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A key issue in landslide susceptibility mapping concerns the relevance of the spatial data combination used
in the prediction. Various combinations of high-resolution predictor variables and possibilities of selecting
them from a larger dataset are analysed. The scarp reactivation of several landslides in a hilly region of W
Belgium is investigated at the pixel scale. The susceptibility modelling uses the reactivated scarp segments as
the dependent variable and 13 factors at a 2 m-resolution related to topography, hydrology, land use and
lithology as potential independent variables. The modelling uses a likelihood ratio approach based on the
comparison, for each independent variable, between two empirical distribution functions (EDFs),
respectively for the reactivated and non-reactivated areas. It uses these EDFs as favourability values to
build membership values and combine them with a fuzzy Gamma operator. Five different data combinations
are tested and compared by analysing the prediction-rate curves obtained by cross-validation. The
geomorphological value of the resulting susceptibility maps is also discussed. This research shows relevant
results for predicting the susceptibility to scarp reactivation. We highlight the need for testing several data
combinations and underline that combining quantitative criteria with expert opinion is an asset for reliable
predictions.
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1. Introduction

Landslide prediction has concerned many studies over the last
decade (Dai et al., 2002; Glade and Crozier, 2005; Van Westen et al.,
2006; Van Asch et al., 2007; Fell et al., 2008). It involves the concepts
of susceptibility, i.e. the spatial distribution of landslides which exist
or potentially may occur in an area, and hazard, which includes the
probability of landslide occurrence within a given period of time. At
first, a landslide prediction focuses on the susceptibility evaluation
which has to be considered independently of the temporal issue. The
spatial aspect is related to a particular combination of predisposing
environmental factors (or predictor variables), whereas the latter one
depends on the probability of occurrence of time-dependent
triggering factors such as earthquakes and heavy rainfall.

The methods for predicting landslide susceptibility range from
purely qualitative evaluations to complex quantitative models, and
rely all on the basic assumption that landsliding is controlled by
variables that can be determined empirically, statistically or by
process-based experiment (Glade and Crozier, 2005; Van Asch et al.,
2007). The statistical methods such as GIS-based bivariate, multivar-
iate, and probabilistic analyses are capable of predicting the spatial
distribution of landslides with a relatively small amount of data
(Glade and Crozier, 2005; Van Westen et al., 2006; Van Asch et al.,
2007), the spatial information on landslide initiation locations being
used in combinationwith several environmental factors. They can also
give reliable results at scales adequate for the design of hazard
mitigation and land development (N1:10,000) (e.g., Thiery et al.,
2007).

Comparing several statistical techniques for predicting landslide
susceptibility is frequent (e.g. Pistocchi et al., 2002; Brenning, 2005;
Lee and Pradhan, 2007; Lee et al., 2007; Akgun et al., 2008; Ercanoglu
et al., 2008; Nefeslioglu et al., 2008; Van Den Eeckhaut et al., 2009;
Yilmaz, 2009; Rossi et al., 2010) and it often reveals, independently of
the combination of environmental factors, marginal differences
between the prediction results. On the other hand, a key issue
concerns the selection of the factors to be inserted in the combination
(e.g. Pistocchi et al., 2002; VanWesten et al., 2003; Regmi et al., 2010).
Unfortunately, due to the lack of information or to some limitations of
the data set, in particular the inappropriate resolution of the Digital
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TerrainModel (DTM), potentially contributing factors have frequently
to be omitted in a prediction (VanWesten et al., 2008), which restricts
some combinations of variables to be tested.

The main scope of this research is to analyse the relevance of
various high-resolution spatial data combinations in landslide
susceptibility mapping and discuss possibilities of selecting them
from a larger dataset. To this end, we apply a probabilistic model to
the reactivation of large landslides in West Belgium using high-
resolution DTMs. Van Den Eeckhaut et al. (2006, 2009) have already
mapped susceptibility to landsliding in this area applying several
statistical approaches based on topographical units and grid cells.
Whereas their research concerned the occurrence of new landslides,
our study is focussing at the pixel scale on the prediction of landslide
reactivation that represents by far the highest hazard related to slope
instability in this area (Van den Eeckhaut, 2006). More precisely, the
study area corresponds to landslide main scarps and the resulting
susceptibility maps locate the parts of pre-existing landslide scarps
most prone to reactivation. A particular focus will be on the
significance of the predictor variables as well as the validation of
the predictions. The role of the geomorphologist's expertise in the
modelling procedure will be pointed up not only in the input data
extraction and selection, but also in the evaluation of the mathemat-
ically obtained landslide susceptibility maps.

2. Study area

More than 150 large landslides are scattered over the loose tertiary
sediment cover forming the hilly area of the Flemish Ardennes in west
Belgium (Van Den Eeckhaut et al., 2005) (Fig. 1A). These landslides
are classified as deep-seated and are rotational and complex earth
slides. No new landslide has developed for decades and due to the
absence of written document describing a landslide initiation they are
all assumed to predate 1900 AD (Van Den Eeckhaut, 2006). They
might have been initiated under periglacial conditions, possibly in
response to a seismic trigger associated with a period of intense
rainfall (Van Den Eeckhaut, 2006; Van Den Eeckhaut et al., 2007a).
According to Keefer's (1984) relation between maximum distance of
landslides from a fault and Richter magnitude ML, magnitudes
between 5 and 6 were estimated necessary to trigger landslides in
the Flemish Ardennes (Van Den Eeckhaut, 2006). However, no
landslide was reported despite the magnitude ML 5.6 earthquake of
June 1938 in the Flemish Ardennes, this event being the biggest
earthquake recorded in Belgium during the 20th century. Actually, the
hazard associated with slope movements in this area corresponds to
groundmovements within these pre-existing landslides. Two kinds of
slope processes, corresponding to either reactivations at a deeper
level or shallower motions are distinguished (Dewitte et al., 2009).
The former re-use pre-existing surfaces of rupture located at depths of
∼15–20 m and are associated with the largest movements. They are
also smaller reactivations confined at the landslide head. The other
displacements consist in (1) earth flows occurring in the zone of
accumulation sometimes as a consequence of large upslope reactiva-
tions, and (2) small failures occurring randomly. The higher hazard is
related to the reactivations. Interviews and analysis of written
documents stressed that ∼15% of the landslides were affected by
reactivation over the last two decades (Van Den Eeckhaut, 2006),
which is a minimum value with regard to the decadal-scale analysis of
ground movements of several representative landslides performed by
Dewitte et al. (2009) with multi-temporal DTM comparisons. While
most reactivations were triggered by intense rainfall, their spatial and
temporal distributions are strongly related to the nature of the
vegetation cover and the human activity (Van Den Eeckhaut et al.,
2007b; Dewitte et al., 2008, 2009). The region has a maritime
temperate climate with an average temperature of ∼10 °C and amean
annual rainfall of 800 mm which is well-distributed over all the
season.
As a compromisebetweenhigh resolution and reasonable processing
time, we focussed on the reactivation of 13 representative landslides.
They extend on two hills which culminate at altitudes between 75 and
85 masl and are situated along the river Scheldt close to the town of
Oudenaarde (Fig. 1B). Three landslides extend on the Leupegem hill, to
the north, and 10 are developed on the Rotelenberg hill, to the south
(Fig. 1B). The landslides are carved in an alternation of Eocene
subhorizontal clayey sand and clay layers on which a perched water
table can expand (Jacobs et al., 1999). They are all in contact with the
AalbekeMember of theKortrijk Formation,which consists of 10-m-thick
homogeneous blue massive clays and is recognized as the layer most
sensitive to landsliding (Fig. 1B). They have amean size of∼6 ha (from2
to 10 ha), a length of ∼320m, and a width of ∼175 m, and their ∼8-m-
high main scarp delimits the abrupt fringe of the plateaus (Dewitte and
Demoulin, 2005). They developed on slopes of 13–20%, preferentially
oriented to the W and N. Through morphometric measurements, the
meandepthof the surfaceof rupturehasbeenestimated in the range15–
20 m, implying a mean displaced volume of ∼300000 m3 (Dewitte and
Demoulin, 2005; Dewitte et al., 2008, 2009). The landslides are mainly
covered by pastures and forests (mainly beech and poplar trees), while
theirmain scarps are almost completely forested (except for landslides 3,
4, and10). Forest dominateswithin landslides 7, 8, 9, 11, 12 and13while
pasture extends almost exclusively at the foot of landslides 9 and 10
(Dewitte, 2006). Cultivated land predominates upslope of the landslide
crowns, with limited change over time, and a very small area is covered
by buildings. The land use percentages remained similar during the
1952–1996 period (Dewitte et al., 2009).

3. Spatial data used in the modelling

The first step in our data collection was to define the extent of the
13 main scarps, i.e. the study area, and to localise their reactivated
sections. To do this, we used multi-temporal DTMs of the Leupegem
and Rotelenberg hills (Fig. 1B) for two periods (1952 and 1996). From
ground points and scarp lines extracted by aerial digital stereophoto-
grammetry, the DTM grids were generated at a 2 m-resolution with a
final accuracy ranging between ∼45 and 65 cm (Dewitte et al., 2008).
The lines of pixels derived from the top lines of the main scarps used
for the DTM generation are not considered as such for the study area.
Due to data alteration during the vector–raster conversion, most of
those pixels are extending only partly on the real scarp. Actually, the
study area concerns all the pixels downslope of the top of the scarps
and totally located on the visible part of the surface of rupture, which
corresponds fairly well to the real scarp area (Dewitte, 2006). In total,
the study area covers 6293 pixels at the 2 m-resolution, which
represents by far enough data to construct robust statistical models
(Demoulin and Chung, 2007; Hjort and Marmion, 2008). From the
comparison of these DTMs for the two epochs, 14 areas of scarp
retreat N2 m corresponding to reactivation (Fig. 2A) were identified
within the 13 main scarps (Dewitte et al., 2009). This 2 m threshold
value corresponds to the 95% confidence level derived from the RMS
error of the DTMs. In total, 1268 pixels are in the reactivated sections,
which means that ∼20% of the study area was affected by these slope
movements during the 1952–1996 period.

The potential predisposing factors used as independent variables
in the modelling were extracted from the DTMs of 1952 and 1996, the
land use maps derived from the orthophotos obtained with the aerial
photographs used in the DTM extraction, and the 1:50000 digital
lithological map updated in 2001 by the Flemish Government. All the
variables are extracted at the 2-m pixel size.Working at the resolution
of the DTMs allowed us to generate all the potential predisposing
factors that we consider relevant for the assessment of landslide
reactivation process. The lithological map is however not that precise
and, for this reason, the uncertainty related to its boundaries will be
considered in the modelling (See Section 5.2). The 13 potential
predictor variables are presented in Table 1.



Fig. 1. Location map of the study area. (A) General view of the Flemish Ardennes. The LIDAR-derived topography and the shaded map are from the DEM of Flanders acquired in 2002
and published in 2005 by OC GIS-Vlaanderen [MVG,-LIN-AWZ and MVG-LIN-ANIMAL]). The landslides in yellow correspond to the mass movements whose main scarps are
investigated in this research. The white circles locate the other landslides that have been located in the Flemish Ardennes by Van Den Eeckhaut (2006). (B) Lithological setting of the
two investigated hills. The scars and the main scarps of the landslides are superposed on the Eocene lithologies. The main scarps represent the area investigated for the modelling.
The quadrangles DTM I and DTM II locate the DTMs used in the modelling. The altitudes (in white) and coordinates (Belgian Lambert 72) are in meters.
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The predictor variables were all computed with the 1952 and 1996
data (with ArcGIS 9.0 dedicated functions), except for the lithology.
Since the reactivated parts (Fig. 2) correspond to slope movements
that have occurred between 1952 and 1996, the 1952 predictor
variables allowed us to consider the pre-failure conditions, i.e. those
that led to slope reactivation and are not the consequence of it
(Atkinson and Massari, 1998; Van Den Eeckhaut et al., 2006;
Nefeslioglu et al., 2008). In the same way, the 1996 data will be
used for computing the post-1996 probabilities.

Three morphological data were directly computed from the DTMs:
elevation, slope angle and slope aspect. Elevation was not considered
here as a factor reflecting rainfall repartition, the two hills being very
close and having a similar relief. It was actually chosen as a proxy
indicator of the groundwater conditions. The lithology has a
subhorizontal structure; the higher on a hillslope a pixel is located,
the more chances the groundwater level has to be deep.

The high resolution of the DTMs permitted a particular focus on the
surface runoff. Several variables were considered as relevant. They
define locations of water concentration and therefore represent
potential placeswhere slope instability can increase after rainfall events:

• flow accumulation which represents the number of cells that flows
into each downslope cell, or in other words, is a measure of the land
area that contributes runoff to the pixel;

image of Fig.�1


Fig. 2. Study area and landslide scarps studied. (A) Fourteen occurrences of scarp retreat (reactivated areas) measured between 1952 and 1996 from the comparison of two 2-m
DTMs extracted by aerial digital stereophotogrammetry. The 1952 setting (shown here) corresponds to the pre-reactivation conditions. (B) Reactivation of a scarp in pasture: view
towards the W of the pre-1996 reactivated main scarp of landslide 4 (April 2004). The lateral extension of the main scarp is ∼60 m. The white dashed line marks the scarp.
(C) Reactivation of a forested scarp: view towards the SE of the February 1995 reactivated main scarp of landslide 1 (February 2003). (D) Stable scarp under forest: view towards the
SE of the landslide 8 main scarp (April 2004). (E) Stable scarp in pasture: view towards the E of the landslide 3 main scarp (April 2004).
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• focal flow which corresponds to local flow concentration involving
the surrounding eight pixels. Its resulting values measure flow into,
and not out of a cell;

• profile and planform curvatures which control the flow of water in
and out of the slopes. These variables were computed with the
surrounding eight pixels; and

• distance from stream network which is the Euclidean distance from
the stream channel network simulated based on flow accumulation
data. Each pixelwith aflowaccumulation value exceeding2000 pixels
was classified as a stream. The use of this threshold value resulted in a
drainage area of 8 ha as the one observed for incipient gully
development in Central Belgium (Poesen et al., 2003).
Two geological data layers were extracted from the digital
lithological map. The variable “lithology” includes four rock types
(from the most recent to the oldest): Tielt Formation (clayey sand
alternating with clay layers), Aalbeke Member (clay), Moen Member
(clayey coarse silt to fine sand with clay layers), and Saint-Maur
Member (silty clay). The “distance from Aalbeke Member” is the
Euclidean distance from the Aalbeke clays, the most sensitive to
landsliding.

The role of vegetation was taken into account through three
predictor variables. Four different classes were distinguished in the
“Land use” layer: cultivation, meadow, forest and built area (roads and
houses). “Distance from cultivation” which corresponds to the

image of Fig.�2


Table 1
Description of the 13 potential predictor variables used in the modelling.

Variable Unit Type* Original data**

Elevation m 1 DTMs
Slope angle Degrees 1 DTMs
Slope aspect Degrees 1 DTMs
Flow accumulation Pixels 1 DTMs
Focal flow Pixels 1 DTMs
Profile curvature 1/100 m 1 DTMs
Planform curvature 1/100 m 1 DTMs
Distance from stream network m 1 DTMs
Land use Class 2 Orthophotos
Lithology Class 2 Rock type map
Distance from cultivation m 1 Orthophotos
Distance from Aalbeke Member m 1 Lithological map
Vegetation index Pixel m−1 1 Orthophotos, DTMs

*Type 1 means continuous variable and type 2 means categorical variable.
**Both DTMs and orthophotos of 1952 and 1996 were used to derive the variables.
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Euclidean distance from the nearest cultivation located upstream of
the main scarps was constructed to consider the important role that
cultivation can have on surface runoff, especially during the winter
when bare soils can represent a large part of the cultivated areas. In
order to approximate the interplay between the concentration of the
surface runoff within the cultivation and its infiltration along its flow,
the “vegetation index” was computed. It corresponds to the flow
accumulation through the cultivated areas located upstream of the
main scarp and weighted by the length of the flow.

The errors related to the DTMs can have an impact on the
reliability of the variables. This impact is quite difficult to quantify, but
it can be more or less important according to the type of variable
considered. For the “elevation” it is negligible since it concerns an
error of a few tens of centimetres over several tens of meters. On the
other hand, the impact on the variables derived from the DTMs can be
more significant, especially where the topographic surface is quite flat
(Chang and Tsai, 1991; Florinsky, 1998). Since the study area concerns
the main scarps of the landslides, where the slope angles are large
(N15%; Dewitte, 2006), the impact of the errors should be very limited
on the variables where the computation relies only on the
topographical characteristics of the scarps: slope angle, slope aspect,
focal flow, and profile and planform curvatures. However, flow
accumulation should bemore sensitive since it dependsmainly on the
topographic configuration in the flatter areas upslope of the main
scarps. A small elevation error can modify the direction of the flow
and hence its accumulation. If it happens in the upslope part of the
watershed, close to the drainage divide where the accumulation
values are small, such a modification should be very limited. On the
other hand, downslope, the accumulations are larger and a modifi-
cation in the direction can give a pixel a value far from the reality.
Along the main scarp lines, the lateral variability of flow accumulation
can be very important from one pixel to the other (Dewitte, 2006).
Since the DTM errors are randomly distributed (Dewitte et al., 2008),
no trend should appear in the accumulation errors; therefore, the
errors along the scarps should concern in each time very small groups
of pixels randomly spread out and independent from each other.
Actually, the impact of the errors on the real pattern of flow
accumulation is very limited, as it is attested by field observations
(Dewitte, 2006).

4. Methodology

4.1. Quantitative model

Several favourability function models have been developed for
predicting landslide susceptibility (Chung and Fabbri, 2005; Chung,
2006; Demoulin and Chung, 2007). The model used here is an
adaptation of the fuzzy set membership function proposed by Chung
and Fabbri (2008) in combination with the fuzzy set operator
approach developed by Chung and Fabbri (2001). The model is
based on the likelihood ratio function of multivariate frequency
distributions calculated for predictor variables (Chung, 2006). Beyond
easy calculation, the advantage of this probabilistic approach lies in
yielding significant results already with small datasets. It allows us to
work at the pixel scale and analyze continuous and categorical data
layers simultaneously without converting one type of data into
another. This hybrid approach also allows the introduction of the
expert knowledge in the factor selection.

Consider a study area with m spatial data layers (predictor
variables). To predict landslide reactivation the area is divided into
two non-overlapping sub-areas, the “reactivated” (denoted byM) and
“stable” (denoted by M

P
) ones (Fig. 2). To provide useful information

for identifying reactivation locations, the predictor variables in
reactivated areas should have ranges of values that differ significantly
from those in stable terrains. Thus the frequency distributions of
variables for both areas should also be distinctly different. The
likelihood ratio function is the ratio of the two frequency distributions
and highlights the difference between the two areas. Consider a pixel
p withm pixel values (p1,⋯,pm) in a study area, one for each data layer.
Let f { p1,⋯, pm|M} and f {p1,⋯,pm|M

P
} be the multivariate frequency

distribution functions assuming that a pixel is from M, and from M
P
,

respectively.
Then, themultivariate likelihood ratio function that the pixel p will

belong to a future reactivation is defined as:

λðp : p1;⋯;pmÞ =
f fp1;⋯;pm j Mg
f fp1;⋯;pm j Mg ð1Þ

Consider a pixel p in the study area with values (x1,⋯, xk, y1,⋯, yh);
the first k values (x1,⋯, xk) correspond to categorical variables and the
remaining h values (y1,⋯, yh) represent continuous variables and
m=k+h. Let f {x1,⋯, xk, y1,⋯, yh|M} and f {x1,⋯, xk, y1,⋯, yh|M

P
} be the

multivariate frequency distribution functions assuming that a pixel is
from M, and from M

P
, respectively. Then the multivariate likelihood

ratio function in Eq. (1) is denoted by:

λðp : x1;⋯; xk; y1;⋯; yhÞ =
f fx1;⋯; xk; y1;⋯; yh jMg
f fx1;⋯; xk; y1;⋯; yh jMg ð2Þ

To estimate λ(p:x1,⋯, xk, y1,⋯, yh), the m categorical and continuous
predictor variables are assumed to be statistically independent and
hence:

λðp : x1;⋯; xk; y1;⋯; yhÞ = λðp : x1;⋯; xkÞ⋅λðp : y1;⋯; yhÞ ð3Þ

The likelihood ratio function of Eq. (3) is estimated as a multiple
of two estimated likelihood ratio functions: λ(p:x1,⋯, xk) for the
categorical data layers and λ(p:y1,⋯, yh) for the continuous data layers
as discussed in Chung (2006).

The estimation of λ(p:x1,⋯, xk) is based on the ratios of two
c1×c2×⋯×ck empirical cross-classified contingency tables (or the-
matic frequency tables: TFTs) (cj is the number of categories in the j-th
categorical variable), one forM and the other forM

P
, and the empirical

estimation of λ(p:y1,⋯, yh) is based on the ratios of two empirical
frequency distribution functions (EDFs) using the kernel method
(Silverman, 1986) (Fig. 3).

The estimation of Eq. (3) corresponds to:

λ̂ðp : x1;⋯; xk; y1;⋯; yhÞ = λ̂ðp : x1;⋯; xkÞ⋅ λ̂ðp : y1;⋯; yhÞ ð4Þ

where λ̂ðp : x1;⋯; xkÞ is an estimate of λ(p:x1,⋯, xk), and λ̂ðp : y1;⋯; yhÞ
is an estimate of λ(p:y1,⋯, yh). The values of λ̂ðp : x1;⋯; xk; y1;⋯; yhÞ
may range [0, ∞). According to the model, the pixel with the largest
estimated value is considered to be the location most likely to be
affected by future landslide reactivations. Using the estimate value of



Fig. 3. Examples, for the study area, of empirical distribution functions (EDFs) and
thematic frequency tables (TFTs) with their respective membership functions (MF). To
give a membership value to each pixel of each input data layer we need to extract a pair
of EDFs (or TFTs), one for the reactivated scarps and the other for the stable scarps. The
EDF is determined using the normal density function as a kernel (Silverman, 1986),
where a spread parameter equalling 2% of the total range of the input pixel values is
applied. (A) EDFs calculated for the “distance from stream network” independent
variable and the respective membership function computed with Eq. (7). (B) TFTs
calculated for the “land use” independent variable and the respective membership
function computed with Eq. (7). Both data layers used in the examples are from 1952.
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the favourability function, a prediction map is generated, showing the
susceptibility level on a continuous scale at every pixel in the map.

Chung and Fabbri (2008) defined the following function μ:

μ p : x1;⋯; xk; y1;⋯; yhf g =
h λ̂ðp : x1;⋯; xk; y1;⋯; yhÞ
� �

1 + h λ̂ðp : x1;⋯; xk; y1;⋯; yhÞ
� � ð5Þ
Fig. 4. Study area with the 26 occurrences of slope instability (or reactivation event) along
white areas) are presented with the 1952 topography that corresponds to the pre-reactiva
where h is an order-preserving function (h(a)≤h(b) if a≤b). The
range of μ{p:x1,⋯, xk, y1,⋯, yh} is [0, 1]. Eq. (5) can be considered as a
fuzzy membership function for the fuzzy set containing sub-areas
likely to be affected by the future landslides. The idea behind fuzzy set
theory is to consider how much a spatial object belongs to a set. In
classical set theory, an object belongs or does not belong to a set
which contains only 0 and 1 values as degrees of membership. In the
fuzzy set theory, membership can take on any continuous value in the
real number interval [0, 1], reflecting the degree of membership.
When the degree of membership reaches 1, the element completely
belongs to the set. Lower degrees express a partial membership to the
set, down to the value of 0 which indicates no-belonging. A fuzzy set
can thus be explained as a set containing elements that have varying
degrees of membership in the set (Zimmermann, 1991; Klir and Yuan,
1995). The pixel with the largest estimate near 1 is considered to be
the location most likely to be affected by future landslides.

Instead of considering m-dimensional multivariate distribution
functions and under the conditional independence assumption, the
likelihood ratio function may be estimated as a multiple of separate
univariate likelihood ratio functions (Chung, 2006). Consider EDF-R,
the empirical distribution function (or thematic frequency table) of
the reactivated areas, and

P
EDF�NR, the respective empirical distri-

bution function (or thematic frequency table) of the non-reactivated
(stable) areas. Based on Eqs. (2) and (4), we get for one predictor
variable the following univariate ratio function:

λ̂ðp : pjÞ =
EDF�R
P
EDF�NR

ð6Þ

Considering Eq. (6) in the estimate of Eq. (5) for one predictor
variable and simplifying the resulting equation without considering
an order-preserving function, we finally get the following member-
ship function:

μ p : pj
n o

=
EDF�R

EDF�R +
P
EDF�NR

ð7Þ

A membership value is therefore given to each pixel of each input
data layer (Fig. 3). A variety of operators can be employed to combine
the membership values (Zimmermann, 1991; Bonham-Carter, 1994;
Moon, 1998). As already performed in several studies (e.g., Chung and
Fabbri, 2001; Pistocchi et al., 2002; Tangestani, 2004; Lee, 2007), we
applied the fuzzy Gammaoperatorwhich is defined as a combination of
the fuzzy algebraic product and the fuzzy algebraic sum (Zimmermann,
the 13 landslide scarps used for the prediction validation. The occurrences (black and
tion conditions.

image of Fig.�3
image of Fig.�4


Table 2
Rotated factor matrix with absolute factor loadings over 0.7 in bold. The four factors
explain 66.1% of the variance.

Variable Factor 1 Factor 2 Factor 3 Factor 4

Elevation 0.916 0.011 −0.060 0.019
Slope angle 0.562 −0.034 0.034 0.130
Slope aspect-NSa 0.141 −0.042 −0.034 −0.931
Slope aspect-EWb −0.050 0.025 0.049 0.954
Flow accumulation −0.069 −0.052 −0.951 0.004
Focal flow −0.041 −0.639 0.012 0.003
Profile curvature 0.051 0.775 −0.009 0.179
Planform curvature −0.031 0.848 0.021 0.008
Distance from stream network 0.634 0.128 0.090 −0.204
Distance from cultivation −0.793 0.036 0.095 0.304
Distance from Aalbeke Member 0.016 −0.319 −0.139 0.203
Vegetation index 0.063 −0.032 −0.949 −0.067
Total variance (%)c 18.5 15.5 15.4 16.7

a North–south component of slope aspect.
b East–west component of slope aspect.
c Portion of the variance explained by factor.

Table 3
Association between the reactivations and the predictor variables. Cramer's V values in
bold are the variables selected for Model Chi-2.

Variable Chi-2 Cramer's V

Elevation 257.3 0.232
Slope angle 481.6 0.277
Slope aspect 1093.0 0.416
Flow accumulation 67.8 0.104
Focal flowa 6.9 0.033
Profile curvature 61.9 0.099
Planform curvaturea 25.4 0.064
Distance from stream network 175.6 0.167
Land use 55.6 0.094
Lithology 55.6 0.094
Distance from cultivation 455.2 0.268
Distance from Aalbeke Member 363.1 0.240
Vegetation index 28.5 0.067

a Predictor variable not significant (significance level=0.05).
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1991). The joint membership function at a pixel is defined as:

μ xð Þ = μ product xð Þ
h i1−γ½μ sum xð Þ�γ ð8Þ

where γ is a constant parameter chosen in the range [0, 1]. The fuzzy
algebraic product and fuzzy algebraic sum are calculated using the
following equations, respectively:

μproduct xð Þ = ∏
m

j=1
μ j xð Þ

" #
ð9Þ

μ sum xð Þ = 1− ∏
m

j=1
1−μ j xð Þ

� �" #
ð10Þ

where μj(x) is the fuzzy membership function for the j-th map, and
j=1, 2,⋯, m are the maps that have to be combined for the prediction.
The Gamma operator is a useful tool for calculating a range of values
going from aminimum, corresponding to the algebraic product (γ=0),
to a maximum, corresponding to the algebraic sum (γ=1). Though it
has been shown that fuzzy operators may depend on the type of spatial
data (Moon, 1998), we decided to use here only the Gamma operator
with γ=0.5. This choice of value ensures a compromise between the
“decreasing” effects of the fuzzy algebraic product and the “increasing”
effects of the fuzzy algebraic sum. The estimator of Eq. (8) can beused to
describe the susceptibility attached to the pixel.

4.2. Data combination

Several data combinations will be analysed with regard to geomor-
phological and quantitative criteria. A drawback of our modelling
approach lies in the conditional independence assumption made
among the predictor variables that requires that each factor provides
“independent” evidence for the occurrence of future landslides. This may
cause the spatial probabilities to be either overestimated or under-
estimated (Bonham-Carter, 1994). To quantify the possible correlation
between the factors, a Principal Component Analysis (PCA) will be
performed (e.g., Baeza and Corominas, 2001; Santacana et al., 2003). PCA
provides some insights on the structure of the overall population, and
knowing how the population is structuredmay allow the identification of
variables having similar behaviour and to detect correlation that is
difficult to observe with a simple correlation matrix. This allows a
selection of the most significant variables.

Data selection will also rely on Chi-square (Chi-2) statistics to test
the association between each predictor variable and the occurrence of
slope instabilities. The Cramer's V statistics, based on the Chi-2 values,
will be applied to test the strength and the type of the association
(Bonham-Carter, 1994). Chi-2 values correspond to an absolute
measure of the association and are useless in themselves, while V
index gives a standardized values ranging between 0 and 1. The closer V
is to 1, the stronger is the association between two variables.

4.3. Validation procedure

The validation of the result is amandatory step to assess the accuracy
and the reliability of a model (Chung and Fabbri, 2003; Brenning, 2005;
Guzzetti et al., 2006). Time partitioning of landslide occurrences is the
most natural and convincing strategy to validate a prediction image for
future events. In our research, because only one time interval of past
occurrence is available, a spatial partitioning was performed. The field
observation of recent reactivations in the study area (VanDen Eeckhaut
et al., 2007b; Dewitte et al., 2008, 2009) and other reactivations in the
Flemish Ardennes (Dewitte, 2006) attest that such movements, when
they occur, do not affect thewhole length of the scarp in one time. Large
reactivated areas, as the one of landslide 1 (Fig. 2), instead result from
successive collapses. It is also observed that the whole height of the
scarp is at each time affected by a reactivation. With regard to these
observations, the 14 reactivated parts detected along the scarps (Fig. 2)
weremanually divided into 26 scarp segments of similar length (∼20 to
30 m) thatwe consider to correspond to the unit length of a reactivation
event (Fig. 4). Through this segmentation, we need to consider the
spatial autocorrelation between the pixels of an individual movement
since, when a reactivation occurs, cells within it move together. Such a
segmentation is obviously related to uncertainties, like for common
delimitation of landslide boundaries (Malamud et al., 2004; Galli et al.,
2008), but it does not modify the real proportion of the study area
affected by the reactivations.

Theprediction rateof the resulting susceptibilitymap is estimatedbya
spatial cross-validation procedure sequentially excluding some reacti-
vated scarp segments at random. The random selection of observations
also helps to circumvent the potential risks of spatial autocorrelation
(Diniz-Filho et al., 2003). To evaluate the prediction results, we applied
the procedure proposed by Dewitte et al. (2006). We first remove
randomly 2 of the 26 reactivated scarp segments as if they had not yet
occurred. Then, using the remaining 24 occurrences, a susceptibility
model is computed based on the estimator of Eq. (8). The favourability
indices (or jointmembership values) obtained in the twooccurrences not
used in themodelling are appraised and the prediction of one occurrence
is considered successful when at least 25% of it (i.e. 25% of its pixels) lie
within the part of the study area that is predicted as being the most
susceptible to reactivation. In other words, we then obtained for each of
the occurrences an individual prediction rate that indicates how many
percents of the study area (the pixels being ranked decreasingly) have to
be selected inorder to include25%of this instability in thehazardous area.



Fig. 5. Susceptibility maps of the scarp reactivation obtained from the 1952 data layers. The pixels are ranked according to their degree of susceptibility (joint membership value).
The top 10% most hazardous pixels are distinguished in red. (A) Model All using the 13 predictor variables. (B) Model PCA using elevation, planform curvature, flow accumulation
and slope aspect. (C) Model Chi-2 using slope aspect, slope angle, distance from cultivation, distance from Aalbeke Member and elevation. (D) Model Empi using slope aspect,
planform curvature, vegetation index and focal flow. (E) Model Expert using slope angle, flow accumulation, elevation and distance from cultivation.

160 O. Dewitte et al. / Geomorphology 122 (2010) 153–166
This experiment is repeated 13 times in order to consider only once each
of these 26 occurrences. The prediction-rate curves associated with a
prediction is plotted from these 26 values. For each curve, the smallest
portion necessary to predict an occurrence is first placed on the x-axis
with its corresponding reactivated area on the y-axis. Afterwards, the
second smallest portion value is plotted on the graph and the second y
value equals the cumulative reactivated areas, etc.
A critical point in our validation methodology is the use of a value of
only 25% for the estimation of the prediction rates, whereas a value of at
least 50%may bemore realistic. In the susceptibilitymapping literature, a
landslide is commonly considered as one single occurrence that develops
in one time. Such an assumption can be realistic for a small landslide, but
can be inappropriate for a large rotational landslide for which the surface
extent is often the result of a succession of movements, as it is notably
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Fig. 5 (continued).
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demonstrated for the Flemish Ardennes (Van Den Eeckhaut et al., 2007a;
Dewitte et al., 2009). In this case study, we use reactivated segmentswith
the knowledge that, when a reactivation occurs, the whole height of the
scarp is affected in one time. This allows us to better define the reality of
the slope processes. Based on the comparison of several tests performed
with both 50% and lower values, it was then decided that using 25%was a
good balance between the geomorphological aspect and the improve-
ment of the model performance (Dewitte, 2006).

Without this cross-validation procedure, the susceptibility maps
cannot be quantitatively evaluated and therefore would be meaning-
less. Moreover, it provides support for the model comparison and the
evaluation of the contribution of each input layer to the prediction.

5. Results

5.1. Data combinations

We tested five data combinations:

• Model All: the 13 independent conditioning variables
This combination includes all the spatial data supposed to control
the landslide reactivation and considered relevant for the suscep-
tibility mapping.

• Model PCA: elevation, planform curvature, flow accumulation and
slope aspect
This combination includes the variables that are the most representa-
tive of each component resulting from a PCA applied on the continuous
predictor variables. Due to the circular nature of slope aspect, we
considered it in the PCA as two variables corresponding to its north–
south and east–west components. PCA was performed with standar-
dised variables (i.e. the variance of each variable=1 so that the total
variance of the continuous variables=12). Table 2 presents the rotated
matrixwith the factorswith an eigenvalueN1. It stresses thatmore than
66% of the variance of the continuous predictor variables can be
expressedby four factors.Weightingsof the factor showthat each factor
is mainly defined by two variables; each of the two contributes about
the same.

Factor 1 represents the elevation component. The variable “distance
from cultivation” is related to “elevation” and logically of opposite sign
because it is calculated from the cultivations located upslope of the
main scarp. The correlation between “slope angle” and “elevation” is
explained by the presence of the highest slope angles along the highest
parts of the main scarps (Dewitte, 2006).

Variables planform and profile curvatures and to a lesser extent focal
flowdefine the second factorwhileflowaccumulation and the vegetation
index define factor 3. Slope aspect is clearly associated with factor 4.

PCA can have difficulties in dealing with categorical data and optimal
results are not guaranteed (Dillon and Goldstein, 1986). Therefore, both
categorical variables land use and lithology were not included in the
analysis. They could have been considered as binary variables (4 for land
use and 3 for lithology), but their relative contribution on the total
variance (7 and 19 respectively) produced unreliable results (Dewitte,
2006). Chi-2 tests applied between the two categorical data and the four
main components revealed a significant association with the four factors,
more particularly with factors 1 and 4 (Dewitte, 2006).
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From PCA, a dataset with the most significant variable of each
factor was taken as a susceptibility model: elevation for factor 1,
planform curvature for factor 2, flow accumulation for factor 3, and
slope aspect for factor 4.

• Model Chi-2: slope aspect, slope angle, distance from cultivation,
distance from Aalbeke Member and elevation
Chi-2 and Cramer's V statistics (e.g., Pistocchi et al., 2002; Van Den
Eeckhaut et al., 2006; Thiery et al., 2007) were applied for the
selection of the variables of this model (Table 3). It includes the five
variables with the highest Cramer's V value. Slope aspect has the
highest predictive power. Due to the very small difference between
“distance from Aalbeke Member” and “elevation”, we chose five
variables in spite of four as pointed out in the PCA.

• Model Empi: slope aspect, planform curvature, vegetation index and
focal flow
This combination was obtained through an empirical selection of
the variables (Dewitte, 2006). Based on the prediction rate of each
individual variable obtained by applying Eq. (8) and the above-
mentioned cross-validation procedure, we selected the best factor
to predict landslide occurrence. Thenwe tested all the possible pairs
of variables including this factor and, on the basis of the prediction
rate again, selected the best two-variable model. By successively
adding a variable to the precedent best model until having the best
prediction rate, we obtained a four data layers model (Dewitte et al.,
2006). Slope aspect is the variablewith the highest predictive power
when considered individually.

• Model Expert: slope angle, flow accumulation, elevation and
distance from cultivation
The selection of the predictor variables of theModel Expert relies on
our expertise in the field and the information collected over the last
50 years (Van Den Eeckhaut et al., 2007b; Dewitte et al., 2008,
2009). This combination includes the four variables that were
considered as having the biggest impact on the reactivation process.
To consider the occurrence of a perched water table in relation with
the presence of the Aalbeke clays, we chose elevation which has a
higher accuracy than lithology and distance to Aalbeke Member.

5.2. Susceptibility mapping based on the 1952 data

The 1952 models were built from the relations linking the 1952–
1996 scarp retreat events to the conditioning parameters of 1952.
There is an uncertainty associated with the thematic data, so that they
have characteristic fuzzy boundaries. This was taken into account in
Fig. 6. Prediction-rate curves obtained by cross-validation for the five 1952 susceptibility
mapsof Fig. 5. These cumulativeplots indicatehowmany “mosthazardous”percentsof the
study area (x-axis) have tobe taken into account topredict a givenpercentageof the future
reactivations (y-axis) according to each model and the adopted cross-validation process.
For Model Empi, the highest hazardous 20% of the study area contain 60% of the predicted
reactivations (blue point). The black horizontal dashed line (slope=0) represents 50% of
the predicted reactivations. The black dashed line (slope=1) represents a curve for a
“randomly” constructed prediction.
the prediction by defining β as the radius in terms of numbers of
pixels, which corresponds to the likely uncertainty of boundaries in
the layers (Chung, 2006). If β=1, the value of each pixel contained in
the thematic layer will be preserved. If βN1, the value of each pixel
contained in a buffer of a width=2 β around the boundaries has to be
modified. Suppose a circle with a radius βN1 drawn at the centre of
pixel in the thematic layer, this circle containing several pixels of
different values. The new value of the pixel of the boundary
corresponds to the sum of the products of each pixel value multiplied
respectively by the portion of the area occupied by the corresponding
pixel value within the circle. β is a function of the original map scale,
the pixel resolution, and the subjective interpretation of the original
data by the cartographer. For the predictor variables land use and
lithology, an uncertainty of respectively 3 m and 50 m was estimated
(Dewitte, 2006). We therefore considered β=1 and β=12 in the
modelling.

The prediction maps were obtained by applying Eq. (8). The
computed values of Eq. (8), which may range from 0 to 1, were sorted
in decreasing order (the pixel with the largest estimator is given the
highest order). The membership value estimated at each pixel was
replaced by its rank divided by the total number of pixels. Therefore,
rather than the values of the estimator of Eq. (8), we used their
standardised ranks to generate a susceptibility map. They were
grouped into 200 classes, so that each class covers 0.5% of the total
study area (thus contains 0.5% of the total number of pixels in the
study area) (Chung, 2006; Dewitte et al., 2006). The maps computed
from the five data combinations predict the susceptibility to
reactivation for each pixel (Fig. 5).

The prediction-rate curves obtained for the five maps are shown in
Fig. 6. The steeper the curve, the higher the prediction power of the
map. For Model Empi, 20% of pixels with the highest favourability
indices suffice to define the areas where 60% of future reactivation is
expected to occur. After this point, the slope of the curve is globally
lower than the black dashed line (slope=1) and hence it has less
significance. This prediction-rate curve is then less usable for the
interpretation of all the classes beyond the hazardous class with the
value of 20%. At this value of 20%, the other models are less successful.
Model PCA predicts just below 50% and Model Chi-2 ∼45%.

If we consider the portion of the most hazardous percent of the
study area to be selected to predict at least 50% of the future
movements (i.e. better than a randomly prediction is supposed to
provide), Model Empi, with 18%, is the most relevant. Then come
Models PCA and Chi-2, with 23%, and finally Models All and Expert
around 35% (Fig. 6).

Thanks to the validation we get a quantitative estimate of the
ability of the models to predict correctly the spatial occurrence of new
reactivations. It however gives no clue on how realistic thesemaps are
and there is no way to choose between various models other than to
invoke heuristic reasons (Oreskes et al., 1994). We therefore
considered two geomorphological criteria to evaluate the reliability
of the prediction maps: (1) the similarity between the location of the
highest susceptibility areas and the location of the reactivations that
were detected in the study area between 1952 and 1996, and in
Table 4
Qualitative evaluation of the geomorphological reliability of the susceptibility maps
presented in Fig. 5. See text for explanation on the two criteria.

Susceptibility map Criterion 1* Criterion 2

Model All Good 3** Not good 4
Model PCA Good 3 Good 3
Model Chi2 Very good 1 Good 2
Model Empi Good 2 Very good 1
Model Expert Good 5 Not good 5

*Similarity with the criterion.
**Hierarchy of the maps (1=the best).
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Fig. 7. Susceptibility maps of the scarp reactivation obtained from the 1996 data layers with the statistics of the 1952 models. The pixels are ranked according to their degree of
susceptibility (joint membership value). The top 10% most hazardous pixels are distinguished in red. (A) Model Empi using slope aspect, planform curvature, vegetation index and
focal flow. (B) Model Chi-2 using slope aspect, slope angle, distance from cultivation, distance from Aalbeke Member and elevation. (C) Model PCA using elevation, planform
curvature, flow accumulation and slope aspect.
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particular those who have affected landslide 1 since February 1995
(Dewitte et al., 2008, 2009); and (2) the similarity between the shape
of the highest susceptibility areas (top 10%) and the recent move-
ments that were observed. At each time, a reactivation affects the
whole height of the scarp. Considering that the main objective of a
prediction is to locate the place of a future instability, we paid more
attention to criterion 1. Table 4 gathers the qualitative evaluation of
the five maps. According to our criteria, maps produced by the
Models Empi and Chi-2 provide the best results whereas the
predictions of Models Expert and All result in less reliable values,
especially when criterion 2 is considered. However, arguing that a
model would be less convenient for a prediction is too early at this
step of the research.

Based on both the quantitative and qualitative criteria, the three
models being the most relevant are Models Empi, Chi-2 and PCA.
According to the same criteria, Model Expert is the less adapted.
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5.3. Susceptibility mapping based on the 1996 data

We applied the statistics of the models computed for 1952 (Models
Empi, Chi-2 and PCA) to the conditioning variables of 1996 to produce
the susceptibilitymaps responding tomore recent conditions (Fig. 7). In
fact, each pixel value of each predictor variables of 1996was not used as
such in the prediction but replaced by a membership value derived
directly from those computed with Eq. (7) for each variables of 1952.
Eq. (8)was then applied to theweighted 1996 data layers for producing
the three prediction maps presented in Fig. 7. Except for landslide 1
where post-1996 movements associated with the reactivation of
its main scarp were measured (Dewitte et al., 2008), no other quan-
titative information on reactivations developed after this period is
available. We therefore have no quantitative means to validate these
maps. However, as the study area of 1996 is very similar to that of 1952,
the reliability of the 1996 predictions should be approximately the
same.

Based on field observations and notably the reactivations that
occurred after 1996 in the study area (i.e. those of landslide 1; Dewitte
et al., 2008), Models Empi and PCA look the most adapted for the
prediction.

6. Discussion

6.1. Geomorphological significance of the predictions

Although the reactivations observed in landslide 1 from 1995 to
the present time have been better predicted by Models Empi and PCA,
we remain cautious in stating that one model is closer to the
geomorphological reality than the other. The modelling allows
however some geomorphological issues to be discussed. It highlighted
the importance of surface runoff and its relation to the vegetation
cover. Both Models Empi and PCA as well as Chi-2 consider surface
runoff through either direct (variables flow accumulation, focal flow
and planform curvature) or proxy (vegetation index and distance
from cultivation) indicators. The significant role of surface runoff
upslope of the main scarp and the presence of cultivations was
notably evidenced for landslide 1 reactivation (Dewitte et al., 2008,
2009). The effect of the heavy rainfall at the origin of this reactivation
was enhanced by increased surface runoff resulting from the presence
of cultivated parcels that expose bare soils in winter.

The models also point out the influence of slope aspect which
appears here as one of the most relevant conditioning factors. Slope
aspect exerts an effect over the rainfall amounts brought by the
dominant winds and to a lesser extent the solar radiation which
influences soil humidity. Despite a low relief and quite a smooth
topography, the marginal environmental differences related to this
parameter seem to have a higher impact than initially expected (this
explains why we did not select it for Model Expert).

Contrary to the surface water concentration, the groundwater
conditions reflected by the elevation factor and to a less extent by the
distance from Aalbeke Member were not really put forward. This
suggests that runoff might prevail over percolation in favouring
reactivation, which could be true when bare (cultivated) soils
undergoing winter rainfall extend close to the scarp.

The reliability of thevariables is also a critical point as itmayquestion
thegeomorphological significance of amodel. A variable canbe crucial to
model the process and it canbeuseless becauseof the quality. As pointed
out in Section 3,flowaccumulation is theonly parameter in our database
where we expect that topographic data errors can affect its reliability.
Weagree that these errors can lead todifferent susceptibility values from
onepixel to theother.However, since thepatternofflowaccumulation is
not really affected by the errors, and since the evaluation of themodels is
based on areas of susceptibility, notably through the use of scarp
segments, we can consider that the geomorphological significance of the
models is preserved.
Even if the dataset used in our predictions is quite large with
regards to what is commonly used for the researches on landslide
mapping, we acknowledge that the model performance can always be
improved with the support of additional information. For example, it
is widely recognized that groundwater conditions are of paramount
importance in the process of slope stability (Van Asch et al., 1999;
Iverson, 2000). Groundwater data can however be difficult to obtain,
especially when information on their spatial variability is required
(Luzi et al., 2000; Ohlmacher and Davis, 2003). In our model, the
elevation data were used to appraise these conditions.

6.2. Landslide triggering factors

A drawback of many indirect mapping methods is the tendency to
simplify the factors that condition landslides by only taking those that
can be easily mapped (Van Westen et al., 2003, 2006). The high
resolution of the DTMs allowed us to generate all the potentially
predisposing factors that we supposed to affect the slope stability. We
however did not take any triggering factor into account. Precipitation
is the main triggering factor for the reactivation (Dewitte et al., 2009).
However, due to the spatial proximity of the two investigated hills
and the close similarity of their relief, the spatial variation of this
factor is very low and therefore did not deserve any special attention.
Reactivations might also be triggered by factors associated with
seismic shaking. We however do not have any clue about that and for
the same reasons of spatial proximity and topographic similarity we
did not include this factor in the prediction. The geomorphological
analysis of the ground displacements that occurred during the last
50 years within the studied landslides did not reveal human activity
as a triggering factor of the scarp reactivations (Dewitte et al., 2009).

6.3. Conditional independence

The predictive modelling requires that each controlling factor
provides “independent” evidence for future occurrences. The idea
behind PCA was to help in the selection of a combination of variables
with the lowest possible correlation among them. It however does not
mean that these variables are fully independent. To examine the effect
of violation of the assumption of conditional independence among the
predictor variables, we tested two additional data combinations. We
entered twice the slope aspect in Model PCA and twice the vegetation
index in Model Empi to simulate the use of two non-independent
variables and then generated two prediction maps similar to those in
Fig. 5. Although the assumption of conditional independence was
clearly violated in both experiments, the prediction maps based on
five rather than four data layers (not shown) were essentially
unchanged (Dewitte, 2006). As pointed out by Chung (2006) and
Chung and Fabbri (2008), a reason for the robustness is that the
membership functions themselves are not interpreted; instead, the
relative rankings of the predicted membership function scores are
used to predict the level of susceptibility. In practice, correlations
among variables would not be as severe as in these two experiments.
Even though some degree of violation of the independence assump-
tion is expected in real situations, these violations should not
significantly alter class patterns in the prediction maps.

7. Conclusions

In this study conducted on the main scarps of 13 landslides in W
Belgium, the chosen likelihood ratio approach has shown to be
efficient at yielding relevant maps for predicting the susceptibility to
scarp reactivation at a 2 m-resolution. Our pixel-based research leads
to the following conclusions:

1) There is a need for testing several data combinations in a landslide
prediction, especially when the availability of high-resolution data
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makes it possible for the consideration of a wide range of potential
predictor variables. Throughout all these procedures, validation is
a mandatory step.

2) A careful balancing of geomorphologist's expertise and the
objectivity of statistical treatment is a key issue to obtain accurate
landslide susceptibility maps. To this end, using the modelling
with both a predictive and an inductive goal is an asset. A purely
mathematical treatment can be misleading and leads to unreal-
istic prediction whereas a purely heuristic approach can be too
subjective.

3) For this case study, there is an optimal set of information for the
prediction (four or five data layers out of 13). This provides an
example of the concept of “optimummodel complexity” exposed by
Grayson et al. (2002) that describes the relationship among data
availability, model complexity, and predictive performance of the
model. For a given model complexity, increasing data availability
improves the predictive performance up to a point, after which a
decreasing model performance is observed. According to Glade and
Crozier (2005), this relation is due to the fact that a model with a
given complexity can only be used to predict a data set of a given
quality. Adding data in a combination does not systematically
improve the prediction.
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