tested with the
signal-to-noise (SNR) ratio that compares the upwind-downwind difference with satellite signals (McLinden
et al., 2016; Pommier, 2023).

SNR=M
200 4 o0 M
VNG VN,

where Q, and Q, is the average HCHO column in downwind and upwind regions at the same distance from the
center (Figure S2 in Supporting Information S1); o, 6,,, N,, and N, is the standard deviation and number of
observations in the two regions, respectively. To ensure sufficient contrast to the background, we set an SNR
threshold of 10.0 to determine an approximate point source for HCHO, considering the lifetime of HCHO (few
hours, similar to NO, and SO,), resolution of TROPOMI, and size of the sources observed in each city. For
Riyadh, the SNR value is 15.6.

The EMG method to fit HCHO line densities Q. (x) (Figure 1c) is:

line

2 _
Quine (x| 4, 0, X0, @, B) =t - [lexp<ﬁ + - i)cb(u - 1)] +B @)
Xo X0 2x Xo (4 X0

0
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where a (mol) is a scale factor of the total number of HCHO molecules observed near the hotspot, elevated from
the background (B, mol km'); u (km) is the location of the point source relative to the urban center (defined as
x = 0); x, (km) is the e-folding distance downwind; ¢ (km) is the standard deviation of the Gaussian function; and
@ is the cumulative distribution of exponential function.

Similar to studies on NO, and SO, point source emissions, we define an effective lifetime of HCHO (7*) as:
Tt =x0/w 3)

Here z* (hour) represents the effective mean lifetime of HCHO within the fitting domain from an approxi-
mate point source, encapsulating the effects of primary emission, secondary production, loss, and transport. w
(4.7 m s™') is the effective wind speed of the study domain according to ERAS5 wind fields. Further, the effective
HCHO production rate P (mol s7!) is defined as:

P=a/7 @

which includes both primary HCHO emitted in the city and secondary HCHO produced within the downwind
plume.

For Riyadh, the fitted line densities are close to TROPOMI observations with a determination coefficient (R?)
of 0.98 (Figure 1c¢), an effective HCHO lifetime (z*) of 4.3 + 1.1 hr (95% confidence interval), and an effective
HCHO production rate (P) of 33.1 + 3.6 mol s\. The fitted background (B) is 24.4 + 0.1 k mol km~!, correspond-
ing to a column density of 7.3 X 10'> molecules cm~ in the fitting domain, which we attribute to the oxidation of
regional biogenic (e.g., isoprene) and long-lived VOCs (e.g., methane). Here, we refer to Beirle et al. (2011) and
Lu et al. (2015) to quantify the uncertainties of our results (Text S1 in Supporting Information S1).

4. Downwind Structures of Urban HCHO Plumes Over the Globe

As demonstrated in Riyadh (Figures 1b and 1c), the wind rotation approach enables detection of urban HCHO
plumes. Based on this, we extend our analysis globally by focusing on 55 cities or urban agglomerations with
populations over 5 million and another 11 cities with visible HCHO enhancements. Table S1 in Supporting
Information S1 lists those 66 cities or urban agglomerations, among which 25 satisfy the point source criterion
(i.e., SNR > 10.0).

We then apply the EMG method for each approximate point source candidate city in a 200 km by 250 km
(+100 km cross-wind, 100 km upwind, and 150 km downwind) domain. This domain size is selected to mini-
mize interference from surrounding sources (biogenic and anthropogenic) while retaining enough satellite pixels.
Following Jin et al. (2021) and Laughner and Cohen (2019), we set additional criteria to obtain reasonable EMG
fitting: (a) R* > 0.8, which ensures the fitted EMG curve is close to the observations; (b) x, > &, which requires
emission width shorter than the e-folding distance to avoid the case that emission shape confounds with HCHO
decay structure; and (c) (150 km — p)/w > ¥, which states the plume residence time should be longer than the
effective HCHO lifetime to reduce EMG fitting uncertainty. Table S1 in Supporting Information S1 provides
whether each criterion is valid for the approximate point source candidate cities.

Figure 2 shows downwind structures of the resulting plumes in 16 cities or urban agglomerations, with
wind-aligned HCHO plumes provided in Figure S3 in Supporting Information S1. Table S2 in Supporting Infor-
mation S1 summarizes the corresponding EMG fitting results. The fitted effective production rate of HCHO
(P) ranges from 7.0 (Esfahan) to 88.5 mol km~! (Pearl River Delta), with background (B) ranges from 22.2 to
44.2 k mol km~! (6.6 x 10" to 1.32 x 10'® molecules cm~2, Table S2 in Supporting Information S1). The effec-
tive lifetime (z*) is between 4.0 hr (Teheran) and 17.2 (Lahore) hours.

As shown in Figure 3, our effective production rates of HCHO (P) are generally in line with local total anthropo-
genic NMVOC (panel a; r = 0.76) emissions from EDGAR (v6.1) within a 100 km radius of the city center. Within
the fitting domains of the 16 cities or urban agglomerations in Figure 3, biogenic isoprene emission (MEGAN
v2.1 run for 2019; Guenther et al., 2012) accounts for on average 25% of the total NMVOC emissions, arguing
for an anthropogenic dominated origin of HCHO. This could be further backed up by the consistency (» = 0.78)
between effective HCHO production rates and anthropogenic nitrogen oxides (NO,; Figure 3b) emissions.

We acknowledge the spatial heterogeneity of biogenic NMVOC emissions over hundreds of kilometers around
the city, which may introduce uncertainties to the fitting results. In addition, the temporal difference between
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Figure 2. Global urban HCHO hotspots and their downwind plume structures. The center panel shows the mean TROPOspheric Monitoring Instrument tropospheric
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TROPOMI overpass time (13:30 local time) and EDGAR inventory (24-hr average for the year 2018) may be
another source of uncertainties. Nevertheless, the broad agreement with EDGAR inventory corroborates the
reliability of our approach, suggesting the effective production rate of HCHO could be a potential measure of
total anthropogenic NMVOC emissions in urban areas despite NMVOCs contributing to HCHO differently under
various OH levels.

Previous studies report that the EMG method accurately estimates emissions, but the effective lifetime is not a
reliable measure of a gas chemical lifetime due to plume meandering and grid resolution (de Foy et al., 2015). In
addition, secondary production also complicates the effective lifetime of HCHO, along with physical diffusion
and chemical losses in urban plumes. That being said, 7* depends mainly on the photolysis rate and OH concen-
tration. If photolysis rates are known, one could determine the OH level of the urban plume (Liao et al., 2021) in
a similar rationale to the study of NO, lifetimes (de Foy et al., 2015; Laughner & Cohen, 2019; Valin et al., 2013).
Such information may help us better quantify urban atmospheric oxidation levels through satellite remote sensing.

5. Conclusion

We have used TROPOMI satellite observations and ERAS wind fields to detect urban HCHO plumes from 16
cities over the globe. By fitting the downwind structure of the plumes, we quantify effective HCHO production
rates in urban areas, which are in line with total non-methane volatile organic compound (NMVOC) emissions
from the bottom-up inventory. Our work shows the potential of satellite HCHO columns in providing new infor-
mation for urban air quality studies.

Data Availability Statement

We gratefully acknowledge the data set of TROPOMI HCHO product (https://doi.org/10.5270/S5P-tjlxfd2),
the ERAS data set (https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset), the EDGAR v4.3.2
(https://edgar.jrc.ec.europa.eu/dataset_ap432_VOC_spec), EDGAR v6.1 (https://edgar.jrc.ec.europa.eu/dataset_
ap61), and the GeoNames (www.geonames.org) database. The oversampling code is available at: https://github.
com/zhu-group/RegridPixels.
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