SEPTEMBER 2018 MONSIEURS ET AL. 1507

Evaluating TMPA Rainfall over the Sparsely Gauged East African Rift?

ELISE MONSIEURS,a’b’C DALIA BACH KIRSCHBAUM,® JACKSON TAN,d’e JEAN-CLAUDE MAKI MATEso,f
LIESBET JACOBS,® PIERRE-DENIS PLISNIER,"” WIM THIERY,Y AUGUSTA UMUTONL" DIDACE MUSONL,!
TOUSSAINT MUGARUKA BIBENTYO,™ GLOIRE BAMULEZI GANZA,™ GUY ILOMBE MAWE,™
LuC BAGALWA," CLAIRIA KANKURIZE," CAROLINE MICHELLIER,* THOMAS STANLEY,®%¢
FRANCOIS KERVYN,* MATTHIEU KERVYN,? ALAIN DEMOULIN,® AND OLIVIER DEWITTE®

@ Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium
® Department of Geography, University of Liége, Liége, Belgium
¢ Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
d Universities Space Research Association, Columbia, Maryland
¢ Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
f Department of Geophysics, Centre de Recherche en Sciences Naturelles, Lwiro, Democratic Republic of the Congo
& Department of Geography and Tourism, KU Leuven, Leuven, Belgium
"G. L. Eco, Grez-Doiceau, Belgium
! Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
i Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
X Ministry of Infrastructure, Kigali, Rwanda
' Rwanda Meteorology Agency, Kigali, Rwanda
™ Department of Geology, Université Officielle de Bukavu, Bukavu, Democratic Republic of the Congo
" Faculté des Sciences de I’Environnement, Université Polytechnique de Gitega, Gitega, Burundi
° NASA Goddard Earth Sciences Technology and Research, Columbia, Maryland
P Department of Geography, Earth System Science, Vrije Universiteit Brussel, Brussels, Belgium

(Manuscript received 15 May 2018, in final form 24 July 2018)

ABSTRACT

Accurate precipitation data are fundamental for understanding and mitigating the disastrous effects of
many natural hazards in mountainous areas. Floods and landslides, in particular, are potentially deadly events
that can be mitigated with advanced warning, but accurate forecasts require timely estimation of pre-
cipitation, which is problematic in regions such as tropical Africa with limited gauge measurements. Satellite
rainfall estimates (SREs) are of great value in such areas, but rigorous validation is required to identify the
uncertainties linked to SREs for hazard applications. This paper presents results of an unprecedented record
of gauge data in the western branch of the East African Rift, with temporal resolutions ranging from 30 min to
24 h and records from 1998 to 2018. These data were used to validate the Tropical Rainfall Measuring Mission
(TRMM) Multisatellite Precipitation Analysis (TMPA) research version and near-real-time products for
3-hourly, daily, and monthly rainfall accumulations, over multiple spatial scales. Results indicate that there
are at least two factors that led to the underestimation of TMPA at the regional level: complex topography
and high rainfall intensities. The TMPA near-real-time product shows overall stronger rainfall un-
derestimations but lower absolute errors and a better performance at higher rainfall intensities compared to
the research version. We found area-averaged TMPA rainfall estimates relatively more suitable in order to
move toward regional hazard assessment, compared to data from scarcely distributed gauges with limited
representativeness in the context of high rainfall variability.

1. Introduction
& Supplemental information related to this paper is available at

the Journals Online website: https://doi.org/10.1175/JHM-D-18-
0103.s1.
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Hydrometeorological hazards triggered by extreme
rainfall, such as floods and rainfall-initiated land-
slides, pose a serious socioeconomic threat in many parts
of the world and more particularly in mountainous
areas (Kjekstad and Highland 2009; Jacobs et al. 2016a;
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Alfieri et al. 2017; Kumar et al. 2017). Moreover, in the
context of ongoing climate change, it is estimated that
rainfall extremes may intensify, particularly in the tropics
(IPCC 2013; Gariano and Guzzetti 2016; Souverijns et al.
2016; Thiery et al. 2016), which would also increase the
vulnerability of the population (Washington et al. 2006).
Accurate rainfall data are fundamental to better char-
acterizing extremes as well as ultimately mitigating the
weather-related hazards in areas such as tropical Africa.
Hydrometeorological hazards (herein referring to both
hydrological and hydrologically triggered hazards such
as landslides) can be related to high-intensity, short-
duration events and/or long-duration rainfall (Gariano
and Guzzetti 2016; Sidle and Bogaard 2016). High-
resolution rainfall data are therefore fundamental for ac-
curate hazard assessment (Brunetti et al. 2018; Kirschbaum
and Stanley 2018).

Ground-based rainfall measurements in tropical Africa
are either sparse or nonexistent and often include erro-
neous data or large gaps (Serrat-Capdevila et al. 2016;
Dezfuli et al. 2017). The main reasons are the lack of
African states’ means and political will or interest to
support such data collection, as well as the relatively
high cost of establishing and maintaining infrastructure
in these areas (Washington et al. 2006; Monsieurs et al.
2017). This problem is even more prominent in moun-
tainous areas, where rainfall presents large spatial vari-
ability due to strong topographic transitions (Dinku
et al. 2008) and the susceptibility to hydrometeorologi-
cal hazards is generally high (Sidle and Bogaard 2016).
Spatial and temporal discontinuities in rainfall data from
gauges limit the ability to study regional extremes
over a long record. In addition to the constraints on
data availability in space and time, the use of rain
gauges comprise a range of error sources for rainfall
measurements such as, for example, rainfall under-
catch and gauge malfunctioning (Sevruk et al. 2009;
Grimaldi et al. 2018, and references herein). Finally,
the latency for data availability generally hampers
the development of hazard early warning systems
(Gebregiorgis et al. 2017).

Satellite rainfall estimates (SREs) with high spatial
and temporal resolution and large areal coverage pro-
vide an opportunity for regional rainfall data acquisition
in remote areas. Yet, SREs remain an ongoing challenge
(Hobouchian et al. 2017; Rossi et al. 2017; Brunetti et al.
2018). Visible and infrared sensors on board geosta-
tionary satellites infer surface rainfall based on cloud
albedo and cloud-top temperature, respectively (Kidd
2001). The dominant associated uncertainties emanate
from warm-rain processes in the development stage of deep
convection in tropical areas or orographic enhancement of
rainfall (Dinku et al. 2008, 2010) and subcloud evaporation
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(Mashingia et al. 2014; Hobouchian et al. 2017). Passive
microwave sensors on low-Earth-orbiting satellites al-
low more accurate estimates of instantaneous rainfall by
observing the precipitation signal within or beneath the
cloud (Kidd and Huffman 2011). However, cold surfaces
and ice cover may be wrongly interpreted as rainy
scenes, and the low observation frequency is prob-
lematic (Dinku et al. 2010; Kummerow et al. 2015).
Better results for accurate rainfall estimation can be
achieved by products derived from the combination of
microwave observations (high-quality rainfall obser-
vation) and infrared observations (higher spatiotem-
poral resolution and continuous sampling; Ebert 2007;
Kidd and Huffman 2011; Salio et al. 2015; Gebregiorgis
et al. 2017; Poméon et al. 2017). Still, these combined
products suffer strong uncertainties in topographically
complex terrain (Derin and Yilmaz 2014; Zambrano-
Bigiarini et al. 2017) and over areas comprising inland
water bodies, inducing a complicated microwave signal
due to the cold water and the warm land (Tian and
Peters-Lidard 2007).

This paper focuses on the Tropical Rainfall Measuring
Mission (TRMM) Multisatellite Precipitation Analysis
(TMPA) product for six reasons: 1) it is currently among
the most widely recognized multisatellite rainfall prod-
ucts (Gebregiorgis et al. 2017; Hobouchian et al. 2017);
2) it was designed to improve tropical rainfall observa-
tions by combining microwave and infrared rainfall
estimates, at a spatial resolution of 0.25° X 0.25° and
3-hourly temporal resolution (Huffman et al. 2007); 3) it
provides one of the longest consistent records (from 1998
to present) of freely available, spatially homogeneous
SRE products over the tropics; 4) it has been validated
with satisfactory results in many parts of the world
(Dinku et al. 2008; Habib et al. 2009; Islam et al. 2012;
El Kenawy et al. 2015; Munzimi et al. 2015); 5) it was
proven successful in several hydrometeorological hazard
applications (e.g., Li et al. 2009; Kirschbaum et al. 2015;
Yaduvanshi et al. 2015; Avalon Cullen et al. 2016;
Abdelkareem 2017; Kumar et al. 2017; Thiery et al. 2017,
Kirschbaum and Stanley 2018); and 6) it serves as im-
portant input data for high-resolution, satellite-based
rainfall estimates such as Climate Hazards Group
Infrared Precipitation with Stations (CHIRPS; 0.05°%;
Funk et al. 2015). While the TRMM satellite is no
longer operating, the multisatellite TMPA product
will continue to be produced until the IMERG (from
2014 to present, 0.1°, half-hourly) retrospective re-
processing is completed (expected by late 2018). This
reprocessing will provide a higher spatial and tem-
poral resolution from 2000 to present and will ex-
tend the latitudinal coverage to 65°N-65°S (Huffman
et al. 2015).
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FIG. 1. Surface pressure patterns, airstreams, and convergence zones that affect the climate in
the study area (modified after Nicholson 1996; Gasse et al. 2008). SAA = South Atlantic an-
ticyclone, AA = Arabian anticyclone, SIA = South Indian anticyclone, WAM = West African
monsoon, NEM = northerly East African monsoon, SEM = southerly East African monsoon,
CAB = Congo Air Boundary (red line: July/August, green line: December). Tropical climate

types are according to the Koppen-Geiger classification (Peel et al. 2007).

Rigorous validation is necessary to characterize un-
certainties in the SRE records in order to more effec-
tively use these data for hydrometeorological hazard
modeling and support local authorities in risk manage-
ment (Mashingia et al. 2014). Even though many current
SRE data are freely available, little validation has been
done on a regional scale in tropical Africa, particularly at
daily and subdaily time scales and in mountainous regions
(Cattani et al. 2016). In this paper, we therefore aim to
evaluate the TMPA product over a data-scarce region in
tropical Africa with complex topography. We focus on the
western branch of the East African Rift, a region known
for being highly susceptible to hydrometeorological haz-
ards (Maki Mateso and Dewitte 2014; Jacobs et al. 2016a,
2017; Monsieurs et al. 2017, 2018; Stanley and Kirschbaum
2017). The paper is organized as follows: section 2 de-
scribes the validation region and the data used for analy-
sis, section 3 outlines the validation approach, section 4
provides results of this approach, section 5 discusses the
findings, and the final section presents the conclusions. A
list with acronyms is given in appendix A.

2. Setting and data description
a. Study area

The validation region stretches over the western
branch of the East African Rift from Lake Tanganyika
up to the Rwenzori Mountains (Fig. 1). The regional
climate is driven by three principal surface airstreams
and two major surface convergence zones (Fig. 1). A
comprehensive description of the complex system of
climate drivers in equatorial Africa is given by Dezfuli
(2017). The region has a bimodal rainfall regime (Fig. 2),
with the first rainy season starting in September
(Monsieurs et al. 2018). While December—February is
considered a ‘““dry” season (Nicholson 1996), results
from the average monthly TMPA data in Fig. 2 show
that there are still over 100mm of average rainfall,
whereas the period from June to August can clearly be
distinguished as a dry season.

Rainfall anomalies are related to the strong in-
terannual variability of the ITCZ (Souverijns et al.
2016), El Nifio-Southern Oscillation, and Indian Ocean
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FIG. 2. Rainfall seasonality and distribution of landslide events
(LS) in the study area. The dashed line highlights the 100-mm
monthly average rainfall threshold that was used to group the an-
alyses in wet and dry months. The presented mean monthly rainfall
is based on 20 years (1998-2018) of TMPA 3B42 daily data.
Modified after Monsieurs et al. (2018).

dipole events (Behera and Yamagata 2001; Shaaban and
Roundy 2017). This is reflected by the large standard
deviations of monthly rainfall in Fig. 2. In addition, the
local climate is strongly modulated by the complex rift
topography (Jacobs et al. 2016a; Smets et al. 2016), and
the presence of large lakes (Thiery et al. 2015; Docquier
et al. 2016). Consequently, there is large rainfall vari-
ability across the study area. The complex topography,
presence of lakes, and variable rainfall regimes within
the study area represent many of the typical features
that pose difficulties for estimating rainfall from satellite
observations.

Several types of natural hazards threaten the
densely populated areas in the study region, including
floods, earthquakes, volcanic eruptions, landslides,
and their interactions (Jacobs et al. 2016b, 2017;
Michellier et al. 2016; Delvaux et al. 2017; Thiery et al.
2017; Nobile et al. 2018). Similar to rain gauge data
collection, collecting information on hydrometeoro-
logical hazards is tedious in the study area (Monsieurs
et al. 2017, 2018) and beyond the scope of the present
study. Figure 2 provides a summary of the most
extensive landslide hazard inventory currently avail-
able in the region, which is an updated version of the
inventory compiled by Monsieurs et al. (2018) com-
prising 199 landslide events with known location and
date over a time span of 50 years (1968-2018). There
is a clearly observable signal related to the wetting of
the soil throughout the two rainy seasons and sub-
sequent landslide occurrences, which reach a peak
in May.
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b. Data description

1) RAIN GAUGE DATA

Gauge data with a sampling frequency of one day or
better were collected for 24 gauges from a variety of
sources, including international research projects; uni-
versities; and local research, religious, and governmental
institutions. In addition, a gauge network was installed and
maintained as part of the Remote Sensing and In Situ
Detection and Tracking of Geohazards (RESIST) and
AfReSlide projects since 2014 (http://resist.africamuseum.
be/; http://afreslide.africamuseum.be/), which comprises
10 gauges in the Rwenzori Mountains (Uganda) and 12 on
the Rift flanks in DR Congo. These gauges have a tem-
poral resolution ranging between 30min and 1h. The
46 gauges in total (herein referred to as the gauge network)
cover the latitudinal range of the study area; however, an
optimal distribution of gauges in the longitude is mainly
hampered by inaccessibility due to low levels of security
west of Lake Kivu (Fig. 3). Minimum and maximum rain
gauge elevations in this network are 664 and 2435m,
with a mean of 1600 m and a standard deviation of 428 m.
The temporal extent of the gauge data over the TMPA
record used in this study (from 1 January 1998 to 1 January
2018) is presented in Fig. 4. This gauge network currently
represents the most extensive data compilation from
gauges with a temporal resolution of 24 h or better over the
study area. Moreover, validation of SRE in equatorial
Africa has, to the authors’ knowledge, never been per-
formed with a comparable rain gauge density at the
present spatiotemporal resolution. However, continuous
time series are almost nonexistent because of frequent
power outages and political instabilities in the region.
Hence, it is not feasible to limit the validation to only the
period when all gauge data temporally overlap. We
therefore consider all data presented in Fig. 4 for further
analyses, keeping in mind that gauges with long records
may have a stronger influence on the results. An extended
description of the gauge network installation, mainte-
nance, and data preparation is given in the online sup-
plemental material.

Six gauges coincide with gauges in the GPCC network
used for TMPA calibration. Gauges used for satellite
rainfall calibration should mostly be avoided for vali-
dation (Dinku et al. 2010), although this has not always
been the case (Su et al. 2008; Poméon et al. 2017).
However, we choose here to include these six gauges for
validation, because of the limited data availability in this
region, but also because GPCC gauge data are only used
to adjust the monthly bias (Huffman and Bolvin 2014),
and the day-to-day relative variations in rain are driven
entirely by the satellite data.
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The 46 gauges are located in 31 different TMPA
pixels. Eight TMPA pixels contain more than one gauge,
with a total amount of 23 gauges. Gauge data within the
same TMPA pixel are not averaged so that all (TMPA,
gauge) pairs are evaluated in a consistent way. In addi-
tion, averaging of gauge data within each TMPA pixel
would decrease the magnitude of extreme rainfall
events, which are of high relevance for hydrometeoro-
logical hazard assessment. Instead, we treat the multiple
gauge data within the same TMPA pixel as independent
comparisons, each of which are assigned the same
TMPA value when temporally overlapping. The gauge
network comprises 20 gauges that are located in TMPA
pixels containing inland water bodies (Fig. 3).

2) TMPA DATA

The TMPA algorithm uses instruments on board
TRMM to serve as the calibration standard for a
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FIG. 4. Temporal characterization of rain gauge data from 1 Jan
1998 to 1 Jan 2018. Gauge codes refer to the numbers on the map in
Fig. 3 with an additional land code: BU = Burundi, DRC = DR
Congo, RW = Rwanda, UG = Uganda. Gauges installed and
maintained by the authors are light blue; gauge data collected from
other sources are dark blue. Periods that contain suspicious data
are shaded light orange, and data gaps are shaded gray. The colored
boxes refer to the selected periods and gauges used for the vali-
dation in distinct contexts on the ground: Black = topographic
complex terrain, green = presence of large water bodies, orange =
relative low continental environment.

network of passive microwave sensors. Gaps in the high-
quality microwave observations are filled in using
microwave-calibrated infrared data, thus allowing
TMPA to provide coverage from 50°N to 50°S every 3 h
(Huffman et al. 2007, 2017). The average revisit time of
the microwave observations changes with latitude and
available sensors (Hou et al. 2014; Nelkin 2017). TMPA
represents a snapshot at some point during the 3-h
window, that is, not the actual 3-hourly average rain
rate (Villarini and Krajewski 2007) over an area of
~775km? (at the equator). TMPA data are available
as a variety of products (Huffman et al. 2007). The re-
search version (3B42, version 7, herein referred to as
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TMPA ResV) is available from 1 January 1998 to
present, over 50°N-50°S, with a 0.25° X 0.25°, 3-hourly
spatiotemporal resolution. This version uses Precipitation
Radar (PR) and TRMM Microwave Imager (TMI) for
calibration of all passive microwave inputs, and is also
calibrated against the gauge-based GPCC rainfall data
on a monthly basis, though the correction ratio is limited
to between 0.2 and 3.0mmh ™' (Huffman et al. 2007).
Because of this postprocessing, TMPA ResV is only
available after 2 months (Huffman and Bolvin 2014).
The near-real-time product (3B42RT, version 7, herein
referred to as TMPA RT) has the same spatiotempo-
ral resolution and is available from 1 March 2000 to
present, with postprocessing limited to TMI-only cali-
bration (Huffman et al. 2010). On the other hand, the
latency of TMPA RT is only eight hours and it has a
spatial extent from 50°N to 50°S with experimental data
currently extending from 50°-60°N to 50°-60°S. Further
details can be found in Kummerow et al. (2000, 2015)
and Huffman et al. (2007, 2017).

TMPA ResV and RT were downloaded from NASA
Goddard Earth Sciences Data and Information Services
Center (https://disc-beta.gsfc.nasa.gov/). Accumulations
are computed taking into account the local time zone
and gauge accumulation period. We only use TMPA
data when corresponding gauge data were available.
The equivalent time series for TMPA ResV and RT
comprise 92941 and 87357 days, respectively.

3. Methodology

Taking the spatiotemporal constraints of the gauge
dataset into account (Figs. 3, 4), we adopted a validation
scheme that checks multiple validation approaches and
spatiotemporal scales, providing a broad picture of
TMPA’s error characteristics. We focus on illustrating
the differences between the two TMPA products toward
providing insights for their use in hydrometeorological
hazard assessment. However, assessing the hazards
themselves is out of the scope of this work. Namely, the
identification of rainfall thresholds for triggering haz-
ards will be done in a separate study.

a. Validation statistics

In this work three validation approaches are used. All
statistical tests are described in Table 1, based on the
overview of standard and diagnostic validation methods
by Wilks (2006) and Ebert (2007). The entire validation
was performed using the R open-source software, re-
lease 3.3.2 (http://www.r-project.org/). The first ap-
proach comprises visual comparison of the rainfall value
distributions, using quantile—quantile (QQ) plots. The
second validation approach measures TMPA’s accuracy
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for continuous variables including rainfall amount and
intensity, while normalizing by the gauge-measured
rainfall rate of the respective period. This approach re-
lies on a combination of accuracy metrics to evaluate
scatter, or random error, by use of the Pearson corre-
lation coefficient (COR); error direction, by normalized
mean error (NME; also known as mean bias); error
magnitude, by normalized mean absolute error (NMAE);
and importance of extremes, by normalized root-mean-
square error (NRMSE). Last, TMPA’s accuracy in
rainfall detection is evaluated based on a contingency
table (Table 2). A comprehensive statistic summarizing
the contingency table is the Heidke skill score (HSS;
Heidke 1926; Wilks 2006). HSS measures how well es-
timates perform compared to random chance, with
negative values indicating a worse performance than
random chance, positive values indicating a better-than-
random performance, and a value of one corresponding
to perfect skill. For the purpose of evaluating SRE for
hydrometeorological hazard applications, additional highly
relevant metrics are the probability of detection (POD)
and the probability of false alarm (POFA; Martelloni
et al. 2012; Rossi et al. 2017; Thiery et al. 2017). The use
of the term POFA is preferred above false alarm ratio
(Wilks 2006) because of its common confusion with false
alarm rate, which is a different metric (Barnes et al.
2009). POD refers to TMPA’s ability to correctly iden-
tify rain occurrence, that is, separate wet and dry days or,
if rain thresholds are imposed to evaluate TMPA'’s ef-
ficiency in identifying heavy rains, separating days drier
or wetter than the threshold. POFA works the same way
with respect to thresholds.

b. Spatiotemporal validation scales

Validation has been conducted for three temporal
rainfall accumulation periods: 3-hourly (TMPA native
resolution), daily, and monthly. We focus mostly on the
daily time scale to utilize the entire gauge dataset, since
35% of the gauges have no subdaily information. Fur-
thermore, daily resolution is highly relevant for regional
hazard model calibration due to the dearth of information
on the exact time of the occurrence of hydrometeorolog-
ical hazards (e.g., Kirschbaum et al. 2015), especially in the
context of central Africa (Jacobs et al. 2016a; Monsieurs
et al. 2018). Mountainous environments, however, are
characterized by high rainfall variability and induce ac-
celerations of streamflow volume concentration that
might cause hydrometeorological hazards such as flash
floods (Devrani et al. 2015). Therefore, we validated
TMPA on a 3-hourly resolution for the rainy seasons in
2016, that is, March—-May and September—-November,
using 13 gauges from the network we maintain with
subdaily temporal resolution and which have data over
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TABLE 2. Contingency table for categorical validation metrics,
where a—d are as in Table 1 for HSS.

Gauge >0 Gauge =0
SRE >0 Hit (a) False alarm (c)
SRE =0 Miss (b) Correct negative (d)

the selected period. Last, TMPA performance is tested
on a monthly scale, because accumulated antecedent
rainfall conditions are proven to play a crucial role for
hazards such as landslides (Segoni et al. 2018). However,
monthly TMPA accumulations are strongly influenced by
GPCC. Only continuous metrics are computed at the
monthly scale as detection of rainfall for monthly accu-
mulations is irrelevant to SRE skill evaluation. Months
comprising gaps have been excluded from this analysis.

We evaluated the different temporal rainfall accu-
mulations by season, ground conditions, and rainfall
characteristics. These factors are known to affect the
errors in SREs (Kidd and Huffman 2011). Two elevation
classes (500-1700 and 1700-2500m MSL) are chosen
such that the amount of gauge data in each class is ap-
proximately equal. A threshold of 100-mm average
monthly rainfall was chosen to define wet versus dry
periods and test the impact of seasonality on TMPA’s
performance (Fig. 2). To evaluate TMPA’s sensitivity to
rainfall intensity, data were grouped into 10 intensity
classes as measured by the gauges and adapted from
Kim et al. (2017).

In addition to the spatial grouping by elevation, we
selected four gauges from three contrasting environ-
ments (further referred to as “‘context): 1) the Lake
Kivu area, with TMPA pixels having more than 35% of
their surface covered by water; 2) the region above
1700m in the Rwenzori Mountains, characterized by
very complex topography; and 3) the comparatively low-
altitude continental environment of eastern Rwanda,
with an average altitude of 1480 (=80) m MSL for the
four gauges (Fig. 3). The first two contexts include ex-
clusively gauges that we maintain, of which all available
data are included for this analysis. No information on
the data quality is available in the third context group,
for which data from 2012 to 2015 have been selected in
order to evaluate SREs over a similarly long time period
with almost no data gaps. The selected gauges and time
periods are highlighted in Fig. 4. Analyses are per-
formed at daily and monthly temporal resolution, elu-
cidating the impact of these different ground conditions
to the performance of TMPA.

c. Point-to-pixel approach

The sparse and temporally and spatially heteroge-
neous gauge coverage does not allow for an accurate
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rainfall interpolation, especially given the strong topo-
graphic gradients within the domain. Therefore, gauge
data are not extrapolated and aggregated to TMPA’s
resolution, as recommended by Chen and Knutson
(2008). Instead, we apply the point-to-pixel validation
approach (Islam et al. 2010; Thiemig et al. 2012;
El Kenawy et al. 2015). A severe limitation to this ap-
proach is the discrepancy between local-scale gauge
data and spatially averaged TMPA data in the context
of local convective storms and orographic rainfall.

Indeed, local rainfall variability introduces uncertainty
into the gauge data used as a reference to validate TMPA.
This source of uncertainty is especially relevant for ex-
treme rainfall analyses (Chen and Knutson 2008; Sun and
Barros 2010). To evaluate the gauge data uncertainty, we
study the correlation between the time series of in-
dependently measuring gauges in a pixel and the daily
standard deviations between their respective measure-
ments. Five TMPA pixels contain two gauges and one
pixel contains four gauges with overlapping time series.
There are a total of 3599 (ResV) and 3651 (RT) over-
lapping days between intrapixel gauges over these six
pixels, with an average overlap per pixel of 604 days. The
average distance between the gauges in one pixel is 18.72
(£7.28) km. To estimate the relative effects of gauge and
TMPA data uncertainties on the validation process, the
measures of local rainfall variability within a pixel are
compared with the mean residual standard error (ResSE)
of TMPA data. This error (mm day ') is calculated as the
square root of the mean squared residual of the linear
regression of TMPA against gauge data.

d. Analyses of extremes

A final analysis considers TMPA’s performance in
capturing extreme rainfall events. The hundred highest
daily rainfall events for TMPA and gauge data over the
same spatial and temporal domain are evaluated, of which
the 10 highest records are related to reported hydrome-
teorological hazards. Information on hydrometeorologi-
cal hazards is collected using the following principal
sources: Monsieurs et al. (2018, their Fig. 2), http://
reliefweb.int, http://floodlist.com, http://www.emdat.be,
http://www.glidenumber.net, Vandecasteele et al. (2010),
and Jacobs et al. (2016a). Analyses are performed for the
time period from March 2000 to January 2018 in order to
be able to compare for each event the three datasets, that
is, gauge, TMPA ResV, and TMPA RT.

4. Results

Validation results relevant for using TMPA in hy-
drometeorological hazard assessment are first presented
for the daily temporal resolution, allowing a broad
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picture of TMPA'’s performance over multiple spatial
scales. This is followed by the 3-hourly and monthly
validation results for the selected gauges and time pe-
riods. Last, we show the analyses on daily extremes re-
lated to hydrometeorological hazards for the entire
gauge network. Results for TMPA ResV and RT data
products are compared to analyze the trade-offs for the
short latency of TMPA RT data, as compared to the
supposedly improved ResV product.

a. Daily resolution

1) REGIONAL PERFORMANCE

Overall, we found that TMPA RT underestimates
rainfall (negative NME) on average more severely
(40.35%) at the regional scale compared to the ResV
(15.15%; Table 3, category A). The QQ plot (Fig. 5)
confirms that the TMPA distributions significantly differ
from that of gauge data, from which RT deviates more
severely. The correlation between both datasets at a
daily scale is moderately low (COR; Table 3, category
A). While TMPA ResV has lower rainfall un-
derestimations compared to TMPA RT, the mean ab-
solute error is higher (NMAE; Table 3), which implies
that NMAE is largely driven by random errors that
cannot be reduced by gauge correction. The regional
detection skills are relatively good (Table 3, category A).
However, these metrics have a relatively high standard
deviation, indicating a significant variation in perfor-
mance among the gauges.

When grouping the validation by elevation, we are
able to reveal an improvement of the correlation be-
tween TMPA RT and the gauges, which outperformed
TMPA ResV for both elevation categories. Average
daily TMPA rainfall underestimation is lower for low-
altitude sites (Table 3, category B). The other statistics
do not significantly vary for the two elevation categories
(Table 3, category B), pointing to no obvious topo-
graphic control on the correlation and detection skills
on a regional scale.

Rainfall underestimation by TMPA, error magnitude,
and importance of outliers tend to increase during the
drier months of the year (Table 3, category C). Even
though HSS is similar for wet and dry months, the POD
is higher and POFA lower for the wet months (Table 3,
category C). The higher correlation for the relatively dry
months is related to the many zero-rain days.

When examining the performance of TMPA as a
function of daily rainfall intensities, we found that all
rainfall intensities above 5 mm day ! are underestimated
by TMPA with increasing magnitudes for higher rain-
fall intensities (Table 3, category D). We note that at
the lowest intensities, disproportionally high normalized
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errors are due to the normalization against low gauge
averages. In terms of rain detection, the HSS decreases
for higher rainfall intensities but remains positive at all
rain intensities, indicating a declining performance in rain
detection but still better than random chance (Table 3,
category D). The POD has relatively high values at 0 and
Immday !, but declines with increasing rainfall in-
tensities. The probability of false alarms increases for
higher rainfall intensities, but drops to zero for the
threshold above 60mmday ' in the RT version just be-
cause no values appear above this threshold due to strong
underestimation (Table 3, category D).

2) CONTEXT-BASED EVALUATION

TMPA was evaluated for three contrasting contexts in
order to quantify the extent to which the validation re-
sults are affected by water-land mixed pixels (mixed)
and complex topographical environments at higher
altitudes (complex topography) as compared to a ref-
erence lower-elevation continental context (low). The
correlation between TMPA and gauge data within the
complex topography context is lowest compared to that
in mixed and low-topography contexts (Table 4, cate-
gory A), with TMPA ResV consistently showing lower
values. TMPA'’s performance for pixels characterized
with a complex topography is also significantly lower
(Table 4, category A) with respect to average underes-
timation, error magnitude, importance of outliers, and
rainfall detection skill (HSS). However, POD and POFA
results do not show the same trend, these two statistics
being lowest in mixed pixels (Table 4, category A).

Separating wet and dry months results in TMPA
performance significantly lower in mixed pixels than
complex topography and low contexts during dry months,
according to COR, HSS, POD, and POFA (Table 4, cat-
egory B). Regarding the rainfall intensity control, HSS
and POD are found to degrade most severely with in-
creasing intensities in complex topographic conditions
(Table 4, category C).

Looking at the complete picture of validation results
over different ground contexts in different seasons and
grouped by rainfall intensities, we found TMPA overall
encounters the greatest difficulties in correctly estimat-
ing rainfall in complex topographical contexts compared
to mixed and low contexts (Table 4). We studied another
facet of the orographic control, namely, the effect of
leeward versus windward mountain side, on the daily
TMPA performance by testing separately two gauges
from each flank of the Rwenzori Mountains (northwest:
UG6, UGY; southeast: UG3, UG4; Fig. 3), knowing that
the southeast flank is the rain shadow side (Jacobs et al.
2016a). Validation results for COR, NME, HSS, and
POFA are significantly better for the rainy side of the
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FIG. 5. QQ plot for daily rainfall measured by the gauges and the
equivalent TMPA databased on the availability of rain gauge data
in that pixel for the entire study area. The solid black line presents
the 1:1 line. TMPA distributions significantly differ from that of
gauge data, of which the TMPA RT product deviates more than the
TMPA ResV product.

mountain (northwest). Rainfall is more severely un-
derestimated on the rain shadow (southeast) side, with
NME = —39.23% (ResV), —49.47% (RT), compared to
the northwest flank where NME = —14.91% (ResV),
—26.73% (RT).

3) INTRAPIXEL VARIABILITY

The most meaningful evidence for estimating gauge
data uncertainty is found in the pixel with four gauges,
which allows a more robust estimation of the intergauge
correlation and the standard deviation of the daily
samples. With about 700 days of overlapping gauge data,
analyzing this single pixel is statistically significant from
the temporal point of view. We observe that while the
average correlation between the gauges is only ~0.29
(ResV: 0.293; RT: 0.296), the average gauge-TMPA
correlation is higher ~0.34 (ResV: 0.335; RT: 0.336;
Table 5). The problem of this high intergauge variabil-
ity, highlighted in an example of stacked 1-month ex-
cerpts of their time series (Fig. 6), is confirmed by the much
improved gauge-TMPA correlation when first averaging
the gauge data: ~0.47 (ResV: 0.472; RT: 0.470). This shows
that TMPA validation is strongly biased by the poor rep-
resentation at the pixel scale of the field evidence we use as
control data.

We quantify the gauge data uncertainty by the average
daily standard deviation between gauge measurements,
which is calculated to be ~4mmday ! (ResV: 4.03;
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RT: 3.92) for the pixel containing four gauges. Once the
underestimation trend is removed, the ResSE error on
TMPA RT data with respect to ground ‘‘truth”
(3.86mm day ') is slightly lower than the uncertainty in
the gauge data (Table 5). Taking into account that this
error is affected by the uncertainty of both TMPA and
gauge data, we can conclude that most of the TMPA
residual error is linked to the uncertainty on gauge data
and TMPA would thus appear as a good performing in-
dicator of relative rainfall at pixel scale in the study area.

Using TMPA ResV data adds uncertainty to the
recognized gauge data uncertainty, with a higher
4.74mmday ! value of TMPA ResSE compared to the
average standard deviation in the gauge data (Table 5).
This is in line with our earlier findings, namely, that the
gauge-calibrated TMPA ResV product has a lower
precision in the study area compared to TMPA RT.
Owing to this, we propose that TMPA RT data are a
better rainfall proxy than TMPA ResV data in this area.

However, with one single pixel, we cannot illustrate a
possible spatial variability in gauge uncertainty. There-
fore, we also present results for the five pixels containing
two gauges, but with a prior call for caution in discussing
them because (n = 2) samples are far from ideal to get
realistic standard deviation estimates and tend to un-
derestimate them on average. Results show values of
~2.4mmday ' (ResV: 2.44; RT: 2.42), which are
somewhat smaller compared to the standard error on
residuals for TMPA in the same pixels (ResV: 5.22; RT:
3.28; Table 5). Besides confirming that a large part of the
uncertainty in TMPA is related to the gauge uncertainty
and that TMPA ResV introduces its own contribution to
uncertainty compared to TMPA RT, the figures obtained
for the two-gauge pixels also suggest that TMPA data
uncertainty is marginally affected by local topography.

Overall, these results highlight the high local rainfall
variability over the study area, which implies that mul-
tiple rain gauges are needed to represent the rainfall in
a 25km X 25km area (TMPA pixel size). Hence, the
limited quality of SRE validation at the TMPA resolu-
tion is partly due to the inadequacy of using individual
rain gauges as control data. This also highlights the rel-
evance of TMPA area-averaged rainfall estimates for
regional hydrometeorological hazard analyses in this
area, as point observations represent only a small area in
the proximity of the gauge.

b. 3-hourly and monthly resolution

We also tested TMPA'’s performance at its 3-hourly
native resolution during the rainy seasons of 2016. Val-
idation results in Table 6 are fairly similar to, though
slightly lower than, the results obtained for daily rainfall
accumulations (Table 3). Yet, results for POD are lower
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TABLE 5. Evaluation of gauge and TMPA ResV and RT data uncertainty in pixels containing multiple gauges. Analyses are done using
daily rainfall estimates: “‘Mean intergauge correlation” is the average correlation between the gauge data within a pixel; “Mean gauge—
TMPA correlation” is the average correlation between each gauge and the same TMPA value of that pixel; “Correlation mean gauge
data-TMPA” is the correlation between the averaged gauge data within a pixel and the respective TMPA values; ‘“‘Mean std dev gauge
data” is the average standard deviation (mm day ') between the gauge measurements in a pixel; and “TMPA ResSE” is the square root of
the mean squared residual (mm day ') in the linear model for TMPA with gauge data as independent variable. Number of days in
overlapping time series used for the analysis are presented in parentheses.

Mean intergauge Mean gauge-TMPA Correlation mean Mean std dev TMPA
correlation correlation gauge data-TMPA gauge data ResSE
ResV
One four-gauge pixel (699 days) 0.293 0.335 0.472 4.03 4.74
Five two-gauge pixels (2900 days) 0.399 0.399 0.473 2.44 522
RT
One four-gauge pixel (724 days) 0.296 0.336 0.470 3.92 3.86
Five two-gauge pixels (2927 days) 0.395 0.385 0.458 242 3.28

and POFA higher (Table 6, category A) than those for
the daily values (Table 3). When grouping for rainfall
intensities, we find zero probability of detection for
rainfall intensities higher than 25mm/3h, although
TMPA recorded 74 events above this threshold
(Table 6, category B). Also POFA degrades quickly for
any rainfall detection per 3h (Table 6, category B).
Differences between the performance of both TMPA
products at 3-hourly resolution is small overall, with the
RT version generally performing better for COR,
NMAE, and NRMSE (Table 6).

Validation results for monthly rainfall accumulations
show an expected significant improvement relative to

3-hourly and daily TMPA rainfall estimates (Table 7,
category A). In an explorative focus on monthly values
over four gauges from each ground context (Figs. 3, 4),
TMPA encounters more difficulties over complex to-
pographic terrain (Table 7, category B), confirming
earlier findings at daily resolution (Table 4).

¢. Daily extremes related to hydrometeorological
hazards

In addition to the above intensity-grouped analyses,
TMPA'’s performance for high-intensity events is eval-
uated by examining the 100 highest recorded daily
rainfall events from the gauge and TMPA datasets for

60 -

50

40 -

-

m

o

€

30

E

£

]

«<

20

10 -

\ /

0--’r. - N —
[=a - B« B =0 T« LT = ) O+ S« ) O = T« T« 3 N+ S« ) O = T« » 3 O+ S« ) B = T« » B ) B+ A < ) B = = s B = B+, B == B = T o ]
O O O 0 0 O 0 O 0 0 0 0 0 0 0 0 0 0 o0 0 0 o0 o0 o0 0 00 & = = -«
fgeegLeEgLgLEgLLLOELOLogLesgo8Lo 899 ggddg
s v O NN 0 0 O = NN Mg N WU 00O = ANM S N WU N 00O o NN M
O O O 0O O 0O A ™ = o = o o = A = 6N AN N N AN N NN NN N MmO O o O

Date (DD/MM) 2015
Gauge 23 Gauge 29 Gauge 31 Gauge 55 ===== ResV = ===== RT
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TMPA pixel that is located over the Rwenzori Mountains, together with the TMPA estimates
of this pixel (Fig. 3). This presents the variability in observed rainfall in a 25 km X 25 km area.
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TABLE 6. Evaluation of TMPA ResV and RT products at 3-hourly resolution. Analyses are based on data from the 13 gauges we maintain (indicated in Fig. 4) during two rainy seasons
in 2016 when available (March-May, September-November). The number of observations used for analyses in each category is given under “Time stamps.” Category A is averaged

results for the selected gauges and time period with their standard deviation (Std dev), and category B is intensity groups (all in mm day ~!; bold numbers refer to the thresholds used for

the calculation of HSS, POD, and POFA). The results in parentheses for the highest intensity group refer to the same outcome as the second highest intensity group, as the upper threshold

for the calculations are the same.

Time stamps

ResV

POFA

ResV

POD

ResV

HSS

ResV

NRMSE

ResV

NMAE

ResV

NME

COR
ResV

RT

16 952

RT
0.47
0.08
0.46
0.64
0.80

RT
0.41
0.04
0.41
0.22
0.01

RT

RT

473.23

RT

115.57

RT
—34.49

ResV

RT

16952

0.47
0.08
0.46
0.68
1.00

(1.00

041
0.04
0.41
027
0.00

(0.00

0.36
0.04
0.37
0.25
0.02

0.36
0.04
0.37
027
0.00

(0.00

127.32 501.54

0.34 —16.59

0.07

0.33
0.07

Average

A
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13.79 8.95 59.01 55.30

17.60

23.75

Std dev

14 006

14006

0mm/3h

B

2333

2333

158.26 129.92 31256  228.61

3.69

—73.18
—89.29

35.63

—66.43
—87.81

0.24
0.12

0.06

0.21
0.10
0.15

>0-5mm/3 h
5-25mm/3h
>25mm/3 h

539

539

94.34
95.06

79.65 93.86
93.27

89.37

78.28

<
~

74

0.80)

0.01)

0.02)

87.81
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the time period from March 2000 to January 2018, re-
ferred to as “extremes.” The highest daily rainfall re-
corded by TMPA ResV (93mmday ') and RT
(57 mm day ') is markedly lower than that of the gauges
(142mmday'; Figs. 7a,b). Figures 7a and 7b plot
TMPA ResV and RT against gauge values for the 100
most extreme gauge and TMPA ResV records, re-
spectively. Results indicate an asymmetric behavior of
the recorded extremes, that is, all gauge extremes are
underestimated by TMPA (Fig. 7a), whereas most (but
not all) TMPA extremes overestimate rainfall measured
by the gauges (Fig. 7b), with a bigger bias magnitude in
the former case (Fig. 7c) than in the latter (Fig. 7d).
Figure 7b clearly illustrates the difference between
TMPA ResV and RT as a result of the correction of
TMPA ResV through calibration with gauges on a
monthly basis. While this correction results in an aver-
age lower bias between gauge and SRE values (Table 3,
category A), it tends to be problematic for extreme
rainfall intensities recorded by TMPA, resulting in
increased discrepancy between ResV and gauge data
in the study area. Limiting the gauge adjustment fac-
tor to a narrower range could result in better SRE for
TMPA ResV.

When considering the top 10 gauge extremes for
an exploratory analysis on hazard-triggering rainfall
events, results indicate that TMPA misses or severely
underestimates them (Fig. 7c). By contrast, TMPA ex-
tremes overestimate gauge-measured rainfall intensities,
especially in their ResV form (Fig. 7d, appendix B). The 10
TMPA and gauge extremes were matched with reported
hydrometeorological hazards in the corresponding pixels
(Figs. 7c,d and Fig. B1). We found 7 out of the top 10 gauge
extremes to be related with hydrometeorological hazards
of flooding, landslides, or flash floods. Because of the re-
moteness of large parts of the study area, there may be
unreported hazard occurrences. Six (ResV) and two (RT)
out of the respective top 10 TMPA extremes are also re-
lated to hydrometeorological hazards, even though
some were completely missed by the corresponding field
data (Fig. 7d, event 6; see Fig. B1 in appendix B).

5. Discussion

Results of the TMPA ResV and RT analysis identify
several biases inherent to SRE and gauge field data in
the study area that should be taken into account when
interpreting the validation results. First, whereas we
initially considered gauge data as a “‘ground truth” for
SRE validation, intrapixel rainfall analyses have shown
that gauge point observations are not necessarily rep-
resentative of the average rainfall over the ~25km X
25km area of a TMPA pixel at daily resolution (Fig. 6;
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TABLE 7. Evaluation of monthly TMPA ResV and RT products. The number of months used for analyses in each category is given
under ‘““Months.” Category A is regionally calculated metrics with their standard deviation (Std dev) (all gauge data in Fig. 3 are used).
Category B is evaluation in different contexts on the ground. ‘“Mixed” represents pixels that include large water bodies, ““‘Co. topogr.” is complex
topographic terrain, “Low” is relatively low terrain. For each of these contexts four gauges have been selected (indicated in Figs. 3 and 4).

COR NME NMAE NRMSE Months
ResV RT ResV RT ResV RT ResV RT ResV RT
A Regional 0.70 0.69 —15.64 —41.09 38.92 50.21 52.97 65.57 3008 2829
Std dev 0.18 0.19 18.37 14.10 10.52 9.68 14.53 12.63
B Mixed 0.85 0.84 -8.03 —44.28 26.29 47.77 36.91 59.17 75 75
Co. topogr. 0.51 0.45 —34.07 —-45.20 52.66 60.24 69.35 71.73 144 147
Low 0.76 0.80 —4.36 =25.12 37.13 38.60 54.25 54.00 441 415

Table 5). We found that most of the errors in TMPA
data with respect to gauge data are linked to the un-
certainty in the gauge data (Table 5). This confirms the
concerns raised by Satgé et al. (2016), who analyzed the
impact of the gauge representation error on daily rain-
fall detection metrics. It certainly is a major control on
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the quality of TMPA validation, which is inevitably
degraded if a single reference gauge is unable to record
local convective storms that cause heavy rains elsewhere
in the TMPA pixel or, conversely, records very local heavy
rain not representative at the pixel scale. In principle,
this issue should be less acute for higher-resolution SRE,
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ERT

FIG. 7. Extreme daily rainfall recorded by the gauges and by TMPA between 2000 and 2018 based on the
availability of rain gauge data in the corresponding TMPA pixel. (a) Scatterplot of the top 100 daily rainfall events
as measured by the gauges, indicating that each of these events is underestimated by TMPA ResV and the RT data.
(b) Scatterplot of the top 100 daily rainfall events recorded by TMPA ResV. The bias correction of TMPA ResV
through calibration with gauges on a monthly basis is clearly visible as a shift between RT and ResV. The top 10
most extreme rainfall events (1 = most extreme) measured by (c) the gauges and (d) TMPA ResV were matched
with reported hydrometeorological hazards, if available: Letters in (c) and (d) are F = flood, FF = flash flood, LS =
landslide. The corresponding rainfall measured by the gauge, TMPA ResV, and RT in the same pixel is also shown.
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such as IMERG. The improvement obtained by averaging
multiple gauge data within a pixel is in the line of previous
findings showing that spatiotemporal averaging sub-
stantially reduces biases and improves performance
(Mantas et al. 2015; Tan et al. 2017; Tang et al. 2018).
Second, gauge data themselves are likely under-
estimating rainfall due to wind undercatch, which is
known as a severe source for systematic bias (on the
order of ~20%) in gauge-based measurements
(Sevruk et al. 2009; Mekonnen et al. 2015).

There are very few studies that use a similar study
domain and validation context (spatiotemporal resolu-
tion, tropical environment, validation approach), limiting a
comparison of our results with existing literature. Yuan
et al. (2017) validated daily TMPA ResV in the tropical
monsoon area of the Chindwin River basin, Myanmar
(22°-27°N) by applying normalized validation metrics
over the time period from April 2014 to December 2015.
There, TMPA ResV regional performance is lower than
in the western branch of the East African Rift, showing a
maximum COR of 0.356, NME:s ranging between —41.2%
and +5%, POD between 0.092 and 0.299, and POFA
between 0.404 and 0.626. A 1998-2006 study of TMPA
(mainly ResV) in the La Plata basin, South America (Su
et al. 2008) found for the tropical upper Paraguay area a
POD and POFA of 0.36 and ~0.70, respectively, for
rainfall > 20mmday ', which is better compared with
values of 0.14 and 0.75 in our study area (Table 3, cat-
egory D). Potential explanatory differences between
the two regions might include a larger number of gauges
and generally lower elevations and relief in the upper
Paraguay area.

The agreement between gauge and TMPA was re-
duced at TMPA’s native temporal resolution, that is,
3-hourly, to a significant extent only for NMAE,
NRMSE, POD, and POFA, whereas the average bias,
Pearson correlation coefficient, and overall detection
skill (HSS) were found similar to those at the daily scale
(Table 3, category A, and Table 6). A study by Scheel
et al. (2011) found a significantly lower correlation co-
efficient (0.018) in subtropical Bolivia for TMPA at
3-hourly resolution. By contrast, spatiotemporal aver-
aging substantially reduces biases and improves per-
formance (Mantas et al. 2015; Tan et al. 2017), as
confirmed by the better monthly TMPA validation re-
sults in Table 7 and other studies in the same area
(Adeyewa and Nakamura 2003; Munzimi et al. 2015).

The separate assessment of wet and dry periods (de-
fined based on a 100-mm threshold for monthly average
rainfall; Fig. 2) revealed TMPA’s performance to be
lowest for several metrics (NRMSE, POD, POFA)
during the dry months (Tables 3, 4). One possible cause
for the poorer performance during the dry season is
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subcloud evapotranspiration (Mashingia et al. 2014;
Hobouchian et al. 2017). Greater evaporation means
that, for the same amount of rain produced in the cloud
aloft (and hence the same ice scattering signature used
in the passive microwave algorithm to estimate the
surface rain rate), the rain that actually reaches the
surface is lower, leading to a higher probability of false
alarms during the dry season. Serrat-Capdevila et al.
(2016) also found smaller errors in TMPA within areas
that follow the seasonally oscillating ITCZ, attributing
this observation to the dependence of TMPA quality on
the associated convective rainfall regime. The relatively
poor performance of TMPA during the dry months has
limited implication on hazard prediction, as hydrome-
teorological hazards will generally occur less frequently
in this period (Fig. 2).

With 20 out of 46 gauges being located in TMPA
pixels containing large inland water bodies, the evalua-
tion results are likely to be affected by detection prob-
lems of SRE over water-land mixed pixels (e.g.,
Huffman et al. 2007; Derin and Yilmaz 2014), and thus
potentially do not represent the true TMPA perfor-
mance. A comparison of the validation of mixed pixels
only (Table 4) against the overall TMPA performance
(Table 3) shows a strong degradation of the results
during dry months (Table 4, category B) but, surpris-
ingly, an otherwise increase in TMPA performance
compared to the regional validation results (Table 3),
with COR reaching 0.45 for TMPA RT in mixed pixels
(Table 4, category A). By contrast, a more rugged to-
pography seems to impact the results toward an overall
lower TMPA performance (Tables 3, 4). In terms of
local elevation, TMPA is better correlated with field
data and provides more accurate rainfall estimation for
lower elevations (<1700 m MSL; Table 3, category B).
This is possibly due to the occurrence of orographically
controlled rainfall at higher elevations. Many studies
have underlined the difficulty for SRE to estimate such
rainfall compared to convectively driven rainfall (Dinku
et al. 2010; Mantas et al. 2015; Serrat-Capdevila et al.
2016). This is also confirmed here by the poorer per-
formance of TMPA over the complex topographical
setting in the Rwenzori Mountains with respect to mixed
pixels and pixels in lower-altitude continental environ-
ments (Table 4).

TMPA'’s performance is drastically degraded for
higher rainfall intensities (Table 3, category D; Table 4,
category C; Table 6, category B). Decreased detection
skills and a transition from over- to underestimation
by TMPA when gauge-based rainfall increases is con-
sistent with previous studies (e.g., Dinku et al. 2008;
Vila et al. 2009; Scheel et al. 2011; Gao and Liu 2013;
Satgé et al. 2016). As a consequence, high-intensity



SEPTEMBER 2018

storms and extreme events are especially poorly re-
produced in SREs (Fig. 7). Even though TMPA uses a
combination of several satellite estimates, if a subdaily
event is of short duration and high intensity, the sat-
ellite microwave observations may entirely miss these
peak intensities given the more than 3-h revisit time in
this area (Huffman et al. 2007). While infrared data are
used to fill in gaps between microwave overpasses,
these data may also be biased by the relationship be-
tween cloud-top temperatures and rainfall intensities
in this complex climatologic and topographic setting
(Huffman et al. 2007; Kidd and Huffman 2011). Im-
provements are expected for extreme rainfall detection
using IMERG, as shown already in other parts of the
world (Prakash et al. 2016a; Hobouchian et al. 2017;
Xu et al. 2017).

A performance comparison between TMPA ResV
and RT indicates that the latter underestimates rainfall
on average more severely over the entire range for all
different spatiotemporal scales. While this agrees with
the overall findings of previous studies and is explained
by the lack of gauge-based adjustment of TMPA RT
(e.g., Habib et al. 2009; Shen et al. 2010; Prakash et al.
2016b; Satgé et al. 2016), values for correlation, absolute
error, sensitivity to outliers, and categorical validation
metrics show here overall better results for TMPA RT
compared to TMPA ResV (Tables 3, 4, 6, 7). In contrast
to what has been argued in the previous studies, this
better performance of RT data is most likely related to
the fact that, due to the sparsity of gauge data in central
Africa, the GPCC-based monthly correction applied to
TMPA ResV does not adequately represent the rainfall
variability over the study area. Regarding the use of
TMPA for flood simulations, some studies have shown
increased uncertainties associated with the adjusted
TMPA ResV product compared to the RT product (Su
et al. 2008; Bitew and Gebremichael 2011). This might
be related to our results on extreme rainfall events, with
TMPA RT extremes lying closer to the corresponding
gauge values than the ResV extremes (Figs. 7b,d). In
addition, the intrapixel analysis has shown that the
TMPA ResV product adds uncertainty to the recog-
nized gauge data uncertainty, whereas the uncertainty in
TMPA RT is mainly related to the gauge data un-
certainty (Table 5). Hence, given its short latency and
better performance TMPA RT is probably more rele-
vant in hazard applications over the western branch of
the East Africa Rift.

6. Conclusions

While widely available, there remain challenges for
accurate rain detection and quantification of SREs.
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This paper outlines SRE uncertainties in a sparsely
gauged, low-latitude region with complex topography
in the western branch of the East African Rift. TMPA
RT and ResV were evaluated at multiple spatiotem-
poral scales from 1998 to 2018 with an unprecedented
dataset of 46 gauges. Results indicated that the sparse
and heterogeneous temporal gauge coverage and
high rainfall variability in the study region poses
challenges for TMPA validation. The validation ap-
proach allowed detection of trends and sources of bias
in TMPA and will be applied to the validation of
IMERG as soon as the reprocessed product, spanning
from 1998 to the present, is released in late 2018. The
latter’s higher spatiotemporal resolution will allow a
more effective use of gauge data for validating rainfall
with high variability, which is a cause of large un-
certainties in TMPA. Results indicate that TMPA
performs relatively better in areas without complex
topography, and systematically underestimate pre-
cipitation for rainfall > Smmday '. TMPA perfor-
mance decreases in predictive power during the dry
months. Validation results for 3-hourly and daily
TMPA are found to be very similar, whereas the
performance significantly increases for monthly rain-
fall accumulations. Trade-offs for the short latency of
TMPA RT were found to be small, showing overall
higher bias with gauge data, but better rainfall de-
tection skills and lower absolute errors compared to
TMPA ResV, probably as a result of the latter’s
gauge-based calibration. TMPA'’s error characteris-
tics highlighted in this paper will improve the efficient
use of TMPA in hydrometeorological hazard appli-
cations. Especially in the study region, TMPA is
indispensable to provide the regional rainfall in-
formation required in hazard assessment, owing to the
sparse gauge network. Despite the key challenges
identified for satellite rainfall detection by TMPA in
the western branch of the East African Rift, and as
long as IMERG products are not available over a long
period of time, TMPA remains one of the best sources
of regional rainfall information available in the study
area. However, and although we recognized that
weaknesses of the gauge data might be partly re-
sponsible for the somewhat disappointing quality of
our validation results, TMPA should be used with
caution for hazard assessment.
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APPENDIX A

List of Acronyms and Abbreviations

COR Pearson correlation coefficient

DR Congo Democratic Republic of Congo

GPCC Global Precipitation Climatology Centre

HSS Heidke skill score

IMERG Integrated Multisatellite Retrievals for
Global Precipitation Measurement

ITCZ Intertropical convergence zone

NMAE Normalized mean absolute error

NME Normalized mean error

NRMSE Normalized root-mean-square error

POD Probability of detection

POFA Probability of false alarm

PR Precipitation radar

QQ Quantile—quantile

ResV Research version

ResSE Residual standard error

RT Near-real time

SRE Satellite rainfall estimate

T™I TRMM Microwave Imager

TMPA TRMM Multisatellite Precipitation Analysis

TRMM Tropical Rainfall Measuring Mission

APPENDIX B
Top 10 Most Extreme Rainfall Events Measured
by TMPA RT

Figure B1 shows the top 10 most extreme rainfall
events measured by TMPA RT.
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