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Abstract: Carbon dioxide (CO2) is the most important long-lived greenhouse gas and can be retrieved
using solar absorption spectra recorded by a ground-based Fourier-transform infrared spectrometer
(FTIR). In this study, we investigate the CO2 retrieval strategy using the Network for the Detection of
Atmospheric Composition Change–Infrared Working Group (NDACC–IRWG) type spectra between
August 2018 and April 2022 (~4 years) at Xianghe, China, aiming to find the optimal observed spectra,
retrieval window, and spectroscopy. Two spectral regions, near 2600 and 4800 cm−1, are analyzed.
The differences in column-averaged dry-air mole fraction of CO2 (XCO2) derived from spectroscopies
(ATM18, ATM20, HITRAN2016, and HITRAN2020) can be up to 1.65 ± 0.95 ppm and 7.96 ± 2.02 ppm
for NDACC-type 2600 cm−1 and 4800 cm−1 retrievals, respectively, which is mainly due to the CO2

differences in air-broadened Lorentzian HWHM coefficient (γair) and line intensity (S). HITRAN2020
provides the best fitting, and the retrieved CO2 columns and profiles from both 2600 and 4800 cm−1

are compared to the co-located Total Column Carbon Observing Network (TCCON) measurements
and the greenhouse gas reanalysis dataset from the Copernicus Atmosphere Monitoring Service
(CAMS). The amplitude of XCO2 seasonal variation derived from the NDACC-type (4800 cm−1) is
closer to the TCCON measurements than that from the NDACC-type (2600 cm−1). Moreover, the
NDACC-type (2600 cm−1) retrievals are strongly affected by the a priori profile. For tropospheric
XCO2, the correlation coefficient between NDACC-type (4800 cm−1) and CAMS model is 0.73, which
is higher than that between NDACC-type (2600 cm−1) and CAMS model (R = 0.56).

Keywords: carbon dioxide; ground-based FTIR; mid-infrared solar spectrum; NDACC

1. Introduction

Carbon dioxide (CO2) is the most important long-lived greenhouse gas that plays
a significant role in global climate change. The concentration of CO2 in the atmosphere
has increased from 277 ppm in 1750 to 417.2 ppm in 2022 [1,2], which is mainly owing
to human activities such as fossil fuel combustion and land use change [1]. The IPCC
AR6 report demonstrated that the fertilization effect of CO2 and climate warming can
impact the biodiversity of coastal ecosystems [3]. The CO2 concentration dependence
of global terrestrial carbon storage is one of the largest and most uncertain feedbacks to
the terrestrial carbon cycle, greatly affecting climate change [4]. Accurate and precise
monitoring of atmospheric CO2 can provide an insight into the carbon cycle and help
mitigate carbon emissions.

The Total Carbon Column Observing Network (TCCON) uses a ground-based Fourier-
transform infrared spectrometer (FTIR) to retrieve column-averaged dry-air mole fraction
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of CO2 (XCO2) via shortwave infrared (SWIR) solar absorption spectra. TCCON was
established in 2004 with 4 sites and expanded to 28 sites globally in 2023. TCCON XCO2
measurements have been widely used in carbon cycle study and satellite validation [5–8].
The Network for the Detection of Atmospheric Composition Change–Infrared Working
Group (NDACC-IRWG) is another international FTIR network with more than 20 sites
globally, recording mid-to-thermal infrared spectra [9]. In total, 10 standard species (CH4,
N2O, O3, CO, ClONO2, HCl, HF, HNO3, C2H6, HCN) are well documented in the NDACC
community with recommended retrieval windows, spectroscopy, and other retrieval pa-
rameters (https://www2.acom.ucar.edu/irwg, accessed on 5 July 2023).

Previous studies have been carried out to research CO2 retrieval using NDACC-type
spectra, but the CO2 retrieval strategy is not well investigated or harmonized. Barthlott
et al. [10] proposed a CO2 retrieval strategy using 4 micro-windows near 2620 cm−1, and
they performed the CO2 retrievals at several NDACC sites. Buschmann et al. [11] used
8 micro-windows between 2620 cm−1 and 3345 cm−1; they found similar results to Barthlott
et al. [10]). NDACC CO2 retrievals have weak sensitivity to tropospheric change, which
means that they are not suitable for studies of variations on shorter timescales [10,11].
Recently, Chiarella et al. [12] used the vicinity of the 4790 cm−1 band to retrieve XCO2
in the NDACC observational mode and found that the seasonal variation of XCO2 was
well captured and the precision of retrieval can be up to 0.2% [12]. In addition to the
total column, Shan et al. [13] used the same retrieval windows as Barthlott et al. [10] to
study the NDACC retrieved CO2 vertical profile. The paper [13] found that XCO2 is lower
than the tropospheric XCO2 at Hefei, and that the seasonal phase and amplitude of CO2
concentration varies among different layers due to the different influence of air masses at
different altitudes.

As mentioned above, previous NDACC CO2 studies used different retrieval strategies,
e.g., retrieval window and spectroscopy. In this study, we investigate the CO2 retrieval
strategy using the NDACC-type spectra between August 2018 and April 2022 (~4 years)
at Xianghe, and the objective is to find the optimal parameter settings for CO2 retrievals.
Section 2 gives an introduction to the measurement site, retrieval strategies, and datasets
involved. The NDACC CO2 retrievals using different settings are compared to each
other in Section 3. In addition, the results from NDACC are also compared with the co-
located TCCON measurements, as well as the greenhouse gas reanalysis dataset from the
Copernicus Atmosphere Monitoring Service (CAMS). Finally, conclusions are drawn in
Section 4.

2. Materials and Methods
2.1. Measurement Site

The Xianghe site (39.75◦N, 116.96◦E; 36 m above sea level) is located about 50 km
southeast of Beijing and is affiliated with the Institute of Atmospheric Physics of the
Chinese Academy of Sciences (IAP-CAS). This area is dominated by light industry. The
main vegetation type is irrigated farmland, and the surrounding buildings are mainly
residential houses with a height of less than 20 m [14]. In June 2016, a Bruker IFS 125HR
FTIR instrument was installed, and it began recording solar absorption spectra in June
2018 [15]. Currently, Xianghe is an operational TCCON site, and it also records NDACC-
type spectra [16,17].

2.2. FTIR Measurement

Two observation modes are used alternately to acquire FTIR spectra at Xianghe.
TCCON mode records SWIR spectra, and uses GGG2020 code to retrieve XCO2. The SWIR
spectra are acquired by the FTIR with an indium gallium arsenide (InGaAs) detector, which
covers the spectral range from 3800 to 10,000 cm−1, with a spectral resolution of 0.02 cm−1.
The NDACC mode records mid-infrared (MIR) spectra, and uses SFIT4 code to retrieve
both the vertical profile and total column of CO2. The MIR spectra are recorded with
a liquid-nitrogen-cooled indium antimonide (InSb) detector, which covers the spectral
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range from 1800 to 5400 cm−1, with a spectral resolution of 0.0035–0.0078 cm−1 [15]. In
addition, NDACC mode uses several optical filters in front of the InSb detector to improve
the signal-to-noise ratio (SNR) of the spectra (Appendix A in Blumenstock et al. [18]). Each
optical filter obtains a type of spectrum with a specific wavenumber range. As the CO2
absorption lines are mainly located near 2600 cm−1 and 4800 cm−1 [19,20], three types of
spectra are looked into in this study, namely nh, hh, and f7l (Figure 1). Both nh and hh
spectra cover the CO2 lines near 2600 cm−1, and f7l covers the CO2 lines near 4800 cm−1.
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Figure 1. 3 types of typical spectra obtained with optical filters on 6 August 2021 (nh: filter No. 4, hh:
filter No. 3, f7l: filter No. 1 [18]).

We used all the measurements between August 2018 and April 2022. Due to the
COVID-19 lockdown, delivery of liquid nitrogen was not feasible between February and
May 2020, resulting in a short gap.

2.3. NDACC Retrieval Strategy

The SFIT4 v1.0.18 software is used to retrieve the column and vertical profile of atmo-
spheric CO2 from the NDACC-type spectra, which comprises an atmospheric radiative
transfer model using line-by-line integration and an inversion framework based on the
optimal estimation method [21]. In this software, firstly initial atmospheric state vector as
input is provided by lots of information including the a priori profiles of gas, temperature
and pressure, and line list parameters of gas. The spectrum is simulated based on the atmo-
spheric radiative transfer model combined with instrument line shape, and the difference
between simulated and measured spectra is then calculated. The initial state vector will
be adjusted iteratively until the difference is less than threshold, at which point the state
vector is considered as true. To simulate spectrum, the integral form of the Schwarzschild
equation is used, and the atmosphere is subdivided in layers, the number of which is
defined by the user. Therefore, the integral can be replaced by a sum over discreet layers in
the atmosphere:

I = B∞exp(−τ∞) +
n

∑
i=0

Bi(exp(−τi+1)− exp(−τi)) (1)

τi =
n

∑
i=0

kiαi (2)

where Bi represents the Planck function of layer i and τi represents the optical depth from
ground to layer i, which is calculated by the absorption cross section αi and absorber ki. n
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represents the number of total layers, which we set here as 47. The main retrieval parameter
settings are listed in Table 1.

Table 1. The parameters setting of CO2 retrieval from 3 NDACC-type spectra (nh, hh and f7l).

Spectral Type nh, hh f7l

Retrieval windows (cm−1)

2620.55–2621.10 4789.80–4790.50
2626.40–2626.85 4791.70–4792.10
2627.10–2627.60 4795.10–4795.525

2629.275–2629.950 4797.8–4798.25
Interfering gases CH4, H2O, HDO, O3 H2O, HDO, CH4, N2O
Regularization Tikhonov (α = 1500) Tikhonov (α = 2500)

T, P and H2O profiles NCEP
A priori profiles of retrieved

species WACCM v7

SNR 400 250

The retrieved CO2 profile xr can be presented as:

xr = xa + A(xt − xa) + ε, (3)

A = GK =
(

KTS−1
ϵ K + S−1

a

)−1
KTS−1

ϵ K, (4)

where xt and xa represent the true and a priori profiles of CO2 mole fraction, respectively; ε
represents the error containing the forward model and observation error; K and G are the
Jacobian matrix and gain matrix, respectively; and Sϵ and Sa are the covariance matrix of
the measurement and prior, respectively. The relative magnitudes of Sϵ and Sa determine
the weights of measurement and a priori information. Here, Sϵ is constructed using the
spectral signal-to-noise ratio (SNR) whose diagonal elements are set to (1/SNR2) and non-
diagonal lines are 0. The SNR near 2600 cm−1 and 4800 cm−1 bands are set to 400 and 250,
respectively. A is the averaging kernel matrix, indicating the sensitivity of the retrieved
CO2 profile to the perturbation of the true and prior at each vertical level.

The Tikhonov regularization is used to construct Sa (S−1
a = R = αLT

1 L1) [22], where
α values are chosen depending on the root mean square error (RMSE), DOF, and the CO2
profile from the retrieval [23]. Several α values were tested with the spectra on 3 July
2019, as this was a day with a relatively large number (9 for nh and 10 for f7l) and high
quality of spectra. The results for NDACC-type (2600 cm−1) and NDACC-type (4800 cm−1)
retrievals are listed in Table 2, and the a priori and retrieved CO2 vertical profiles are
shown in Figure 2. It is noted that we use the same parameter settings for nh and hh type
spectra (2600 cm−1), and the retrieved results shown in Figure 2 are the nh type spectra. For
NDACC-type (2600 cm−1) retrievals, the CO2 vertical profile exhibits significant anomalies
with α = 500. The RMSE with α = 1500 is almost the same as those with α = 2500 and
α = 6000, but the DOF is greater. For NDACC-type (4800 cm−1) retrievals, the XCO2 value
with α = 2500 is similar to that with α = 6000 and provides the lowest mean RMSE value.
Finally, the α near the 2600 cm−1 and 4800 cm−1 bands are set to 1500 and 2500, respectively.

Table 2. The mean and standard deviation of XCO2, RMSE and DOF from NDACC-type (2600 cm−1)
and NDACC-type (4800 cm−1) retrievals on 3 July 2019 with different α values.

nh f7l

α 500 1500 2500 6000 500 1500 2500 6000
XCO2 (ppm) 430.64 ± 2.05 429.84 ± 1.18 430.15 ± 0.78 430.89 ± 0.88 403.01 ± 2.47 403.66 ± 1.90 403.63 ± 1.95 403.58 ± 1.72

RMSE (%) 0.095 ± 0.018 0.092 ± 0.020 0.092 ± 0.020 0.093 ± 0.020 0.144 ± 0.125 0.112 ± 0.053 0.092 ± 0.017 0.095 ± 0.016
DOF 2.27 ± 0.19 1.89 ± 0.16 1.72 ± 0.16 1.45 ± 0.13 3.20 ± 0.16 2.76 ± 0.11 2.55 ± 0.11 2.18 ± 0.10
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(a) and NDACC-type (4800 cm−1) (b) retrievals with different α values.

Regarding the a priori profiles, we use the mean of the Whole Atmosphere Community
Climate Model (WACCM v7) between 1980 and 2040 to generate the CO2, CH4, N2O, and
O3 priors. Note that these a priori profiles are fixed, which means that they do not vary
with time. Due to the large variation, the a priori profiles of H2O and HDO are derived
from the National Centers for Environmental Protection (NCEP) 6-hourly reanalysis data
and interpolated to the measurement time.

The spectroscopic parameters are key elements in the remote sensing field. Here,
several spectroscopic databases have been tested in Section 3.1.1. The retrieval micro-
windows are rather important, too. Generally, retrieval windows are taken where the target
gas absorption is significant but not saturated and where interference from other gases is
minimized [11]. In the MIR spectral range, there are many other interfering gases with
strong absorption. According to the HITRAN2020 database, as well as previous studies,
micro-windows near 2600 cm−1 and 4800 cm−1 are selected separately. The interfering
gases simultaneously retrieved in each band are given in Table 1 [10,12,24]. Figure 3 shows
two typical spectra near 2600 cm−1 collected at 01:57 UTC on 16 April 2019 with a solar
zenith angle (SZA) of 48.67◦ and near 4800 cm−1 collected at 01:26 UTC on 16 April 2019
with a SZA of 43.35◦, respectively. The fitting residuals of all windows are within ±0.5%,
and the two RMSE values are 0.116% and 0.111%, indicating that we obtained good fits in
both spectral regions.

The CO2 total column averaging kernels (AVK) from the FTIR retrievals are shown in
Figure 4. The shape and numerical magnitude of the column AVK are influenced by various
factors, such as SZA, retrieval window, and spectroscopy [12,25,26]. The NDACC-type
(2600 cm−1) CO2 retrievals have a relatively weak sensitivity in the lower troposphere but a
good sensitivity in the upper troposphere and lower stratosphere, with values varying from
0.5 to 1.5 with altitude in the troposphere. The NDACC-type (4800 cm−1) CO2 retrievals
have a good sensitivity in the troposphere and lower stratosphere, with values close to 1.

According to the optimal estimation method (OEM) [21], the trace of A is the signal
degree of freedom (DOF). When the DOF of the target gas within a vertical range is
greater than 1, this indicates that the corresponding total column can be separated into
independent partial columns [24,27]. Vertical information on CO2 can be obtained in our
NDACC retrievals, and here the DOF is about 2.0 for the NDACC-type (2600 cm−1) CO2
retrievals and about 2.6 for the NDACC-type (4800 cm−1) CO2 retrievals.
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2.4. Reference Datasets and Comparison Methods
2.4.1. TCCON

As mentioned above, TCCON measurements are also carried out at Xianghe. TCCON
uses the GGG2020 algorithm to retrieve XCO2 [28]:

XCO2 = 0.2095 ×
ColumnCO2

ColumnO2

, (5)

where the CO2 column is retrieved using 6180–6260 cm−1 and 6297–6382 cm−1 bands and
the O2 column is retrieved in the 7765–8005 cm−1 band. Using the retrieved O2 column
can reduce common uncertainties, such as instrument and light path errors [10,25]. The
uncertainty of TCCON XCO2 is proved to be below 0.15% (~0.6 ppm) [29], and the TCCON
CO2 retrievals have good sensitivity in the troposphere (Figure 4c).

To evaluate the performance of the retrieval of NDACC XCO2, the results are compared
with co-located TCCON measurements. Note that NDACC uses the surface pressure and
water vapor column to calculate XCO2:

XCO2 =
VCCO2

PS NA

mdry
air {g}

− VCH2OmH2O

mdry
air

, (6)

where mdry
air and mH2O are the molecular masses of dry air and water, respectively; PS is

the surface pressure; {g} is the column-averaged gravitational acceleration; VCCO2 and
VCH2O are the total column of CO2 and H2O, respectively; and NA is the Avogadro constant
number, which is 6.022 × 1023 molecules/mole [30,31].

Since TCCON and NDACC use different a priori profiles and have different vertical
sensitivities, we need to correct these differences before comparing both datasets [32]. Here,
a prior substitution is applied, where the TCCON a priori profile is used as the common a
priori profile to adapt the NDACC retrievals [33]:

x′N,r = xN,r + (I − AN)(xT,a − xN,a), (7)

where xN,r is the NDACC retrieved CO2 profile; I is the unit matrix; AN is the NDACC
averaging kernel matrix; and xT,a and xN,a are the TCCON and NDACC a priori profiles,
respectively. After that, the x′N,r is smoothed with TCCON column averaging kernel (AT) to
take the vertical sensitivity of TCCON retrievals into consideration:

TC′′
N,r = TCa,T + ATPCdry,air

(
x′N,r − xT,a

)
, (8)

where PCdry,air is the dry air partial column profile and TCa,T is the TCCON a priori total
column. Finally, TC′′

N,r is compared to the co-located TCCON retrievals.

2.4.2. CAMS Global Greenhouse Gas Reanalysis (EGG4)

The CAMS global greenhouse gas reanalysis (version egg4) assimilates both in situ
and satellite measurements. It provides atmospheric CO2 mole fractions with a spatial
resolution of 0.75◦ × 0.75◦ and a temporal resolution of 3 h. In this study, we use 1-year
(2019) model data with 25 pressure levels (1000 to 1 hPa). The CAMS global greenhouse
reanalysis data (EGG4) has been well evaluated in previous studies, whose error is within
±10 ppm for near-surface CO2 mole fraction and ±4 ppm for XCO2, respectively, for the
period from 2003 to 2020, validated against a set of independent observations. The CAMS
model can capture well the synoptic and large-scale variability of CO2 [34].

In addition, the vertical profiles of target gas can be provided in NDACC retrievals.
For the purpose of evaluating the performance of the NDACC CO2 vertical retrievals, the
tropospheric CO2 partial column from NDACC measurement is compared with CAMS



Remote Sens. 2024, 16, 900 8 of 18

model data as well. In consideration of the comparison, for CAMS model data, the nearest
model pixel close to Xianghe is selected.

To obtain tropospheric information, we choose the monthly mean of tropopause
pressure gridded data from NCEP/NCAR reanalysis dataset in 2019, which is global and
has a grid resolution of 2.5◦ × 2.5◦, and can be downloaded from https://psl.noaa.gov/
data/gridded/data.ncep.reanalysis.html#source (accessed on 5 July 2023). We use the
grid data near Xianghe and then convert pressure values into altitude values and take an
average. Here, the troposphere is set to 12.2 km. In the vertical range between the surface
and the tropopause height, the mean DOF of CO2 from NDACC-type (2600 cm−1) retrievals
is about 1.0, and from NDACC-type (4800 cm−1) retrievals is about 1.5. This indicates that
we can derive an independent partial column from both NDACC-type CO2 retrievals. The
tropospheric XCO2 mole fraction is defined as:

xCO2,trop =
ColumnCO2,trop

Columndryair,trop
, (9)

where ColumnCO2,trop and Columndryair,trop represent partial columns of CO2 and dry air
in the troposphere, respectively [24,35].

The CAMS model profiles are first interpolated into the NDACC altitude layer and
then smoothed with the NDACC AVK [32]:

xCAMS,s = xa + A(xCAMS − xa), (10)

where xCAMS and xCAMS,s are the CAMS reanalysis CO2 profiles without and with smooth-
ing, respectively. xa is the NDACC a priori profile and A is averaging kernel matrix from
NDACC retrievals. xCAMS,s is compared to the NDACC retrievals.

3. Results
3.1. Sensitivity Studies
3.1.1. Impact from the Type of Spectra and Spectroscopy

Based on previous studies, the uncertainty of the spectroscopy is the dominant error
source in CO2 retrieval [10,36]. In this section, 4 spectroscopies (ATM18, ATM20, HI-
TRAN2016 and HITRAN2020) were tested for NDACC CO2 retrievals. Note that we kept
all the other parameters unchanged and only changed the spectroscopic parameters of CO2.
For the interfering species (H2O, HDO, CH4, N2O, O3), we all used the ATM20 line list, as
it provides the best fitting.

The mean values of XCO2, RMSE, and DOF derived from the nh, hh, and f7l spectra
when using these four spectroscopic databases between August 2018 and April 2022 are
presented in Table 3. In the 2600 cm−1 band, the mean RMSE values from nh and hh spectra
reach the minimum by using the HITRAN2020. The mean retrieved XCO2 with ATM18 and
HITRAN2016 are the same, and the retrieved XCO2 with HITRAN2020 is slightly lower.
Such a difference is mainly due to the difference in line list parameters of CO2. By using
the same spectroscopy, the mean XCO2 derived from the nh spectra is slightly greater than
that derived from the hh spectra, with a difference of about 0.2–0.3 ppm, and the RMSE
derived from the nh spectra is about 0.02% lower than that derived from the hh spectra. It
is indicated that the fit of nh spectra is slightly better than that of hh spectra for the CO2
retrievals in the 2600 cm−1 spectral region.

Since the retrieved XCO2 values with ATM18 and HITRAN2016 are the same, the time
series of monthly mean retrieved XCO2 using ATM20, HITRAN2016, and HITRAN2020
derived from the nh and hh spectra, together with their differences, are shown in Figure 5.
Note that the values here are original, without a priori substitution or AVK smoothing
(same as Figure 6). The retrieved XCO2 using different spectroscopies shows a consistent
seasonal variation, with a maximum in spring and a minimum in summer. Moreover, the
amplitudes of the seasonal variations using different spectroscopies are almost the same.
The monthly standard deviation of XCO2 derived from the nh spectra is slightly less than

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html#source
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html#source
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that derived from the hh spectra. A slight difference in XCO2 derived from nh and hh
is observed, with a range of −2.5 to 2.1 ppm. One possible reason is that the nh and hh
spectra are not observed at the same time, leading to a sampling error. Nevertheless, the
retrieved results between nh and hh are similar, and only the results of nh are shown in the
remainder of this paper.

Table 3. The retrieved mean XCO2, RMSE, and DOF from NDACC-type spectra at Xianghe with
different spectroscopic databases for the period between August 2018 and April 2022. The number of
nh, hh, and f7l spectra is 2608, 2443, and 2087, separately.

Spectroscopic
Database

XCO2 (ppm) RMSE (%) DOF

nh hh f7l nh hh f7l nh hh f7l

ATM18 436.58 436.38 416.92 0.125 0.143 0.154 1.97 1.93 2.60
ATM20 436.60 436.40 416.92 0.125 0.143 0.154 1.97 1.93 2.60

HITRAN2016 436.58 436.38 414.87 0.125 0.143 0.181 1.97 1.93 2.63
HITRAN2020 435.07 434.75 408.97 0.124 0.142 0.129 1.97 1.94 2.60
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As for the 4800 cm−1 band, there is only one spectral type (f7l). The mean DOF in
the CO2 retrievals with these four spectroscopic databases are almost consistent (2.6). The
retrieved results by using ATM18 and ATM20 are the same. The retrieved XCO2 values with
HITRAN2020 are about 6–8 ppm lower than the others, and they show their superiority for
significantly lower RMSE values, with a value of about 0.13% [37]. Figure 6 shows the time
series of retrieved monthly mean XCO2 derived from the f7l spectra. Similar to the features
exhibited in 2600 cm−1, using different spectroscopies has comparable seasonal variations
of XCO2, but with slightly different mean values.

3.1.2. Impact from Line List Parameters

To better understand the impact of spectroscopy, we made sensitivity tests about the
line intensity (S), air-broadened Lorentzian HWHM coefficient (γair), and self-broadened
Lorentzian HWHM coefficient (γself). Firstly, we changed these values in HITRAN2020 at
the position of the strongest line intensity in retrieval windows to the values of correspond-
ing positions in ATM18. The information of the position with the strongest line intensity
in each retrieval micro-window from four different spectroscopies are listed in Table A1.
Then, the XCO2 values retrieved with the changed HITRAN2020 (HITRAN2020_γair,
HITRAN2020_γself, and HITRAN2020_S) were compared to the XCO2 retrieved with
unchanged HITRAN2020 and ATM18. Figure 7 shows the correlations and differences
between retrieved XCO2 with unchanged HITRAN2020 and different spectroscopies in
2600 cm−1 (nh) and 4800 cm−1 (f7l) bands, respectively. In the 2600 cm−1 band, the values
of S at the corresponding positions in ATM18 and HITRAN2020 are the same. Therefore,
only the retrieved values with HITRAN2020_γair (blue) and HITRAN2020_γself (green),
respectively, are given here. In 2600 cm−1, it can apparently be found that the retrieved
XCO2 with HITRAN2020_γself is very close to those using unchanged HITRAN2020. The
difference between them is close to 0, and the Pearson correlation coefficient (R) is about
0.999. The retrieved XCO2 with HITRAN2020_γair is much closer to that with those using
ATM18, with an R of 0.997 (Figure 8a).
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In 4800 cm−1, among these changed parameters, the retrieved XCO2 with HITRAN-
2020_γair is quite different from that with unchanged HITRAN2020 but much closer to
that with ATM18, which shows the same performance as in 2600 cm−1. The R between the
retrieved XCO2 with HITRAN2020_γair and ATM18 is 0.998 (Figure 8b). Additionally, the
parameter S also plays an important role in retrieval, with R of 0.995 between the retrieved
XCO2 using HITRAN2020_S and unchanged HITRAN2020. The difference between re-
trieved CO2 with changed HITRAN2020 and unchanged HITRAN2020 is 4.93 ± 0.79 ppm
for HITRAN2020_γair, 2.90 ± 0.41 ppm for HITRAN2020_S, and 0.004 ± 0.04 ppm for
HITRAN2020_γself, respectively. The difference in parameter γself causes little effect, which
is consistent with the characteristics found in 2600 cm−1.

In summary, we select the HITRAN2020 for CO2 retrieval both for NDACC-type
(2600 cm−1) and NDACC-type (4800 cm−1).

3.2. Comparison with TCCON Measurements

The XCO2 time series of NDACC-type (2600 cm−1), NDACC-type (4800 cm−1), and
TCCON XCO2 measurements between August 2018 and April 2022, together with their
differences and correlations, are shown in Figure 9. The a priori substitution and smoothing
correction were applied to NDACC retrievals (see Section 2.4.1). Since TCCON has been
scaled to the WMO standard, we applied the correction to remove the systematic bias of
NDACC retrievals, with values of 18.45 ppm for NDACC-type (2600 cm−1) and 7.07 ppm
for NDACC-type (4800 cm−1). The seasonal variations of XCO2 derived from NDACC-
type (2600 cm−1), NDACC-type (4800 cm−1), and TCCON have a similar pattern with
a maximum in spring and a minimum in summer. There is a good correlation between
NDACC and TCCON XCO2 measurements, and the R between NDACC-type (4800 cm−1)
and TCCON of 0.84 is similar to that between NDACC-type (2600 cm−1) and TCCON with
R of 0.82. The STD of the XCO2 difference is 2.88 ppm between TCCON and NDACC-
type (2600 cm−1) and 2.32 ppm between TCCON and NDACC-type (4800 cm−1). The
scatter of the NDACC-type (4800 cm−1) retrievals is less than that of the NDACC-type
(2600 cm−1) retrievals.

In order to have a better insight into the seasonal variation of XCO2, the FTIR mea-
surements are fitted with the following formula:

f (t) = αt +
2

∑
k=0

akcos(2πkt) + bksin(2πkt), (11)

where t represents time which in the form of the fractional year α and a0 are associated
with linear changes; α represents the linear trend per year; the unit of α is ppm/year; and
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a0 represents an intercept beginning on 1 January 2000 [38–40]. The fitted curves are shown
in Figure 10.
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Figure 10 shows that there is a large distinction in the shape of the fitted curves between
original NDACC measurements and TCCON and the correlation between them is relatively
weak, with R values of 0.75 and 0.73 for NDACC-type (2600 cm−1) and NDACC-type
(4800 cm−1), respectively. The amplitude of the XCO2 seasonal variation in NDACC re-
trievals with the fixed a priori profile from WACCM is lesser than that in NDACC retrievals
using the same a priori profile as TCCON, especially for the NDACC-type (2600 cm−1)
measurements. On the scale of seasons, the changes in the CO2 profile are mainly reflected
in the shape, where the changes in the lower and middle troposphere dominate [10]. This
demonstrates the difficulty of using the NDACC-type (2600 cm−1) retrieved XCO2 to
capture the whole seasonal variation due to its low sensitivity (Figure 4a) [10,11].

Unlike NDACC-type (2600 cm−1) XCO2, the amplitudes of the XCO2 seasonal cycles
from NDACC-type (4800 cm−1) before and after the prior substitution have no significant
change. The CO2 absorbing line intensity near 4800 cm−1 is much stronger than that near
2600 cm−1 (Figure 3), which allows us to acquire more information in the lower troposphere.
In general, the NDACC-type (4800 cm−1) CO2 retrievals capture the seasonal variation
well and are less reliant on the choice of the a priori profile.

The smoothing correction aims to reduce the distinctions caused by different vertical
sensitivities. Compared to the impact from different a priori profiles, the smoothing
correction has relatively little effect on the results. The scatter between TCCON and
NDACC-type (2600 cm−1) XCO2 decreases from 2.90 ppm before smoothing correction
to ±2.88 ppm after the smoothing, while the scatter between TCCON and NDACC-type
(4800 cm−1) XCO2 increases from 2.29 ppm before smoothing correction to 2.32 ppm
after the smoothing. The difference in the annual growth rate of XCO2 before and after
smoothing correction is within 0.02 ppm/year, which can be ignored.

3.3. Comparison with CAMS Model

As the change of CO2 mainly occurs in the lower troposphere [10], the tropospheric
CO2 partial column can better capture the signal of the emissions and sinks than the
total column [24]. The time series of tropospheric XCO2 between February 2019 and
February 2020 from NDACC retrievals and CAMS re-analysis products, together with
their differences and correlations, are shown in Figure 11. To remove the systematic bias
in NDACC retrievals, the corrections of 19.36 ppm for NDACC-type (2600 cm−1) and
5.46 ppm for NDACC-type (4800 cm−1) were applied using TCCON as a standard. The
CAMS XCO2 was smoothed by NDACC AVK (see Section 2.4.2). Similarly to the CO2
total column, the time series of tropospheric XCO2 has a significant seasonal variation,
with the maximum in spring and the minimum value in summer. The tropospheric XCO2
from the CAMS model is 0.27 ± 3.52 ppm lower than that from NDACC-type (2600 cm−1)
retrievals, and the R is 0.56. The tropospheric XCO2 from CAMS is 0.21 ± 2.60 ppm higher
than that from NDACC-type (4800 cm−1) retrievals, and the R is 0.73. It is indicated that
the NDACC-type (4800 cm−1) retrievals have a better agreement with the CAMS model
in the troposphere than the NDACC-type (2600 cm−1) retrievals (R = 0.56). This is not
surprising, as the AVK of the NDACC-type (4800 cm−1) retrieval shows a good sensitivity
in the troposphere. It can be found that the CAMS reanalysis data show an underestimation
of the seasonal amplitude of tropospheric XCO2 compared to those from both NDACC
retrievals. The incomplete spatial matching between the CAMS model (regional mean) and
FTIR observation (one site), as well as the uncertainty of the CAMS model, may cause this
difference [34].
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4. Conclusions

By utilizing the solar absorption NDACC-type MIR spectra observed by the FTIR at
Xianghe, the retrieval window and spectroscopy are optimized for CO2 retrieval. Two
types of spectra with a central wavelength number near 2600 cm−1 (nh and hh) and one
type near 4800 cm−1 (f7l) are investigated.

Concerning the two different types of spectra (nh and hh) near 2600 cm−1, we find that
the phase, amplitude, and inter-annual growth trends of the retrieved XCO2 seasonal cycle
variation are consistent between the two groups for the period between July 2018 and April
2022. Different spectroscopic databases (ATM16, ATM20, HITRAN2016, and HITRAN2020)
can affect the results in the XCO2 retrieval, and the differences can be up to 1.65 ± 0.95 ppm
in the retrieval of NDACC-type (2600 cm−1) and up to 7.96 ± 2.02 ppm in the retrieval
of NDACC-type (4800 cm−1). The main reason for these systematic deviations is the
differences in the parameter of γair and S in the spectroscopies of CO2. The HITRAN2020 is
found to be superior to the other three databases for the NDACC retrieval of XCO2, since it
provides the best fitting.

NDACC and TCCON CO2 retrievals exhibit a relatively consistent seasonal variation,
reaching a maximum in April and a minimum in August. In addition, there are high
correlations between TCCON and NDACC-type (2600 cm−1) with an R value of 0.82, and
between TCCON and NDACC-type (4800 cm−1) with an R value of 0.84. For the NDACC-
type (2600 cm−1) CO2 retrievals, the seasonal amplitude of XCO2 is underestimated because
of its low AVK in the troposphere. Moreover, the a priori profiles have a strong influence on
the XCO2 seasonal amplitude derived from NDACC-type (2600 cm−1) CO2 retrievals. For
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the NDACC-type (4800 cm−1) CO2 retrievals, the seasonal amplitude of XCO2 is close to
the TCCON measurements, and the a priori profiles have a limited influence on the XCO2
seasonal variation. The NDACC-type (4800 cm−1) AVK shows good vertical sensitivity
in both the troposphere and lower stratosphere. The CAMS model also indicates that the
NDACC-type (4800 cm−1) retrievals can provide better information on the CO2 vertical
profile than the NDACC-type (2600 cm−1) retrievals.

The retrieval strategy with HITRAN2020 near 4800 cm−1 offers potential for the better
use of NDACC-type spectra in CO2 retrieval, and its results are considered to provide the
best information on CO2 concentration among the retrieval strategies we have tested in
this study.
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Appendix A

Table A1. Information of the position with the strongest line intensity in each retrieval micro-window
from different spectroscopies.

Spectroscopy Wavenumber
cm−1

Line Intensity
cm−1/(Molecule

cm−2)
γair γself

Uncertainty

Line Intensity γair γself

ATM18 2620.835313 3.195 × 10−25 0.0828 0.1100 [1%, 2%) [1%, 2%) [1%, 2%)
ATM20 2620.835313 3.195 × 10−25 0.0828 0.1100 [1%, 2%) [1%, 2%) [1%, 2%)

HITRAN2016 2620.835313 3.195 × 10−25 0.0828 0.110 [1%, 2%) [1%, 2%) [1%, 2%)
HITRAN2020 2620.835318 3.195 × 10−25 0.0801 0.109 [1%, 2%) [2%, 5%) [2%, 5%)

ATM18 2626.629861 4.210 × 10−25 0.0745 0.1010 [1%, 2%) [1%, 2%) [1%, 2%)
ATM20 2626.629861 4.210 × 10−25 0.0745 0.1010 [1%, 2%) [1%, 2%) [1%, 2%)

HITRAN2016 2626.629861 4.210 × 10−25 0.0745 0.101 [1%, 2%) [1%, 2%) [1%, 2%)
HITRAN2020 2626.629869 4.210 × 10−25 0.0740 0.100 [1%, 2%) [2%, 5%) [2%, 5%)

ATM18 2627.350141 4.193 × 10−25 0.0737 0.1010 [1%, 2%) [1%, 2%) [1%, 2%)
ATM20 2627.350100 4.193 × 10−25 0.0737 0.1010 [1%, 2%) [1%, 2%) [1%, 2%)

HITRAN2016 2627.350141 4.193 × 10−25 0.0737 0.101 [1%, 2%) [1%, 2%) [1%, 2%)
HITRAN2020 2627.350149 4.193 × 10−25 0.0735 0.099 [1%, 2%) [2%, 5%) [2%, 5%)

ATM18 2629.505616 3.983 × 10−25 0.0717 0.0980 [1%, 2%) [1%, 2%) [1%, 2%)
ATM20 2629.505616 3.983 × 10−25 0.0717 0.0980 [1%, 2%) [1%, 2%) [1%, 2%)

HITRAN2016 2629.505616 3.983 × 10−25 0.0717 0.098 [1%, 2%) [1%, 2%) [1%, 2%)
HITRAN2020 2629.505627 3.983 × 10−25 0.0720 0.096 [1%, 2%) [2%, 5%) [2%, 5%)

https://data.caltech.edu/records/6ywxa-yk431
https://data.caltech.edu/records/6ywxa-yk431
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-ghg-reanalysis-egg4?tab=form
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-ghg-reanalysis-egg4?tab=form
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html#source
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html#source
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Table A1. Cont.

Spectroscopy Wavenumber
cm−1

Line Intensity
cm−1/(Molecule

cm−2)
γair γself

Uncertainty

Line Intensity γair γself

ATM18 4790.125762 9.871 × 10−24 0.0722 0.0990 [1%, 2%) [1%, 2%) [1%, 2%)
ATM20 4790.125762 9.871 × 10−24 0.0722 0.0990 [1%, 2%) [1%, 2%) [1%, 2%)

HITRAN2016 4790.125762 9.871 × 10−24 0.0722 0.099 [1%, 2%) [1%, 2%) [1%, 2%)
HITRAN2020 4790.125755 9.960 × 10−24 0.0720 0.096 [1%, 2%) [2%, 5%) [2%, 5%)

ATM18 4791.892568 1.037 × 10−23 0.0735 0.1000 [1%, 2%) [1%, 2%) [1%, 2%)
ATM20 4791.892568 1.037 × 10−23 0.0735 0.1000 [1%, 2%) [1%, 2%) [1%, 2%)

HITRAN2016 4791.892568 1.037 × 10−23 0.0735 0.100 [1%, 2%) [1%, 2%) [1%, 2%)
HITRAN2020 4791.892560 1.048 × 10−23 0.0730 0.098 [2%, 5%) [2%, 5%) [2%, 5%)

ATM18 4795.369262 1.060 × 10−23 0.0769 0.1040 [1%, 2%) [1%, 2%) [1%, 2%)
ATM20 4795.369262 1.060 × 10−23 0.0769 0.1040 [1%, 2%) [1%, 2%) [1%, 2%)

HITRAN2016 4795.369262 1.060 × 10−23 0.0769 0.104 [1%, 2%) [1%, 2%) [1%, 2%)
HITRAN2020 4795.369248 1.074 × 10−23 0.0752 0.102 [1%, 2%) [2%, 5%) [2%, 5%)

ATM18 4798.064346 1.093 × 10−23 0.0800 0.1070 [1%, 2%) [1%, 2%) [1%, 2%)
ATM20 4798.064346 1.093 × 10−23 0.0800 0.1070 [1%, 2%) [1%, 2%) [1%, 2%)

HITRAN2016 4798.064346 1.093 × 10−23 0.0800 0.107 [1%, 2%) [1%, 2%) [1%, 2%)
HITRAN2020 4798.064294 1.093 × 10−23 0.0774 0.105 [2%, 5%) [2%, 5%) [2%, 5%)
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