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Abstract
• Key message Pattern recognition has become an
important tool to aid in the identification and classifi-
cation of timber species. In this context, the focus of
this work is the classification of wood species using tex-
ture characteristics of transverse cross-section images
obtained by microscopy. The results show that this
approach is robust and promising.
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• Context Considering the lack of automated methods for
wood species classification, machine vision based on pattern
recognition might offer a feasible and attractive solution
because it is less dependent on expert knowledge, while exist-
ing databases containing high-quality microscopy images can
be exploited.
• Aims This work focuses on the automated classification of
1221 micro-images originating from 77 commercial timber
species from the Democratic Republic of Congo.
• Methods Microscopic images of transverse cross-sections
of all wood species are taken in a standardized way using a
magnification of 25×. The images are represented as texture
feature vectors extracted using local phase quantization or local
binary patterns and classified by a nearest neighbor classifier
according to a triplet of labels (species, genus, family).
• Results The classification combining both local phase
quantization and linear discriminant analysis results in an
average success rate of approximately 88% at species level,
89% at genus level and 90% at family level. The success
rate of the classification method is remarkably high. More
than 50% of the species are never misclassified or only
once. The success rate is increasing from the species, over
the genus to the family level. Quite often, pattern recog-
nition results can be explained anatomically. Species with
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a high success rate show diagnostic features in the images
used, whereas species with a low success rate often have
distinctive anatomical features at other microscopic magni-
fications or orientations than those used in our approach.
• Conclusion This work demonstrates the potential of a
semi-automated classification by resorting to pattern recogni-
tion. Semi-automated systems like this could become valu-
able tools complementing conventional wood identification.

Keywords Commercial timber species · Democratic
Republic of Congo · Image analysis · Pattern recognition ·
Transverse cross-section · Wood anatomy

1 Introduction

The world’s estimated annual wood trade was more than
2.6 billion m3 in 2014 (ITTO: International Tropical Tim-
ber Organization 2014), and several regulations are being
established to assure the legal origin of the wood and
the sustainability of logging activities. Proper control is
thus essential given the pressure on certain commercial
wood species and to protect those that are registered as
‘endangered’ by the International Union for Conservation
of Nature (IUCN) or listed by the Convention on Interna-
tional Trade in Endangered Species (CITES) (Johnson and
Laestadius 2011). Given the diversity of species, a major
concern in tackling illegal logging and trade in the tropics
is the classification of wood samples. While the number of
European tree species is limited to about 120 (Latham and
Ricklefs 1993), the total number of tropical tree species is
between 40,000 and 50,000, of which about 5000 are found
in the tropics of Africa (Slik et al. 2015).

Wood can be considered as a natural compound mate-
rial that consists of different types of cells and tissues.
Variation in wood structure mainly depends on the wood
species, but also on cambial age, growth rate and envi-
ronmental conditions. Anatomical composition of wood is
being discussed in the context of tree performance anal-
ysis (Beeckman 2016), wood technology, plant phylogeny
and botanical identification. There are three types of tissue:
conducting tissue for sap transport; supporting tissue for
strength and the so-called parenchyma, which provides for
a series of metabolic processes, such as heartwood forma-
tion and storage of starch. Wood is heterogeneous, and since
cells are aligned vertically and horizontally anisotropic, the
appearance changes relative to the viewing angle. Stan-
dard observation of the wood’s three-dimensional structure
logically entails viewing from three different angles at dif-
ferent microscopic magnifications. The initial viewpoint
makes use of transverse or cross-sections: a cut straight
through the longitudinal axis showing the layout of ves-
sels, growth rings, the pattern of axial parenchyma and,
at greater magnification, the thickness of cell walls. The

second viewpoint is that of the tangential section, which one
obtains by cutting parallel to the main axis, but tangential
to the growth rings. This section is principally used to study
wood rays. The third viewpoint is that of the radial section,
obtained by cutting lengthwise along radius. It provides
insight regarding ray composition. In order to determine
the species of wood, its anatomical characteristics are anal-
ysed by viewing from the three principal angles at different
magnifications. Observed features are compared to scientific
reference material kept in a xylarium or with data from special-
ist literature or databases like InsideWood (Wheeler 2011).

Alternative methods to facilitate wood species recog-
nition are gradually established. DNA methods based on
molecular markers provide such an alternative, but the
extraction methods are still expensive and data interpreta-
tion is to be done by a skilled genetic expert. Moreover, the
lack of reference databases is also hampering fast progress
in species identification (Hanssen et al. 2011; Nithaniyal
et al. 2014). Recently, species identification through chemo-
metric processing of direct analysis in real time (DART)
mass spectrometry-derived fingerprints has been developed
(Musah et al. 2015). Up to this day, this method allows to
distinguish a limited number of mostly CITES-listed species
and shows promising results. Databases of fingerprints are
currently being established and expert knowledge for inter-
pretation is required (Musah et al. 2015). Also, machine
vision based on pattern recognition for automated wood
species identification using pattern recognition appears a
feasible and attractive solution, because it is less dependent
on expert knowledge, while existing databases containing
high-quality microscopy images can be exploited (Herman-
son and Wiedenhoeft 2011).

Recent research illustrates the potential of automated clas-
sification based on macroscopic (Bremananth et al. 2009;
Yu et al. 2009; Khairuddin et al. 2011; Khalid et al. 2011;
Yusof et al. 2013a, b; Zhao 2013; Zhao et al. 2014a, b; Filho
et al. 2014) and microscopic (Mallik et al. 2011; Gurau et al.
2013; Guang-Sheng and Peng 2013; Cui et al. 2013) images.
Although some studies show satisfactory results, they are
either based on experiments using few species (Bremananth
et al. 2009; Zhao 2013; Zhao et al. 2014a, b; Mallik et al.
2011) or involve morphological wood features (Khairud-
din et al. 2011; Khalid et al. 2011; Yusof et al. 2013a, b;
Gurau et al. 2013; Guang-Sheng and Peng 2013). The latter,
however, depend on segmentation (Guang-Sheng and Peng
2013), thus potentially resulting in variable results. Texture
analysis has been introduced as a promising technique for
wood species identification, avoiding the issue of the afore-
mentioned segmentation bias. Texture attributes are able to
describe the spatial organization of gray levels, as well as
the variation of patterns in an area on the surface of the stud-
ied object (Ebert 1994). Filho et al. (2014) and Wang et al.
(2013a, b), have used texture attributes derived from macro-
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scopic images to identify wood species. Few studies have
reported on the use of texture analysis with microscopic trans-
verse cross-section micro-imagery for wood species identi-
fication. For instance, texture features have been used to iden-
tify wood species from the Brazilian flora based on micro-
scopic transverse cross-sections using local phase quanti-
zation, local binary patterns and gray-level co-occurrence
matrix (Martins et al. 2012, 2013; Cavalin et al. 2013).

Remarkably, the African continent, and especially the
Congo Basin, is hardly represented in the above-mentioned
studies regarding texture-based classification. The Congo
Basin is, however, the second largest tropical forest region
after the Amazon. Although the Democratic Republic of
Congo (DRC) is the only African country within the world’s
top ten of most forested countries, long-term data are lack-
ing, as well as reliable data on volumes of wood species
for export (Verbeeck et al. 2011). Therefore, this research
focuses on commercial timber species of the DRC, using
the wood collection of the Belgian Royal Museum for
Central Africa (RMCA), housing the world’s largest wood
collection on Congolese woody species (Beeckman 2007).
The discriminative potential of texture features, extracted
from microscopic transverse cross-sections, is tested. Lower
magnifications of such sections show patterns of vessels,
fibres and parenchyma that are often characteristic of a species,
or more generally, of a taxon (Ruffinatto et al. 2015).

Two texture feature descriptors are applied in this study: local
phase quantization (Ojansivu et al. 2008; Ojansivu and
Heikkilä 2008) and local binary patterns (Ojala et al. 1996,
2001, 2002). Texture characteristics are extracted from the
microscopic transverse cross-section images of 77 commer-
cial or potentially commercial Congolese timber species. Local
discriminant analysis and principal component analysis are
employed to reduce the dimensionality of the feature vec-
tors. Further, an analysis considering the genus and family
phylogenetic levels is carried out to arrive at a better under-
standing of the misclassifications. The following research
questions motivate this paper. Can pattern recognition be
used to identify the wood species in this study? Which tex-
ture method has the highest success rate of classification?
Can wood anatomical features explain misclassifications?

2 Materials and methods

Figure 1 schematizes the wood classification procedure with
three main phases: data acquisition, feature extraction and
classification, all described in detail below.

2.1 Data acquisition

A total of 77 Congolese timber species were selected for this
study, belonging to 58 genera and 25 families (see Table 2).

Based on this list, the transverse sections of all available
anatomical slides of the Tervuren Xylarium (RMCA) were
inspected under the light microscope. Only sections free
of cracks and artifacts (e.g. enclosed air bubbles), uni-
form in texture, sufficiently thin and free of staining agents
were selected. Additional transverse sections were prepared
from xylarium specimens when anatomical sections were
of poor quality or the number of sections was insufficient.
Cross-sections were cut with a sliding microtome, dehy-
drated in a graded ethanol series (50, 75, 96 and 100%)
and fixed with Euparal. The entire database is available at
doi:10.5281/zenodo.235668.

In order to account for inter- (Fig. 2) and intra-slide
(Fig. 3) variability in texture, each section was imaged at
different locations without overlap and each species was
represented by a minimum of three different transverse
sections. This way, at least five images per species were
available for classification. A light microscope (Olympus
BX60) in connection with a digital camera (Olympus UC30)
and the image analysis software package CellB (version 3.2,
Olympus) were used for image acquisition. A standard mag-
nification of 25× was chosen for all pictures. A total of 1221
images was collected for this study.

2.2 Feature extraction

Texture provides an important source of information that
is useful for identifying spatial patterns in an image. The
texture feature extraction process consists of modelling the
textural patterns in such a way that they can be represented
by a set of features, further referred to as a feature vector.
Before feature extraction, all images were converted to 8-
bit gray scale and their histogram was stretched for contrast
improvement. Two feature descriptors were used for extrac-
tion of textural features, namely local phase quantization
and local binary pattern.

Local phase quantization (LPQ) (Ojansivu et al. 2008;
Ojansivu and Heikkilä 2008) is a texture descriptor that
is rotation invariant and insensitive to centrally symmetric
blur. It computes the quantized phase of the Fourier trans-
form over local windows at every image position. The local
phase information is extracted by a finite two-dimensional
discrete short-term Fourier transform (STFT).

Local binary pattern, proposed by Ojala et al. (1996) and
later improved in Ojala et al. (2001, 2002), is a gray-scale
and rotation-invariant texture descriptor based on the analy-
sis of properties of local image texture and their occurrence.
The first version of local binary pattern (LBP) involved the
aggregation of the pixel values in a pixel’s neighborhood
into a binary number, which is then converted to decimal
and is subsequently used as the new value of the focal pixel.
This procedure results in an LBP map, from which one
may obtain a histogram of local binary patterns to represent

http://dx.doi.org/10.5281/zenodo.235668
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Fig. 1 General scheme of the wood species classification procedure based on transverse cross-section micro-imagery

the image as a feature vector (Fig. 4). Later, the method
was made rotation invariant and made applicable to gray-
scale images. The former variant will be referred to in the
remainder as LBP1P,R , while the latter will be referred to
as LBP2P,R , where P is a circularly symmetric neighbor set
equally spaced on a circle of radius R.

2.3 Classification

Finally, a supervised classification algorithm was used to
predict membership of a new sample to one of 77 species,
58 genera or 25 families. For that purpose, each trans-
verse cross-section image was characterized by a feature
vector, obtained by either the LPQ or LBP descriptor.
The feature vectors had a different length depending on
the feature descriptor used. More precisely, LPQ gener-
ated 256 features, while the number of features obtained
by LBP depends on the parameters of the method, but was
sometimes as high as 4116. Consequently, the number of
features had to be reduced while maintaining their discrim-
inative potential. To that end, linear discriminant analysis
(LDA) (Fisher 1936) and principal component analysis
(PCA) (Jolliffe 2002) were applied. LDA maximizes the
ratio of between-class variance and within-class variance
while maximizing the preservation of class discrimina-
tive information. The approach proposed by Lu et al.

(2005) was implemented, as such handling the problem
of a small number of samples for training compared to
the dimensionality of the sample space by using the regu-
larized Fisher separability criterion. PCA calculates a lin-
ear combination of the original set of features, in such a
way that all the principal components are orthogonal to
each other, thereby avoiding redundant information (Jol-
liffe 2002). The components are ordered according to their
variance, starting with the component with the highest
variance.

It is important to highlight that both LDA and PCA were
used to reduce the dimensionality of the feature space of the
training set only. The coefficients obtained from the training
set were used to calculate the components of the test set. The
success rate is based on the classification of all samples. The
training set was constructed following a stratified fivefold
cross-validation scheme (Hastie et al. 2001). More specif-
ically, the set of samples was partitioned into five equally
large subsets, with at least one sample of each species in
each subset. Four subsets of samples were used for training,
while the remaining subset of samples was used for testing.
The latter was alternated five times, thus enabling the classi-
fication of all test samples. The final success rates are based
on all classifications. This entire procedure was repeated ten
times to obtain an average success rate and corresponding
standard deviation (Fig. 1).
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Fig. 2 Transverse cross-sections of a selection of 24 wood species used in the experiments. The name in each panel is the name of the species
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Fig. 3 Examples of transverse cross-sections of wood species. Rows show samples of the same species to highlight the intra-species variability,
from top to bottom: Leplaea cedrata, Millettia laurentii, Morus mesozygia, Pterocarpus soyauxii, Terminalia superba and Zanthoxylum gilletii

Ultimately, the classification was performed by a sim-
ple 1-nearest neighbor classifier (Aha et al. 1991) using
the Euclidean distance. The classification was performed at
three phylogenetic levels simultaneously, in the sense that a
triplet of labels (species, genus, family) was associated with

each instance. When a sample was labeled, the label triplet
of its nearest neighbor was taken into account and the classi-
fication is considered correct at the species, genus or family
level if the species, genus or family label is correct, respec-
tively. Evidently, if the classification is correct at the species
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Fig. 4 a An original image of Afzelia bella in gray scale, b the LBP map generated from a and c the histogram of LBP patterns in b

level, it is also correct at the genus level; similarly, if a clas-
sification is correct at the genus level, it is also correct at the
family level.

3 Results

Table 1 lists the average success rates and corresponding
standard deviations over ten runs, for LPQ and LBP, with
the best configuration of parameters given by LBP12,1; the
parameters P and R were analyzed in a range of 4 to 16 and
1 to 2, respectively. Samples were classified according to the
triplet of labels (species, genus, family) and the correspond-
ing success rates were computed. LPQ in combination with
LDA resulted in an average success rate of approximately
88% at species level, 89% at genus level and 90% at family
level. LBP in combination with LDA achieved an average
success rate of 85%, LBP1 resulted in 80% and LBP2 in
72% at species level, followed by an increase of 2% at genus
level and at least 7% at family level.

Table 2 shows the average success rates for the triplet of
labels (species, genus, family). Table 2 also shows the close

relationship between species and Tables 3 and 4 show the
analysis of the misclassifications. If, for instance, a species
was classified as a species of the same genus, it was not con-
sidered an error at the genus level, with a similar assumption
at the family level.

Six species were never misclassified: Nesogordonia
kabingaensis, Pycnanthus angolensis, Triplochiton scle-
roxylon, Tieghemella heckelii, Guibourtia demeusei and
Drypetes gossweileri. Based on the confusion matrix (see
Fig. 5), it can be concluded that less than half of the
species under study were misclassified twice or more, where
95% of those species were at least once classified in a
different family. The families Fabaceae-Caesalpinioideae,
Fabaceae-Papilionideae and Fabaceae-Mimosoideae have a
large share in the latter percentage. When considering them
as one single family, it drops to 83%. Ten species had at least
five misclassifications: Albizia adianthifolia, Albizia ferrug-
inea, Cynometra alexandri, Entandrophragma angolense,
Hallea stipulosa, Khaya anthotheca, Leplaea laurentii,
Milicia excelsa, Prioria oxyphylla and Pterocarpus tincto-
rius. These misclassifications can be divided into three types
depending on the level of classification: genus or family

Table 1 Classification of transverse cross-section wood images at species, genus and family level. The best results obtained are reported in italics

FR Species Genus Family

NF SR (± std) NF SR (± std) NF SR (± std)

LPQ PCA 150 77.88 (± 0.53) 150 80.14 (± 0.57) 125 83.34 (± 0.57)

LDA 77 87.42 (± 0.59) 77 88.79 (± 0.59) 77 90.46 (± 0.40)

LBP12,1 PCA 114 68.50 (± 1.03) 125 70.77 (± 0.89) 125 75.16 (± 0.98)

LDA 77 85.02 (± 0.67) 77 86.88 (± 0.64) 77 88.85 (± 0.69)

LBP112,2 PCA 107 63.10 (± 0.59) 46 65.59 (± 0.55) 46 70.25 (± 0.56)

LDA 77 79.93 (± 0.54) 77 82.24 (± 0.43) 77 84.19 (± 0.35)

LBP216,1 PCA 17 54.01 (± 0.66) 17 56.86 (± 0.64) 17 62.26 (± 0.65)

LDA 77 72.49 (± 0.62) 77 74.37 (± 0.62) 77 77.46 (± 0.51)

The average success rates and corresponding standard deviations were obtained over ten runs. FR feature reduction method, NF number of features
after feature reduction using PCA or LDA, SR success rate, the relative number of correctly classified samples. The best results obtained are
reported in italics
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Table 2 Average success rates of identifying 1221 samples based on transverse cross-section micro-imagery according to a triplet of labels
(species, genus, family), being 77 species, 58 genera and 25 families

Family SR (%) Genus SR (%) Species SR (%)

Anacardiaceae 80.74 Antrocaryon 82.59 Antrocaryon nannanii 87.41

Apocynaceae 96.36 Alstonia 93.33 Alstonia boonei 94.00

Funtumia 98.33 Funtumia africana 98.89

Bombacaceae 85.00 Ceiba 85.00 Ceiba pentandra 85.00

Boraginaceae 71.82 Cordia 79.09 Cordia platythyrsa 77.27

Burseraceae 72.86 Canarium 80.71 Canarium schweinfurthii 81.43

Clusiaceae 92.86 Mammea 92.86 Mammea africana 92.86

Combretaceae 87.60 Terminalia 91.20 Terminalia superba 91.60

Ebenaceae 90.83 Diospyros 91.67 Diospyros crassiflora 91.67

Euphorbiaceae 100.00 Drypetes 100.00 Drypetes gossweileri 100.00

Fabaceae-Caesalpiniaceae 92.00 Afzelia 93.14 Afzelia africana 90.00

Afzelia bella 78.33

Afzelia bipindensis 99.09

Afzelia cuanzensis 92.22

Afzelia pachyloba 82.86

Amphimas 90.45 Amphimas ferrugineus 86.67

Amphimas pterocarpoides 100.00

Anthonotha 92.22 Anthonotha macrophylla 94.44

Antiaris 83.33 Antiaris toxicaria 82.50

Brachystegia 84.52 Brachystegia laurentii 89.68

Copaifera 86.68 Copaifera mildbraedii 89.38

Cynometra 93.67 Cynometra alexandri 75.88

Cynometra hankei 91.54

Erythrophleum 92.86 Erythrophleum suaveolens 93.57

Gilbertiodendron 93.89 Gilbertiodendron dewevrei 96.11

Guibourtia 93.79 Guibourtia arnoldiana 92.00

Guibourtia demeusei 100.00

Prioria 94.80 Prioria balsamifera 98.18

Prioria oxyphylla 88.21

Scorodophloeus 97.00 Scorodophleus zenkeri 98.00

Tessmania 83.89 Tessmannia africana 87.78

Fabaceae-Mimosaceae 82.54 Albizia 75.57 Albizia adianthifolia 73.64

Albizia antunesiana 77.50

Albizia ferruginea 77.83

Newtonia 83.33 Newtonia leucocarpa 96.67

Pentaclethra 89.71 Pentaclethra eetveldeana 93.57

Pentaclethra macrophylla 89.00

Piptadeniastrum 86.96 Piptadeniastrum africanum 86.09

Fabaceae-Papilionaceae 78.78 Millettia 85.33 Millettia laurentii 86.67

Pericopsis 92.22 Pericopsis elata 92.22

Pterocarpus 87.93 Pterocarpus soyauxii 85.41

Pterocarpus tinctorius 82.86

Irvingiaceae 90.59 Irvingia 88.75 Irvingia grandifolia 89.38

Klainedoxa 91.11 Klainedoxa gabonensis 93.89

Lauraceae 88.56 Beilschmiedia 85.00 Beilschmiedia congolana 83.33

Lecythidaceae 95.33 Petersianthus 97.33 Petersianthus macrocarpus 98.67

Meliaceae 88.56 Ekebergia 84.55 Ekebergia capensis 87.27

Entandrophragma 90.23 Entandrophragma angolense 79.62
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Table 2 (continued)

Family SR (%) Genus SR (%) Species SR (%)

Anacardiaceae 80.74 Antrocaryon 82.59 Antrocaryon nannanii 87.41

Entandrophragma candollei 97.33

Entandrophragma cylindricum 83.81

Entandrophragma utile 84.40

Khaya 72.61 Khaya anthotheca 74.78

Leplaea 85.76 Leplaea cedrata 94.80

Leplaea laurentii 75.00

Leplaea thompsonii 82.50

Lovoa 88.57 Lovoa trichilioides 88.10

Moraceae 84.18 Ficus 67.27 Ficus mucuso 70.00

Milicia 87.62 Milicia excelsa 85.24

Morus 81.76 Morus mesozygia 84.71

Musanga 95.56 Musanga cecropioides 97.22

Myristicaceae 90.00 Pycnanthus 100.00 Pycnanthus angolensis 100.00

Staudtia 86.67 Staudtia kamerunensis 84.44

Ochnaceae 72.50 Lophira 82.50 Lophira alata 81.25

Olacaceae 75.45 Ongokea 73.64 Ongokea gore 78.18

Rubiaceae 75.12 Hallea 82.50 Hallea stipulosa 80.71

Nauclea 69.23 Nauclea diderrichii 68.46

Rutaceae 80.74 Zanthoxylum 85.19 Zanthoxylum gilletii 74.55

Zanthoxylum lemairei 95.00

Sapotaceae 94.40 Autranella 84.44 Autranella congolensis 90.00

Chrysophyllum 86.25 Chrysophyllum africanum 78.57

Chrysophyllum lacourtianum 88.89

Pouteria 96.67 Pouteria aningeri 96.00

Tieghemella 100.00 Tieghemella heckelii 100.00

Sterculiaceae 97.60 Nesogordonia 100.00 Nesogordonia kabingaensis 100.00

Triplochiton 99.38 Triplochiton scleroxylon 100.00

Ulmaceae 92.41 Celtis 89.38 Celtis gomphophylla 87.50

Holoptelea 92.31 Holoptelea grandis 91.54

SR means the success rate of the respective label (species, genus or family)

level (C. alexandri, P. oxyphylla, P. tinctorius), genus/family
level mixed with other families (A. adianthifolia, A. fer-
ruginea, E. angolense, K. anthotheca, L. laurentii) and
misclassified in another family (H. stipulosa, M. excelsa).
Confusion matrices for genera and families can be seen in
Figs. 6 and 7, respectively.

4 Discussion

4.1 Analysis at species level

Although no common criteria exist to compare wood
anatomical identifications with the results obtained by rely-
ing on pattern recognition, the high average success rates
reported in this study clearly illustrate the potential of such
an automated method. It is of interest to elaborate on those

wood species with the highest and lowest success rates and
compare them with classical wood anatomical descriptions
of the InsideWood database (Wheeler 2011).

Five species have a success rate of 75% or less: Nau-
clea diderrichii (68%), L. laurentii (73%), Ongokea gore
(74%), K. anthotheca and Ficus mucuso (both 75%). N.
diderrichii, L. laurentii and O. gore are characterized by
distinctive anatomical features that manifest themselves at
a higher magnification especially on the radial and tangen-
tial section, which were not used here. K. anthotheca and F.
mucuso have the same success rate. This can be explained
by the fact that both species have a typical signature charac-
terized by rather large vessels, a relatively low vessel density
and large rays.

On the other hand, six species had a maximum success
rate of 100%: N. kabingaensis, P. angolensis, T. scleroxy-
lon, T. heckelii, G. demeusei and D. gossweileri. Half of
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Table 3 Increase of the average success rate (SR) when identifying the species and the misclassification is still in the correct genus or family

Species SR (%) SR Increase (%) SR Increase (%)

at genus at family

level (%) level (%)

Afzelia africana (>5, �21) 90.00 99.09 9.09 99.09 9.09

Afzelia bella (>5, �21) 78.33 100.00 21.67 100.00 21.67

Afzelia bipindensis (>5, �21) 99.09 100.00 0.91 100.00 0.91

Afzelia cuanzensis (>5, �21) 92.22 100.00 7.78 100.00 7.78

Albizia adianthifolia (>3, �7) 73.64 78.18 4.55 89.09 15.45

Albizia antunesiana (>3, �7) 77.50 77.50 0.00 79.38 1.88

Albizia ferruginea (>3, �7) 77.83 78.70 0.87 80.87 3.04

Anthonotha macrophylla (>1, �21) 94.44 94.44 0.00 97.78 3.33

Antiaris toxicaria (>1, �21) 82.50 82.50 0.00 90.83 8.33

Brachystegia laurentii (>1, �21) 89.68 89.68 0.00 96.45 6.77

Celtis gomphophylla (>1, �2) 87.50 87.50 0.00 91.25 3.75

Chrysophyllum africanum (>2, �5) 78.57 80.00 1.43 80.00 1.43

Cynometra alexandri (>2, �21) 75.88 93.53 17.65 99.41 23.53

Cynometra hankei (>2, �21) 91.54 92.31 0.77 92.31 0.77

Ekebergia capensis (>1, �10) 87.27 87.27 0.00 88.18 0.91

Entandrophragma angolense (>4, �10) 79.62 88.08 8.46 89.62 10.00

Entandrophragma candollei (>4, �10) 97.33 100.00 2.67 100.00 2.67

Entandrophragma cylindricum (>4, �10) 83.81 86.19 2.38 98.10 14.29

Entandrophragma utile (>4, �10) 84.40 91.20 6.80 92.40 8.00

Erythrophleum suaveolens (>1, �21) 93.57 93.57 0.00 99.29 5.71

Gilbertiodendron dewevrei (>1, �21) 96.11 96.11 0.00 98.89 2.78

Guibourtia arnoldiana (>2, �21) 92.00 92.00 0.00 94.00 2.00

Hallea stipulosa (>1, �2) 80.71 80.71 0.00 81.07 0.36

Irvingia grandifolia (>1, �2) 89.38 89.38 0.00 95.63 6.25

Khaya anthotheca (>1, �10) 74.78 74.78 0.00 81.30 6.52

Leplaea laurentii (>3, �10) 75.00 80.77 5.77 81.92 6.92

Lovoa trichilioides (>1, �10) 88.10 88.10 0.00 93.33 5.24

Musanga cecropioides (>1, �4) 97.22 97.22 0.00 98.33 1.11

Nauclea diderrichii (>1, �2) 68.46 68.46 0.00 73.85 5.38

Newtonia leucocarpa (>1, �7) 96.67 96.67 0.00 97.50 0.83

Piptadeniastrum africanum (>1, �7) 86.09 86.09 0.00 93.48 7.39

Prioria balsamifera (>2, �21) 98.18 98.64 0.45 99.09 0.91

Prioria oxyphylla (>2, �21) 88.21 93.21 5.00 95.00 6.79

Pterocarpus soyauxii (>2, �4) 85.41 85.95 0.54 85.95 0.54

Scorodophleus zenkeri (>1, �21) 98.00 98.00 0.00 100.00 2.00

Tessmannia africana (>1, �21) 87.78 87.78 0.00 94.44 6.67

The number between parentheses preceded by > (one taxonomic level up) is the number of species in the same genus as the referred species. The
number preceded by � (two taxonomic levels up) is the number of genera in the same family as the referred species

them have very particular wood anatomical features that
can be observed on the transverse section. N. kabingaensis
has a specific vessel arrangement, T. scleroxylon combines
large vessels with low vessel densities and T. heckelii also
has a particular vessel arrangement and reticulate axial
parenchyma. Those species are therefore easy to distin-
guish using the transverse sections only, irrespective of the

approach. The anatomy of D. gossweileri is less distinctive,
but it has smaller vessels in combination with very thick-
walled fibres, which might explain the high average success
rates for this species. P. angolensis has some very partic-
ular wood anatomical features but those are not present in
the transverse section. Most probably, the absence of axial
parenchyma results in a 100% success rate. G. demeusei
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Table 4 Increase of the
average success rate (SR) when
identifying the genus and the
misclassification is still in the
correct family

Genus SR (%) SR at family Increase (%)

level (%)

Afzelia (<5, >13) 93.14 93.73 0.59

Albizia (<3, >4) 75.57 81.97 6.39

Amphimas (<2, >13) 90.45 93.64 3.18

Anthonotha (<1, >13) 92.22 95.56 3.33

Antiaris (<1, >13) 83.33 89.17 5.83

Brachystegia (<1, >13) 84.52 94.84 10.32

Celtis (<1, >2) 89.38 91.88 2.50

Cynometra (<2, >13) 93.67 96.67 3.00

Entandrophragma (<4, >5) 90.23 94.02 3.79

Erythrophleum (<1, >13) 92.86 100.00 7.14

Gilbertiodendron (<1, >13) 93.89 97.78 3.89

Guibourtia (<2, >13) 93.79 95.52 1.72

Irvingia (<1, >2) 88.75 94.38 5.63

Khaya (<1, >5) 72.61 82.61 10.00

Leplaea (<3, >5) 85.76 86.78 1.02

Lovoa (<1, >5) 88.57 93.33 4.76

Nauclea (<1, >2) 69.23 72.31 3.08

Newtonia (<1, >4) 88.33 89.17 0.83

Piptadeniastrum (<1, >4) 86.96 94.35 7.39

Prioria (<2, >13) 94.80 96.20 1.40

Scorodophloeus (<1, >13) 97.00 100.00 3.00

Tessmania (<1, >13) 83.89 90.00 6.11

The number between parentheses preceded by < (one taxonomic level down) is the number of species in the
referred genus. The number preceded by > (one taxonomic level up) is the number of genera in the same
family as the referred genus

cannot be identified by anatomical identification on wood
transverse sections. However, in our set of images, its vessel
frequency is lower compared to that of the close allied taxon
Guibourtia arnoldiana, which is probably the explanation
for the high success rate using automated classification.
Differences with other species of the genus are subtle and
various axial parenchyma types exist, making it hard to
identify this species for wood anatomists, which contrasts
the relatively high success rates obtained for this species
using our approach.

4.2 Misclassifications compared to wood anatomical
features on transverse sections

More than half of the 77 commercial species were never
misclassified or misclassified once, which clearly demon-
strates the potential of pattern recognition for the classifica-
tion of the species covered in this study. Comparison with
the wood descriptions of InsideWood (Wheeler 2011) gives
an indication why some species were misclassified more
frequently than others.

Species that were misclassified at least five times within
the same genus or family were C. alexandri, P. oxyphylla

and P. tinctorius. C. alexandri was mostly misclassified
as Cynometra hankei, a species with a very similar wood
anatomy on the transverse plane. Within the Prioria genus,
traumatic canals are encountered. For P. oxyphylla, they

Fig. 5 Confusion matrix considering the species label
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Fig. 6 Confusion matrix considering the genus label

have a similar size as the vessels and for Prioria balsam-
ifera, the traumatic canals are smaller. One classification
resulted in Scorodophleus zenkeri, a species with a simi-
lar vessel structure, similar rather thick-walled fibres and
an equally large variety of parenchyma types. However,
rays, parenchyma and/or vessel elements are not storied,
as opposed to Cynometra species. P. oxyphylla was three
times falsely identified as P. balsamifera, which has a very
similar transverse wood anatomy. Wood anatomically, the
two species can be distinguished on the basis of the size
of intercellular canals. Apparently, this phenomenon is not
recognized automatically at the chosen magnification. The
other three misclassifications of P. oxyphylla resulted in P.
tinctorius. This is difficult to explain from a wood anatom-
ical point of view due to the presence of clearly distinctive
features on the transverse section. P. tinctorius has more

Fig. 7 Confusion matrix considering the family label

vessels, fibres with thicker cell walls, banded parenchyma
and storied structures of rays and axial parenchyma/vessel
elements as compared to P. oxyphylla. Finally, P. tincto-
rius was misclassified once as A. ferruginea (no banded
parenchyma or storied structures), Brachystegia lauren-
tii (no 3-cells-wide banded parenchyma), Copaifera mild-
braedii (smaller vessels, no storied structure), P. oxyphylla
(see higher) and S. zenkeri (smaller vessels, larger rays
and no storied structure). Thus, within the genus, the mis-
classifications can be understood by the similar transverse
wood anatomy, but misclassifications at family level are
less straightforward to explain from an anatomical point of
view. Species belonging to different botanical families may
superficially appear similar because there has been consid-
erable convergent and parallel evolution in wood structure
(Wheeler and Baas 1998).

H. stipulosa was misclassified into four different families
as Leplaea cedrata, L. laurentii (both Meliaceae), O. gore
(Olacaceae), Petersianthus macrocarpus (Lecythidaceae)
and Zanthoxylum gilletii (Rutaceae). While P. macrocarpus
and Z. gilletii still have similar vessel features, thick-walled
fibres and partially equal parenchyma types, the other
species/families are normally easy to distinguish based on
their wood anatomy on the transverse sections, but this does
not seem to hold when using pattern recognition.

4.3 Afzelia and Entandrophragma: two difficult genera
for wood anatomy

The results obtained for the genus Afzelia—a very popular
genus on the international wood markets (Donkpegan et al.
2014)—are promising. This might not be so surprising if we
compare the transverse wood anatomical features: Afzelia is
a fairly uniform genus with some intra-species variability in
vessel size and density but no distinctive features that stand
out for a single species. From a wood anatomical point, it
is not clear why A. bipindensis has significant higher suc-
cess rates than the other species of the genus. But as shown
by chemometric fingerprinting (Espinoza, pers. comm.) and
pattern recognition, A. bipindensis and A. africana are easy
to separate while A. pachyloba and A. cuanzensis are hard to
distinguish. Genetic analyses, however, showed two groups
with another clustering: the savanna species (A. cuanzensis,
A. africana) and the forest species (A. bella, A. bipinden-
sis) (Donkpegan et al. 2017). Donkpegan et al. (2014) also
stress the importance of careful sampling due to pronounced
morphological similarities within the genus; thus, validated
herbarium vouchers are essential. In our study, images of
Afzelia originated from 14 wood samples.

Comparing the transverse wood anatomical features
within the Entandrophragma genus, E. candollei is quite
different from the other species in this genus (smaller,
fewer vessels and larger parenchyma bands), which explains
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the corresponding high average success rates. E. utile and
E. angolense are very similar at the used magnification, so
harder to distinguish, while E. cylindricum is in between the
others. The wood anatomy of this genus is more diverse than
that of Afzelia, which is supported by the fact that misclas-
sifications are mainly situated at the family level and not
at the genus level. For both genera, traded in large quan-
tities and common objects of study for wood anatomists
(Giraud 1980), the link between pattern recognition and
wood anatomical features on the transverse section is quite
strong.

4.4 Classification at family level

It is clear that our results are influenced by the dataset
quality. The average success rates depend on the (dis-
)similarities within the group of species tested. Therefore,
grouping species into families for success rates could com-
pensate for (dis-)similarities at the species level. The family
of the Euphorbiaceae, however, is best ranked although it
consists of a, anatomically speaking, very heterogeneous
family (Wheeler and Baas 1998). D. gossweileri is the only
member of this family within our study and has very distinc-
tive wood anatomical features, resulting in a high success
rate (up to the family level).

5 Conclusions

This work demonstrates the potential of a semi-automated
classification of tropical wood species by resorting to pat-
tern recognition. Not only do wood anatomical collections
and wood anatomists face huge challenges for the future,
training wood anatomical experts is time-consuming and
expensive, making semi-automated systems like ours valu-
able tools complementing classical wood identification.
Generally speaking, the average success rates are high.
Nonetheless, there are certain requirements on the acquisi-
tion of images. All images must have the same resolution,
and damaged regions or regions showing growth irregular-
ities that cannot be determined due to abnormal or non-
standard features of the wood sample should be avoided.
The prerequisites of our method thus necessitate wood
scientists to take slightly different images than the ones
commonly used in wood identification and analysis. The
slide collections of numerous xylaria, however, offer large
possibilities for testing this approach, even though not all
the information of the wood sample, such as age and growth
rate, is available.
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Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-
scale and rotation invariant texture classification with local binary
patterns. IEEE Trans Pattern Anal Mach Intell 24:971–987
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