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ABSTRACT

Accurate precipitation data are fundamental for understanding and mitigating the disastrous effects of

many natural hazards in mountainous areas. Floods and landslides, in particular, are potentially deadly events

that can be mitigated with advanced warning, but accurate forecasts require timely estimation of pre-

cipitation, which is problematic in regions such as tropical Africa with limited gauge measurements. Satellite

rainfall estimates (SREs) are of great value in such areas, but rigorous validation is required to identify the

uncertainties linked to SREs for hazard applications. This paper presents results of an unprecedented record

of gauge data in the western branch of the East AfricanRift, with temporal resolutions ranging from 30min to

24 h and records from 1998 to 2018. These data were used to validate the Tropical RainfallMeasuringMission

(TRMM) Multisatellite Precipitation Analysis (TMPA) research version and near-real-time products for

3-hourly, daily, and monthly rainfall accumulations, over multiple spatial scales. Results indicate that there

are at least two factors that led to the underestimation of TMPA at the regional level: complex topography

and high rainfall intensities. The TMPA near-real-time product shows overall stronger rainfall un-

derestimations but lower absolute errors and a better performance at higher rainfall intensities compared to

the research version. We found area-averaged TMPA rainfall estimates relatively more suitable in order to

move toward regional hazard assessment, compared to data from scarcely distributed gauges with limited

representativeness in the context of high rainfall variability.

1. Introduction

Hydrometeorological hazards triggered by extreme

rainfall, such as floods and rainfall-initiated land-

slides, pose a serious socioeconomic threat inmany parts

of the world and more particularly in mountainous

areas (Kjekstad and Highland 2009; Jacobs et al. 2016a;
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Alfieri et al. 2017; Kumar et al. 2017). Moreover, in the

context of ongoing climate change, it is estimated that

rainfall extremes may intensify, particularly in the tropics

(IPCC 2013; Gariano and Guzzetti 2016; Souverijns et al.

2016; Thiery et al. 2016), which would also increase the

vulnerability of the population (Washington et al. 2006).

Accurate rainfall data are fundamental to better char-

acterizing extremes as well as ultimately mitigating the

weather-related hazards in areas such as tropical Africa.

Hydrometeorological hazards (herein referring to both

hydrological and hydrologically triggered hazards such

as landslides) can be related to high-intensity, short-

duration events and/or long-duration rainfall (Gariano

and Guzzetti 2016; Sidle and Bogaard 2016). High-

resolution rainfall data are therefore fundamental for ac-

curate hazard assessment (Brunetti et al. 2018; Kirschbaum

and Stanley 2018).

Ground-based rainfall measurements in tropical Africa

are either sparse or nonexistent and often include erro-

neous data or large gaps (Serrat-Capdevila et al. 2016;

Dezfuli et al. 2017). The main reasons are the lack of

African states’ means and political will or interest to

support such data collection, as well as the relatively

high cost of establishing and maintaining infrastructure

in these areas (Washington et al. 2006; Monsieurs et al.

2017). This problem is even more prominent in moun-

tainous areas, where rainfall presents large spatial vari-

ability due to strong topographic transitions (Dinku

et al. 2008) and the susceptibility to hydrometeorologi-

cal hazards is generally high (Sidle and Bogaard 2016).

Spatial and temporal discontinuities in rainfall data from

gauges limit the ability to study regional extremes

over a long record. In addition to the constraints on

data availability in space and time, the use of rain

gauges comprise a range of error sources for rainfall

measurements such as, for example, rainfall under-

catch and gauge malfunctioning (Sevruk et al. 2009;

Grimaldi et al. 2018, and references herein). Finally,

the latency for data availability generally hampers

the development of hazard early warning systems

(Gebregiorgis et al. 2017).

Satellite rainfall estimates (SREs) with high spatial

and temporal resolution and large areal coverage pro-

vide an opportunity for regional rainfall data acquisition

in remote areas. Yet, SREs remain an ongoing challenge

(Hobouchian et al. 2017; Rossi et al. 2017; Brunetti et al.

2018). Visible and infrared sensors on board geosta-

tionary satellites infer surface rainfall based on cloud

albedo and cloud-top temperature, respectively (Kidd

2001). The dominant associated uncertainties emanate

fromwarm-rain processes in the development stage of deep

convection in tropical areas or orographic enhancement of

rainfall (Dinku et al. 2008, 2010) and subcloud evaporation

(Mashingia et al. 2014; Hobouchian et al. 2017). Passive

microwave sensors on low-Earth-orbiting satellites al-

lowmore accurate estimates of instantaneous rainfall by

observing the precipitation signal within or beneath the

cloud (Kidd andHuffman 2011). However, cold surfaces

and ice cover may be wrongly interpreted as rainy

scenes, and the low observation frequency is prob-

lematic (Dinku et al. 2010; Kummerow et al. 2015).

Better results for accurate rainfall estimation can be

achieved by products derived from the combination of

microwave observations (high-quality rainfall obser-

vation) and infrared observations (higher spatiotem-

poral resolution and continuous sampling; Ebert 2007;

Kidd and Huffman 2011; Salio et al. 2015; Gebregiorgis

et al. 2017; Poméon et al. 2017). Still, these combined

products suffer strong uncertainties in topographically

complex terrain (Derin and Yilmaz 2014; Zambrano-

Bigiarini et al. 2017) and over areas comprising inland

water bodies, inducing a complicated microwave signal

due to the cold water and the warm land (Tian and

Peters-Lidard 2007).

This paper focuses on the Tropical RainfallMeasuring

Mission (TRMM) Multisatellite Precipitation Analysis

(TMPA) product for six reasons: 1) it is currently among

the most widely recognized multisatellite rainfall prod-

ucts (Gebregiorgis et al. 2017; Hobouchian et al. 2017);

2) it was designed to improve tropical rainfall observa-

tions by combining microwave and infrared rainfall

estimates, at a spatial resolution of 0.258 3 0.258 and
3-hourly temporal resolution (Huffman et al. 2007); 3) it

provides one of the longest consistent records (from 1998

to present) of freely available, spatially homogeneous

SRE products over the tropics; 4) it has been validated

with satisfactory results in many parts of the world

(Dinku et al. 2008; Habib et al. 2009; Islam et al. 2012;

El Kenawy et al. 2015; Munzimi et al. 2015); 5) it was

proven successful in several hydrometeorological hazard

applications (e.g., Li et al. 2009; Kirschbaum et al. 2015;

Yaduvanshi et al. 2015; Avalon Cullen et al. 2016;

Abdelkareem 2017; Kumar et al. 2017; Thiery et al. 2017;

Kirschbaum and Stanley 2018); and 6) it serves as im-

portant input data for high-resolution, satellite-based

rainfall estimates such as Climate Hazards Group

Infrared Precipitation with Stations (CHIRPS; 0.058;
Funk et al. 2015). While the TRMM satellite is no

longer operating, the multisatellite TMPA product

will continue to be produced until the IMERG (from

2014 to present, 0.18, half-hourly) retrospective re-

processing is completed (expected by late 2018). This

reprocessing will provide a higher spatial and tem-

poral resolution from 2000 to present and will ex-

tend the latitudinal coverage to 658N–658S (Huffman

et al. 2015).
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Rigorous validation is necessary to characterize un-

certainties in the SRE records in order to more effec-

tively use these data for hydrometeorological hazard

modeling and support local authorities in risk manage-

ment (Mashingia et al. 2014). Even thoughmany current

SRE data are freely available, little validation has been

done on a regional scale in tropical Africa, particularly at

daily and subdaily time scales and inmountainous regions

(Cattani et al. 2016). In this paper, we therefore aim to

evaluate the TMPA product over a data-scarce region in

tropicalAfrica with complex topography.We focus on the

western branch of the East African Rift, a region known

for being highly susceptible to hydrometeorological haz-

ards (Maki Mateso and Dewitte 2014; Jacobs et al. 2016a,

2017;Monsieurs et al. 2017, 2018; Stanley andKirschbaum

2017). The paper is organized as follows: section 2 de-

scribes the validation region and the data used for analy-

sis, section 3 outlines the validation approach, section 4

provides results of this approach, section 5 discusses the

findings, and the final section presents the conclusions. A

list with acronyms is given in appendix A.

2. Setting and data description

a. Study area

The validation region stretches over the western

branch of the East African Rift from Lake Tanganyika

up to the Rwenzori Mountains (Fig. 1). The regional

climate is driven by three principal surface airstreams

and two major surface convergence zones (Fig. 1). A

comprehensive description of the complex system of

climate drivers in equatorial Africa is given by Dezfuli

(2017). The region has a bimodal rainfall regime (Fig. 2),

with the first rainy season starting in September

(Monsieurs et al. 2018). While December–February is

considered a ‘‘dry’’ season (Nicholson 1996), results

from the average monthly TMPA data in Fig. 2 show

that there are still over 100mm of average rainfall,

whereas the period from June to August can clearly be

distinguished as a dry season.

Rainfall anomalies are related to the strong in-

terannual variability of the ITCZ (Souverijns et al.

2016), El Niño–Southern Oscillation, and Indian Ocean

FIG. 1. Surface pressure patterns, airstreams, and convergence zones that affect the climate in

the study area (modified after Nicholson 1996; Gasse et al. 2008). SAA 5 South Atlantic an-

ticyclone, AA5Arabian anticyclone, SIA5 South Indian anticyclone,WAM5West African

monsoon, NEM5 northerly East African monsoon, SEM5 southerly East African monsoon,

CAB 5 Congo Air Boundary (red line: July/August, green line: December). Tropical climate

types are according to the Köppen–Geiger classification (Peel et al. 2007).
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dipole events (Behera andYamagata 2001; Shaaban and

Roundy 2017). This is reflected by the large standard

deviations of monthly rainfall in Fig. 2. In addition, the

local climate is strongly modulated by the complex rift

topography (Jacobs et al. 2016a; Smets et al. 2016), and

the presence of large lakes (Thiery et al. 2015; Docquier

et al. 2016). Consequently, there is large rainfall vari-

ability across the study area. The complex topography,

presence of lakes, and variable rainfall regimes within

the study area represent many of the typical features

that pose difficulties for estimating rainfall from satellite

observations.

Several types of natural hazards threaten the

densely populated areas in the study region, including

floods, earthquakes, volcanic eruptions, landslides,

and their interactions (Jacobs et al. 2016b, 2017;

Michellier et al. 2016; Delvaux et al. 2017; Thiery et al.

2017; Nobile et al. 2018). Similar to rain gauge data

collection, collecting information on hydrometeoro-

logical hazards is tedious in the study area (Monsieurs

et al. 2017, 2018) and beyond the scope of the present

study. Figure 2 provides a summary of the most

extensive landslide hazard inventory currently avail-

able in the region, which is an updated version of the

inventory compiled by Monsieurs et al. (2018) com-

prising 199 landslide events with known location and

date over a time span of 50 years (1968–2018). There

is a clearly observable signal related to the wetting of

the soil throughout the two rainy seasons and sub-

sequent landslide occurrences, which reach a peak

in May.

b. Data description

1) RAIN GAUGE DATA

Gauge data with a sampling frequency of one day or

better were collected for 24 gauges from a variety of

sources, including international research projects; uni-

versities; and local research, religious, and governmental

institutions. In addition, a gauge networkwas installed and

maintained as part of the Remote Sensing and In Situ

Detection and Tracking of Geohazards (RESIST) and

AfReSlide projects since 2014 (http://resist.africamuseum.

be/; http://afreslide.africamuseum.be/), which comprises

10 gauges in theRwenzoriMountains (Uganda) and 12 on

the Rift flanks in DR Congo. These gauges have a tem-

poral resolution ranging between 30min and 1h. The

46 gauges in total (herein referred to as the gauge network)

cover the latitudinal range of the study area; however, an

optimal distribution of gauges in the longitude is mainly

hampered by inaccessibility due to low levels of security

west of Lake Kivu (Fig. 3). Minimum and maximum rain

gauge elevations in this network are 664 and 2435m,

with a mean of 1600m and a standard deviation of 428m.

The temporal extent of the gauge data over the TMPA

record used in this study (from 1 January 1998 to 1 January

2018) is presented in Fig. 4. This gauge network currently

represents the most extensive data compilation from

gaugeswith a temporal resolution of 24h or better over the

study area. Moreover, validation of SRE in equatorial

Africa has, to the authors’ knowledge, never been per-

formed with a comparable rain gauge density at the

present spatiotemporal resolution. However, continuous

time series are almost nonexistent because of frequent

power outages and political instabilities in the region.

Hence, it is not feasible to limit the validation to only the

period when all gauge data temporally overlap. We

therefore consider all data presented in Fig. 4 for further

analyses, keeping in mind that gauges with long records

mayhave a stronger influence on the results.An extended

description of the gauge network installation, mainte-

nance, and data preparation is given in the online sup-

plemental material.

Six gauges coincide with gauges in the GPCC network

used for TMPA calibration. Gauges used for satellite

rainfall calibration should mostly be avoided for vali-

dation (Dinku et al. 2010), although this has not always

been the case (Su et al. 2008; Poméon et al. 2017).

However, we choose here to include these six gauges for

validation, because of the limited data availability in this

region, but also because GPCC gauge data are only used

to adjust the monthly bias (Huffman and Bolvin 2014),

and the day-to-day relative variations in rain are driven

entirely by the satellite data.

FIG. 2. Rainfall seasonality and distribution of landslide events

(LS) in the study area. The dashed line highlights the 100-mm

monthly average rainfall threshold that was used to group the an-

alyses in wet and dry months. The presentedmeanmonthly rainfall

is based on 20 years (1998–2018) of TMPA 3B42 daily data.

Modified after Monsieurs et al. (2018).
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The 46 gauges are located in 31 different TMPA

pixels. Eight TMPApixels containmore than one gauge,

with a total amount of 23 gauges. Gauge data within the

same TMPA pixel are not averaged so that all (TMPA,

gauge) pairs are evaluated in a consistent way. In addi-

tion, averaging of gauge data within each TMPA pixel

would decrease the magnitude of extreme rainfall

events, which are of high relevance for hydrometeoro-

logical hazard assessment. Instead, we treat the multiple

gauge data within the same TMPA pixel as independent

comparisons, each of which are assigned the same

TMPA value when temporally overlapping. The gauge

network comprises 20 gauges that are located in TMPA

pixels containing inland water bodies (Fig. 3).

2) TMPA DATA

The TMPA algorithm uses instruments on board

TRMM to serve as the calibration standard for a

network of passive microwave sensors. Gaps in the high-

quality microwave observations are filled in using

microwave-calibrated infrared data, thus allowing

TMPA to provide coverage from 508N to 508S every 3 h

(Huffman et al. 2007, 2017). The average revisit time of

the microwave observations changes with latitude and

available sensors (Hou et al. 2014; Nelkin 2017). TMPA

represents a snapshot at some point during the 3-h

window, that is, not the actual 3-hourly average rain

rate (Villarini and Krajewski 2007) over an area of

;775 km2 (at the equator). TMPA data are available

as a variety of products (Huffman et al. 2007). The re-

search version (3B42, version 7, herein referred to as

FIG. 3. Spatial distribution of rain gauges in the study area with

a temporal resolution of 24 h or better. Gauges represented as

triangles refer to the selected gauges for the validation in distinct

contexts on the ground: Black 5 topographic complex terrain,

green 5 presence of large water bodies, orange 5 relative low-

altitude continental environment. Numbers and colors refer to

gauge codes in Fig. 4. Numbers in the lakes: 15 Lake Edward, 25
Lake Kivu, 3 5 Lake Tanganyika. Background hill shading from

SRTM (90m).

FIG. 4. Temporal characterization of rain gauge data from 1 Jan

1998 to 1 Jan 2018. Gauge codes refer to the numbers on themap in

Fig. 3 with an additional land code: BU 5 Burundi, DRC 5 DR

Congo, RW 5 Rwanda, UG 5 Uganda. Gauges installed and

maintained by the authors are light blue; gauge data collected from

other sources are dark blue. Periods that contain suspicious data

are shaded light orange, and data gaps are shaded gray. The colored

boxes refer to the selected periods and gauges used for the vali-

dation in distinct contexts on the ground: Black 5 topographic

complex terrain, green5 presence of large water bodies, orange5
relative low continental environment.
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TMPA ResV) is available from 1 January 1998 to

present, over 508N–508S, with a 0.258 3 0.258, 3-hourly
spatiotemporal resolution. This version uses Precipitation

Radar (PR) and TRMM Microwave Imager (TMI) for

calibration of all passive microwave inputs, and is also

calibrated against the gauge-based GPCC rainfall data

on amonthly basis, though the correction ratio is limited

to between 0.2 and 3.0mmh21 (Huffman et al. 2007).

Because of this postprocessing, TMPA ResV is only

available after 2 months (Huffman and Bolvin 2014).

The near-real-time product (3B42RT, version 7, herein

referred to as TMPA RT) has the same spatiotempo-

ral resolution and is available from 1 March 2000 to

present, with postprocessing limited to TMI-only cali-

bration (Huffman et al. 2010). On the other hand, the

latency of TMPA RT is only eight hours and it has a

spatial extent from 508N to 508S with experimental data

currently extending from 508–608N to 508–608S. Further
details can be found in Kummerow et al. (2000, 2015)

and Huffman et al. (2007, 2017).

TMPA ResV and RT were downloaded from NASA

Goddard Earth Sciences Data and Information Services

Center (https://disc-beta.gsfc.nasa.gov/). Accumulations

are computed taking into account the local time zone

and gauge accumulation period. We only use TMPA

data when corresponding gauge data were available.

The equivalent time series for TMPA ResV and RT

comprise 92 941 and 87 357 days, respectively.

3. Methodology

Taking the spatiotemporal constraints of the gauge

dataset into account (Figs. 3, 4), we adopted a validation

scheme that checks multiple validation approaches and

spatiotemporal scales, providing a broad picture of

TMPA’s error characteristics. We focus on illustrating

the differences between the two TMPAproducts toward

providing insights for their use in hydrometeorological

hazard assessment. However, assessing the hazards

themselves is out of the scope of this work. Namely, the

identification of rainfall thresholds for triggering haz-

ards will be done in a separate study.

a. Validation statistics

In this work three validation approaches are used. All

statistical tests are described in Table 1, based on the

overview of standard and diagnostic validation methods

by Wilks (2006) and Ebert (2007). The entire validation

was performed using the R open-source software, re-

lease 3.3.2 (http://www.r-project.org/). The first ap-

proach comprises visual comparison of the rainfall value

distributions, using quantile–quantile (QQ) plots. The

second validation approach measures TMPA’s accuracy

for continuous variables including rainfall amount and

intensity, while normalizing by the gauge-measured

rainfall rate of the respective period. This approach re-

lies on a combination of accuracy metrics to evaluate

scatter, or random error, by use of the Pearson corre-

lation coefficient (COR); error direction, by normalized

mean error (NME; also known as mean bias); error

magnitude, by normalized mean absolute error (NMAE);

and importance of extremes, by normalized root-mean-

square error (NRMSE). Last, TMPA’s accuracy in

rainfall detection is evaluated based on a contingency

table (Table 2). A comprehensive statistic summarizing

the contingency table is the Heidke skill score (HSS;

Heidke 1926; Wilks 2006). HSS measures how well es-

timates perform compared to random chance, with

negative values indicating a worse performance than

random chance, positive values indicating a better-than-

random performance, and a value of one corresponding

to perfect skill. For the purpose of evaluating SRE for

hydrometeorological hazard applications, additional highly

relevant metrics are the probability of detection (POD)

and the probability of false alarm (POFA; Martelloni

et al. 2012; Rossi et al. 2017; Thiery et al. 2017). The use

of the term POFA is preferred above false alarm ratio

(Wilks 2006) because of its common confusion with false

alarm rate, which is a different metric (Barnes et al.

2009). POD refers to TMPA’s ability to correctly iden-

tify rain occurrence, that is, separate wet and dry days or,

if rain thresholds are imposed to evaluate TMPA’s ef-

ficiency in identifying heavy rains, separating days drier

or wetter than the threshold. POFAworks the same way

with respect to thresholds.

b. Spatiotemporal validation scales

Validation has been conducted for three temporal

rainfall accumulation periods: 3-hourly (TMPA native

resolution), daily, and monthly. We focus mostly on the

daily time scale to utilize the entire gauge dataset, since

35% of the gauges have no subdaily information. Fur-

thermore, daily resolution is highly relevant for regional

hazard model calibration due to the dearth of information

on the exact time of the occurrence of hydrometeorolog-

ical hazards (e.g., Kirschbaum et al. 2015), especially in the

context of central Africa (Jacobs et al. 2016a; Monsieurs

et al. 2018). Mountainous environments, however, are

characterized by high rainfall variability and induce ac-

celerations of streamflow volume concentration that

might cause hydrometeorological hazards such as flash

floods (Devrani et al. 2015). Therefore, we validated

TMPA on a 3-hourly resolution for the rainy seasons in

2016, that is, March–May and September–November,

using 13 gauges from the network we maintain with

subdaily temporal resolution and which have data over
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the selected period. Last, TMPA performance is tested

on a monthly scale, because accumulated antecedent

rainfall conditions are proven to play a crucial role for

hazards such as landslides (Segoni et al. 2018). However,

monthly TMPA accumulations are strongly influenced by

GPCC. Only continuous metrics are computed at the

monthly scale as detection of rainfall for monthly accu-

mulations is irrelevant to SRE skill evaluation. Months

comprising gaps have been excluded from this analysis.

We evaluated the different temporal rainfall accu-

mulations by season, ground conditions, and rainfall

characteristics. These factors are known to affect the

errors in SREs (Kidd andHuffman 2011). Two elevation

classes (500–1700 and 1700–2500m MSL) are chosen

such that the amount of gauge data in each class is ap-

proximately equal. A threshold of 100-mm average

monthly rainfall was chosen to define wet versus dry

periods and test the impact of seasonality on TMPA’s

performance (Fig. 2). To evaluate TMPA’s sensitivity to

rainfall intensity, data were grouped into 10 intensity

classes as measured by the gauges and adapted from

Kim et al. (2017).

In addition to the spatial grouping by elevation, we

selected four gauges from three contrasting environ-

ments (further referred to as ‘‘context’’): 1) the Lake

Kivu area, with TMPA pixels having more than 35% of

their surface covered by water; 2) the region above

1700m in the Rwenzori Mountains, characterized by

very complex topography; and 3) the comparatively low-

altitude continental environment of eastern Rwanda,

with an average altitude of 1480 (680)m MSL for the

four gauges (Fig. 3). The first two contexts include ex-

clusively gauges that we maintain, of which all available

data are included for this analysis. No information on

the data quality is available in the third context group,

for which data from 2012 to 2015 have been selected in

order to evaluate SREs over a similarly long time period

with almost no data gaps. The selected gauges and time

periods are highlighted in Fig. 4. Analyses are per-

formed at daily and monthly temporal resolution, elu-

cidating the impact of these different ground conditions

to the performance of TMPA.

c. Point-to-pixel approach

The sparse and temporally and spatially heteroge-

neous gauge coverage does not allow for an accurate

rainfall interpolation, especially given the strong topo-

graphic gradients within the domain. Therefore, gauge

data are not extrapolated and aggregated to TMPA’s

resolution, as recommended by Chen and Knutson

(2008). Instead, we apply the point-to-pixel validation

approach (Islam et al. 2010; Thiemig et al. 2012;

El Kenawy et al. 2015). A severe limitation to this ap-

proach is the discrepancy between local-scale gauge

data and spatially averaged TMPA data in the context

of local convective storms and orographic rainfall.

Indeed, local rainfall variability introduces uncertainty

into the gauge data used as a reference to validateTMPA.

This source of uncertainty is especially relevant for ex-

treme rainfall analyses (Chen and Knutson 2008; Sun and

Barros 2010). To evaluate the gauge data uncertainty, we

study the correlation between the time series of in-

dependently measuring gauges in a pixel and the daily

standard deviations between their respective measure-

ments. Five TMPA pixels contain two gauges and one

pixel contains four gauges with overlapping time series.

There are a total of 3599 (ResV) and 3651 (RT) over-

lapping days between intrapixel gauges over these six

pixels, with an average overlap per pixel of 604 days. The

average distance between the gauges in one pixel is 18.72

(67.28) km. To estimate the relative effects of gauge and

TMPA data uncertainties on the validation process, the

measures of local rainfall variability within a pixel are

compared with themean residual standard error (ResSE)

of TMPA data. This error (mmday21) is calculated as the

square root of the mean squared residual of the linear

regression of TMPA against gauge data.

d. Analyses of extremes

A final analysis considers TMPA’s performance in

capturing extreme rainfall events. The hundred highest

daily rainfall events for TMPA and gauge data over the

same spatial and temporal domain are evaluated, of which

the 10 highest records are related to reported hydrome-

teorological hazards. Information on hydrometeorologi-

cal hazards is collected using the following principal

sources: Monsieurs et al. (2018, their Fig. 2), http://

reliefweb.int, http://floodlist.com, http://www.emdat.be,

http://www.glidenumber.net, Vandecasteele et al. (2010),

and Jacobs et al. (2016a). Analyses are performed for the

time period fromMarch 2000 to January 2018 in order to

be able to compare for each event the three datasets, that

is, gauge, TMPA ResV, and TMPA RT.

4. Results

Validation results relevant for using TMPA in hy-

drometeorological hazard assessment are first presented

for the daily temporal resolution, allowing a broad

TABLE 2. Contingency table for categorical validation metrics,

where a–d are as in Table 1 for HSS.

Gauge . 0 Gauge 5 0

SRE . 0 Hit (a) False alarm (c)

SRE 5 0 Miss (b) Correct negative (d)
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picture of TMPA’s performance over multiple spatial

scales. This is followed by the 3-hourly and monthly

validation results for the selected gauges and time pe-

riods. Last, we show the analyses on daily extremes re-

lated to hydrometeorological hazards for the entire

gauge network. Results for TMPA ResV and RT data

products are compared to analyze the trade-offs for the

short latency of TMPA RT data, as compared to the

supposedly improved ResV product.

a. Daily resolution

1) REGIONAL PERFORMANCE

Overall, we found that TMPA RT underestimates

rainfall (negative NME) on average more severely

(40.35%) at the regional scale compared to the ResV

(15.15%; Table 3, category A). The QQ plot (Fig. 5)

confirms that the TMPAdistributions significantly differ

from that of gauge data, from which RT deviates more

severely. The correlation between both datasets at a

daily scale is moderately low (COR; Table 3, category

A). While TMPA ResV has lower rainfall un-

derestimations compared to TMPA RT, the mean ab-

solute error is higher (NMAE; Table 3), which implies

that NMAE is largely driven by random errors that

cannot be reduced by gauge correction. The regional

detection skills are relatively good (Table 3, category A).

However, these metrics have a relatively high standard

deviation, indicating a significant variation in perfor-

mance among the gauges.

When grouping the validation by elevation, we are

able to reveal an improvement of the correlation be-

tween TMPA RT and the gauges, which outperformed

TMPA ResV for both elevation categories. Average

daily TMPA rainfall underestimation is lower for low-

altitude sites (Table 3, category B). The other statistics

do not significantly vary for the two elevation categories

(Table 3, category B), pointing to no obvious topo-

graphic control on the correlation and detection skills

on a regional scale.

Rainfall underestimation by TMPA, error magnitude,

and importance of outliers tend to increase during the

drier months of the year (Table 3, category C). Even

though HSS is similar for wet and dry months, the POD

is higher and POFA lower for the wet months (Table 3,

category C). The higher correlation for the relatively dry

months is related to the many zero-rain days.

When examining the performance of TMPA as a

function of daily rainfall intensities, we found that all

rainfall intensities above 5mmday21 are underestimated

by TMPA with increasing magnitudes for higher rain-

fall intensities (Table 3, category D). We note that at

the lowest intensities, disproportionally high normalized

errors are due to the normalization against low gauge

averages. In terms of rain detection, the HSS decreases

for higher rainfall intensities but remains positive at all

rain intensities, indicating a declining performance in rain

detection but still better than random chance (Table 3,

category D). The POD has relatively high values at 0 and

1mmday21, but declines with increasing rainfall in-

tensities. The probability of false alarms increases for

higher rainfall intensities, but drops to zero for the

threshold above 60mmday21 in the RT version just be-

cause no values appear above this threshold due to strong

underestimation (Table 3, category D).

2) CONTEXT-BASED EVALUATION

TMPAwas evaluated for three contrasting contexts in

order to quantify the extent to which the validation re-

sults are affected by water–land mixed pixels (mixed)

and complex topographical environments at higher

altitudes (complex topography) as compared to a ref-

erence lower-elevation continental context (low). The

correlation between TMPA and gauge data within the

complex topography context is lowest compared to that

in mixed and low-topography contexts (Table 4, cate-

gory A), with TMPA ResV consistently showing lower

values. TMPA’s performance for pixels characterized

with a complex topography is also significantly lower

(Table 4, category A) with respect to average underes-

timation, error magnitude, importance of outliers, and

rainfall detection skill (HSS). However, POD and POFA

results do not show the same trend, these two statistics

being lowest in mixed pixels (Table 4, category A).

Separating wet and dry months results in TMPA

performance significantly lower in mixed pixels than

complex topography and low contexts during dry months,

according to COR, HSS, POD, and POFA (Table 4, cat-

egory B). Regarding the rainfall intensity control, HSS

and POD are found to degrade most severely with in-

creasing intensities in complex topographic conditions

(Table 4, category C).

Looking at the complete picture of validation results

over different ground contexts in different seasons and

grouped by rainfall intensities, we found TMPA overall

encounters the greatest difficulties in correctly estimat-

ing rainfall in complex topographical contexts compared

tomixed and low contexts (Table 4).We studied another

facet of the orographic control, namely, the effect of

leeward versus windward mountain side, on the daily

TMPA performance by testing separately two gauges

from each flank of the Rwenzori Mountains (northwest:

UG6, UG9; southeast: UG3, UG4; Fig. 3), knowing that

the southeast flank is the rain shadow side (Jacobs et al.

2016a). Validation results for COR, NME, HSS, and

POFA are significantly better for the rainy side of the
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mountain (northwest). Rainfall is more severely un-

derestimated on the rain shadow (southeast) side, with

NME5239.23% (ResV),249.47% (RT), compared to

the northwest flank where NME 5 214.91% (ResV),

226.73% (RT).

3) INTRAPIXEL VARIABILITY

The most meaningful evidence for estimating gauge

data uncertainty is found in the pixel with four gauges,

which allows a more robust estimation of the intergauge

correlation and the standard deviation of the daily

samples.With about 700 days of overlapping gauge data,

analyzing this single pixel is statistically significant from

the temporal point of view. We observe that while the

average correlation between the gauges is only ;0.29

(ResV: 0.293; RT: 0.296), the average gauge-TMPA

correlation is higher ;0.34 (ResV: 0.335; RT: 0.336;

Table 5). The problem of this high intergauge variabil-

ity, highlighted in an example of stacked 1-month ex-

cerpts of their time series (Fig. 6), is confirmed by themuch

improved gauge–TMPA correlation when first averaging

the gauge data:;0.47 (ResV: 0.472;RT: 0.470). This shows

that TMPA validation is strongly biased by the poor rep-

resentation at the pixel scale of the field evidencewe use as

control data.

We quantify the gauge data uncertainty by the average

daily standard deviation between gauge measurements,

which is calculated to be ;4mmday21 (ResV: 4.03;

RT: 3.92) for the pixel containing four gauges. Once the

underestimation trend is removed, the ResSE error on

TMPA RT data with respect to ground ‘‘truth’’

(3.86mmday21) is slightly lower than the uncertainty in

the gauge data (Table 5). Taking into account that this

error is affected by the uncertainty of both TMPA and

gauge data, we can conclude that most of the TMPA

residual error is linked to the uncertainty on gauge data

and TMPA would thus appear as a good performing in-

dicator of relative rainfall at pixel scale in the study area.

Using TMPA ResV data adds uncertainty to the

recognized gauge data uncertainty, with a higher

4.74mmday21 value of TMPA ResSE compared to the

average standard deviation in the gauge data (Table 5).

This is in line with our earlier findings, namely, that the

gauge-calibrated TMPA ResV product has a lower

precision in the study area compared to TMPA RT.

Owing to this, we propose that TMPA RT data are a

better rainfall proxy than TMPAResV data in this area.

However, with one single pixel, we cannot illustrate a

possible spatial variability in gauge uncertainty. There-

fore, we also present results for the five pixels containing

two gauges, but with a prior call for caution in discussing

them because (n 5 2) samples are far from ideal to get

realistic standard deviation estimates and tend to un-

derestimate them on average. Results show values of

;2.4mmday21 (ResV: 2.44; RT: 2.42), which are

somewhat smaller compared to the standard error on

residuals for TMPA in the same pixels (ResV: 5.22; RT:

3.28; Table 5). Besides confirming that a large part of the

uncertainty in TMPA is related to the gauge uncertainty

and that TMPA ResV introduces its own contribution to

uncertainty compared to TMPA RT, the figures obtained

for the two-gauge pixels also suggest that TMPA data

uncertainty is marginally affected by local topography.

Overall, these results highlight the high local rainfall

variability over the study area, which implies that mul-

tiple rain gauges are needed to represent the rainfall in

a 25km 3 25km area (TMPA pixel size). Hence, the

limited quality of SRE validation at the TMPA resolu-

tion is partly due to the inadequacy of using individual

rain gauges as control data. This also highlights the rel-

evance of TMPA area-averaged rainfall estimates for

regional hydrometeorological hazard analyses in this

area, as point observations represent only a small area in

the proximity of the gauge.

b. 3-hourly and monthly resolution

We also tested TMPA’s performance at its 3-hourly

native resolution during the rainy seasons of 2016. Val-

idation results in Table 6 are fairly similar to, though

slightly lower than, the results obtained for daily rainfall

accumulations (Table 3). Yet, results for POD are lower

FIG. 5. QQ plot for daily rainfall measured by the gauges and the

equivalent TMPA databased on the availability of rain gauge data

in that pixel for the entire study area. The solid black line presents

the 1:1 line. TMPA distributions significantly differ from that of

gauge data, of which the TMPARTproduct deviatesmore than the

TMPA ResV product.
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and POFA higher (Table 6, category A) than those for

the daily values (Table 3). When grouping for rainfall

intensities, we find zero probability of detection for

rainfall intensities higher than 25mm/3h, although

TMPA recorded 74 events above this threshold

(Table 6, category B). Also POFA degrades quickly for

any rainfall detection per 3 h (Table 6, category B).

Differences between the performance of both TMPA

products at 3-hourly resolution is small overall, with the

RT version generally performing better for COR,

NMAE, and NRMSE (Table 6).

Validation results for monthly rainfall accumulations

show an expected significant improvement relative to

3-hourly and daily TMPA rainfall estimates (Table 7,

category A). In an explorative focus on monthly values

over four gauges from each ground context (Figs. 3, 4),

TMPA encounters more difficulties over complex to-

pographic terrain (Table 7, category B), confirming

earlier findings at daily resolution (Table 4).

c. Daily extremes related to hydrometeorological
hazards

In addition to the above intensity-grouped analyses,

TMPA’s performance for high-intensity events is eval-

uated by examining the 100 highest recorded daily

rainfall events from the gauge and TMPA datasets for

TABLE 5. Evaluation of gauge and TMPAResV and RT data uncertainty in pixels containing multiple gauges. Analyses are done using

daily rainfall estimates: ‘‘Mean intergauge correlation’’ is the average correlation between the gauge data within a pixel; ‘‘Mean gauge–

TMPA correlation’’ is the average correlation between each gauge and the same TMPA value of that pixel; ‘‘Correlation mean gauge

data–TMPA’’ is the correlation between the averaged gauge data within a pixel and the respective TMPA values; ‘‘Mean std dev gauge

data’’ is the average standard deviation (mmday21) between the gaugemeasurements in a pixel; and ‘‘TMPAResSE’’ is the square root of

the mean squared residual (mmday21) in the linear model for TMPA with gauge data as independent variable. Number of days in

overlapping time series used for the analysis are presented in parentheses.

Mean intergauge

correlation

Mean gauge–TMPA

correlation

Correlation mean

gauge data–TMPA

Mean std dev

gauge data

TMPA

ResSE

ResV

One four-gauge pixel (699 days) 0.293 0.335 0.472 4.03 4.74

Five two-gauge pixels (2900 days) 0.399 0.399 0.473 2.44 5.22

RT

One four-gauge pixel (724 days) 0.296 0.336 0.470 3.92 3.86

Five two-gauge pixels (2927 days) 0.395 0.385 0.458 2.42 3.28

FIG. 6. Daily rainfall time series from 4 Sep to 4 Oct 2015 for four gauges located in one

TMPA pixel that is located over the Rwenzori Mountains, together with the TMPA estimates

of this pixel (Fig. 3). This presents the variability in observed rainfall in a 25 km3 25 km area.
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the time period from March 2000 to January 2018, re-

ferred to as ‘‘extremes.’’ The highest daily rainfall re-

corded by TMPA ResV (93mmday21) and RT

(57mmday21) is markedly lower than that of the gauges

(142mmday21; Figs. 7a,b). Figures 7a and 7b plot

TMPA ResV and RT against gauge values for the 100

most extreme gauge and TMPA ResV records, re-

spectively. Results indicate an asymmetric behavior of

the recorded extremes, that is, all gauge extremes are

underestimated by TMPA (Fig. 7a), whereas most (but

not all) TMPA extremes overestimate rainfall measured

by the gauges (Fig. 7b), with a bigger bias magnitude in

the former case (Fig. 7c) than in the latter (Fig. 7d).

Figure 7b clearly illustrates the difference between

TMPA ResV and RT as a result of the correction of

TMPA ResV through calibration with gauges on a

monthly basis. While this correction results in an aver-

age lower bias between gauge and SRE values (Table 3,

category A), it tends to be problematic for extreme

rainfall intensities recorded by TMPA, resulting in

increased discrepancy between ResV and gauge data

in the study area. Limiting the gauge adjustment fac-

tor to a narrower range could result in better SRE for

TMPA ResV.

When considering the top 10 gauge extremes for

an exploratory analysis on hazard-triggering rainfall

events, results indicate that TMPA misses or severely

underestimates them (Fig. 7c). By contrast, TMPA ex-

tremes overestimate gauge-measured rainfall intensities,

especially in theirResV form (Fig. 7d, appendix B). The 10

TMPA and gauge extremes were matched with reported

hydrometeorological hazards in the corresponding pixels

(Figs. 7c,d andFig. B1).We found 7 out of the top 10 gauge

extremes to be related with hydrometeorological hazards

of flooding, landslides, or flash floods. Because of the re-

moteness of large parts of the study area, there may be

unreported hazard occurrences. Six (ResV) and two (RT)

out of the respective top 10 TMPA extremes are also re-

lated to hydrometeorological hazards, even though

some were completely missed by the corresponding field

data (Fig. 7d, event 6; see Fig. B1 in appendix B).

5. Discussion

Results of the TMPA ResV and RT analysis identify

several biases inherent to SRE and gauge field data in

the study area that should be taken into account when

interpreting the validation results. First, whereas we

initially considered gauge data as a ‘‘ground truth’’ for

SRE validation, intrapixel rainfall analyses have shown

that gauge point observations are not necessarily rep-

resentative of the average rainfall over the ;25km 3
25km area of a TMPA pixel at daily resolution (Fig. 6;
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Table 5). We found that most of the errors in TMPA

data with respect to gauge data are linked to the un-

certainty in the gauge data (Table 5). This confirms the

concerns raised by Satgé et al. (2016), who analyzed the

impact of the gauge representation error on daily rain-

fall detection metrics. It certainly is a major control on

the quality of TMPA validation, which is inevitably

degraded if a single reference gauge is unable to record

local convective storms that cause heavy rains elsewhere

in the TMPApixel or, conversely, records very local heavy

rain not representative at the pixel scale. In principle,

this issue should be less acute for higher-resolution SRE,

TABLE 7. Evaluation of monthly TMPA ResV and RT products. The number of months used for analyses in each category is given

under ‘‘Months.’’ Category A is regionally calculated metrics with their standard deviation (Std dev) (all gauge data in Fig. 3 are used).

CategoryB is evaluation in different contexts on the ground. ‘‘Mixed’’ represents pixels that include largewater bodies, ‘‘Co. topogr.’’ is complex

topographic terrain, ‘‘Low’’ is relatively low terrain. For each of these contexts four gauges have been selected (indicated in Figs. 3 and 4).

COR NME NMAE NRMSE Months

ResV RT ResV RT ResV RT ResV RT ResV RT

A Regional 0.70 0.69 215.64 241.09 38.92 50.21 52.97 65.57 3008 2829

Std dev 0.18 0.19 18.37 14.10 10.52 9.68 14.53 12.63

B Mixed 0.85 0.84 28.03 244.28 26.29 47.77 36.91 59.17 75 75

Co. topogr. 0.51 0.45 234.07 245.20 52.66 60.24 69.35 77.73 144 147

Low 0.76 0.80 24.36 225.12 37.13 38.60 54.25 54.00 441 415

FIG. 7. Extreme daily rainfall recorded by the gauges and by TMPA between 2000 and 2018 based on the

availability of rain gauge data in the corresponding TMPA pixel. (a) Scatterplot of the top 100 daily rainfall events

as measured by the gauges, indicating that each of these events is underestimated by TMPAResV and the RT data.

(b) Scatterplot of the top 100 daily rainfall events recorded by TMPA ResV. The bias correction of TMPA ResV

through calibration with gauges on a monthly basis is clearly visible as a shift between RT and ResV. The top 10

most extreme rainfall events (1 5 most extreme) measured by (c) the gauges and (d) TMPA ResV were matched

with reported hydrometeorological hazards, if available: Letters in (c) and (d) are F5 flood, FF5 flash flood, LS5
landslide. The corresponding rainfall measured by the gauge, TMPAResV, andRT in the same pixel is also shown.
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such as IMERG. The improvement obtained by averaging

multiple gauge data within a pixel is in the line of previous

findings showing that spatiotemporal averaging sub-

stantially reduces biases and improves performance

(Mantas et al. 2015; Tan et al. 2017; Tang et al. 2018).

Second, gauge data themselves are likely under-

estimating rainfall due to wind undercatch, which is

known as a severe source for systematic bias (on the

order of ;20%) in gauge-based measurements

(Sevruk et al. 2009; Mekonnen et al. 2015).

There are very few studies that use a similar study

domain and validation context (spatiotemporal resolu-

tion, tropical environment, validation approach), limiting a

comparison of our results with existing literature. Yuan

et al. (2017) validated daily TMPA ResV in the tropical

monsoon area of the Chindwin River basin, Myanmar

(228–278N) by applying normalized validation metrics

over the time period fromApril 2014 to December 2015.

There, TMPAResV regional performance is lower than

in the western branch of the East AfricanRift, showing a

maximumCORof 0.356, NMEs ranging between241.2%

and 15%, POD between 0.092 and 0.299, and POFA

between 0.404 and 0.626. A 1998–2006 study of TMPA

(mainly ResV) in the La Plata basin, South America (Su

et al. 2008) found for the tropical upper Paraguay area a

POD and POFA of 0.36 and ;0.70, respectively, for

rainfall . 20mmday21, which is better compared with

values of 0.14 and 0.75 in our study area (Table 3, cat-

egory D). Potential explanatory differences between

the two regions might include a larger number of gauges

and generally lower elevations and relief in the upper

Paraguay area.

The agreement between gauge and TMPA was re-

duced at TMPA’s native temporal resolution, that is,

3-hourly, to a significant extent only for NMAE,

NRMSE, POD, and POFA, whereas the average bias,

Pearson correlation coefficient, and overall detection

skill (HSS) were found similar to those at the daily scale

(Table 3, category A, and Table 6). A study by Scheel

et al. (2011) found a significantly lower correlation co-

efficient (0.018) in subtropical Bolivia for TMPA at

3-hourly resolution. By contrast, spatiotemporal aver-

aging substantially reduces biases and improves per-

formance (Mantas et al. 2015; Tan et al. 2017), as

confirmed by the better monthly TMPA validation re-

sults in Table 7 and other studies in the same area

(Adeyewa and Nakamura 2003; Munzimi et al. 2015).

The separate assessment of wet and dry periods (de-

fined based on a 100-mm threshold for monthly average

rainfall; Fig. 2) revealed TMPA’s performance to be

lowest for several metrics (NRMSE, POD, POFA)

during the dry months (Tables 3, 4). One possible cause

for the poorer performance during the dry season is

subcloud evapotranspiration (Mashingia et al. 2014;

Hobouchian et al. 2017). Greater evaporation means

that, for the same amount of rain produced in the cloud

aloft (and hence the same ice scattering signature used

in the passive microwave algorithm to estimate the

surface rain rate), the rain that actually reaches the

surface is lower, leading to a higher probability of false

alarms during the dry season. Serrat-Capdevila et al.

(2016) also found smaller errors in TMPA within areas

that follow the seasonally oscillating ITCZ, attributing

this observation to the dependence of TMPA quality on

the associated convective rainfall regime. The relatively

poor performance of TMPA during the dry months has

limited implication on hazard prediction, as hydrome-

teorological hazards will generally occur less frequently

in this period (Fig. 2).

With 20 out of 46 gauges being located in TMPA

pixels containing large inland water bodies, the evalua-

tion results are likely to be affected by detection prob-

lems of SRE over water–land mixed pixels (e.g.,

Huffman et al. 2007; Derin and Yilmaz 2014), and thus

potentially do not represent the true TMPA perfor-

mance. A comparison of the validation of mixed pixels

only (Table 4) against the overall TMPA performance

(Table 3) shows a strong degradation of the results

during dry months (Table 4, category B) but, surpris-

ingly, an otherwise increase in TMPA performance

compared to the regional validation results (Table 3),

with COR reaching 0.45 for TMPA RT in mixed pixels

(Table 4, category A). By contrast, a more rugged to-

pography seems to impact the results toward an overall

lower TMPA performance (Tables 3, 4). In terms of

local elevation, TMPA is better correlated with field

data and provides more accurate rainfall estimation for

lower elevations (,1700m MSL; Table 3, category B).

This is possibly due to the occurrence of orographically

controlled rainfall at higher elevations. Many studies

have underlined the difficulty for SRE to estimate such

rainfall compared to convectively driven rainfall (Dinku

et al. 2010; Mantas et al. 2015; Serrat-Capdevila et al.

2016). This is also confirmed here by the poorer per-

formance of TMPA over the complex topographical

setting in theRwenzoriMountains with respect tomixed

pixels and pixels in lower-altitude continental environ-

ments (Table 4).

TMPA’s performance is drastically degraded for

higher rainfall intensities (Table 3, category D; Table 4,

category C; Table 6, category B). Decreased detection

skills and a transition from over- to underestimation

by TMPA when gauge-based rainfall increases is con-

sistent with previous studies (e.g., Dinku et al. 2008;

Vila et al. 2009; Scheel et al. 2011; Gao and Liu 2013;

Satgé et al. 2016). As a consequence, high-intensity

1522 JOURNAL OF HYDROMETEOROLOGY VOLUME 19



storms and extreme events are especially poorly re-

produced in SREs (Fig. 7). Even though TMPA uses a

combination of several satellite estimates, if a subdaily

event is of short duration and high intensity, the sat-

ellite microwave observations may entirely miss these

peak intensities given the more than 3-h revisit time in

this area (Huffman et al. 2007). While infrared data are

used to fill in gaps between microwave overpasses,

these data may also be biased by the relationship be-

tween cloud-top temperatures and rainfall intensities

in this complex climatologic and topographic setting

(Huffman et al. 2007; Kidd and Huffman 2011). Im-

provements are expected for extreme rainfall detection

using IMERG, as shown already in other parts of the

world (Prakash et al. 2016a; Hobouchian et al. 2017;

Xu et al. 2017).

A performance comparison between TMPA ResV

and RT indicates that the latter underestimates rainfall

on average more severely over the entire range for all

different spatiotemporal scales. While this agrees with

the overall findings of previous studies and is explained

by the lack of gauge-based adjustment of TMPA RT

(e.g., Habib et al. 2009; Shen et al. 2010; Prakash et al.

2016b; Satgé et al. 2016), values for correlation, absolute
error, sensitivity to outliers, and categorical validation

metrics show here overall better results for TMPA RT

compared to TMPAResV (Tables 3, 4, 6, 7). In contrast

to what has been argued in the previous studies, this

better performance of RT data is most likely related to

the fact that, due to the sparsity of gauge data in central

Africa, the GPCC-based monthly correction applied to

TMPA ResV does not adequately represent the rainfall

variability over the study area. Regarding the use of

TMPA for flood simulations, some studies have shown

increased uncertainties associated with the adjusted

TMPA ResV product compared to the RT product (Su

et al. 2008; Bitew and Gebremichael 2011). This might

be related to our results on extreme rainfall events, with

TMPA RT extremes lying closer to the corresponding

gauge values than the ResV extremes (Figs. 7b,d). In

addition, the intrapixel analysis has shown that the

TMPA ResV product adds uncertainty to the recog-

nized gauge data uncertainty, whereas the uncertainty in

TMPA RT is mainly related to the gauge data un-

certainty (Table 5). Hence, given its short latency and

better performance TMPA RT is probably more rele-

vant in hazard applications over the western branch of

the East Africa Rift.

6. Conclusions

While widely available, there remain challenges for

accurate rain detection and quantification of SREs.

This paper outlines SRE uncertainties in a sparsely

gauged, low-latitude region with complex topography

in the western branch of the East African Rift. TMPA

RT and ResV were evaluated at multiple spatiotem-

poral scales from 1998 to 2018 with an unprecedented

dataset of 46 gauges. Results indicated that the sparse

and heterogeneous temporal gauge coverage and

high rainfall variability in the study region poses

challenges for TMPA validation. The validation ap-

proach allowed detection of trends and sources of bias

in TMPA and will be applied to the validation of

IMERG as soon as the reprocessed product, spanning

from 1998 to the present, is released in late 2018. The

latter’s higher spatiotemporal resolution will allow a

more effective use of gauge data for validating rainfall

with high variability, which is a cause of large un-

certainties in TMPA. Results indicate that TMPA

performs relatively better in areas without complex

topography, and systematically underestimate pre-

cipitation for rainfall . 5mmday21. TMPA perfor-

mance decreases in predictive power during the dry

months. Validation results for 3-hourly and daily

TMPA are found to be very similar, whereas the

performance significantly increases for monthly rain-

fall accumulations. Trade-offs for the short latency of

TMPA RT were found to be small, showing overall

higher bias with gauge data, but better rainfall de-

tection skills and lower absolute errors compared to

TMPA ResV, probably as a result of the latter’s

gauge-based calibration. TMPA’s error characteris-

tics highlighted in this paper will improve the efficient

use of TMPA in hydrometeorological hazard appli-

cations. Especially in the study region, TMPA is

indispensable to provide the regional rainfall in-

formation required in hazard assessment, owing to the

sparse gauge network. Despite the key challenges

identified for satellite rainfall detection by TMPA in

the western branch of the East African Rift, and as

long as IMERG products are not available over a long

period of time, TMPA remains one of the best sources

of regional rainfall information available in the study

area. However, and although we recognized that

weaknesses of the gauge data might be partly re-

sponsible for the somewhat disappointing quality of

our validation results, TMPA should be used with

caution for hazard assessment.
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APPENDIX A

List of Acronyms and Abbreviations

COR Pearson correlation coefficient

DR Congo Democratic Republic of Congo

GPCC Global Precipitation Climatology Centre

HSS Heidke skill score

IMERG Integrated Multisatellite Retrievals for

Global Precipitation Measurement

ITCZ Intertropical convergence zone

NMAE Normalized mean absolute error

NME Normalized mean error

NRMSE Normalized root-mean-square error

POD Probability of detection

POFA Probability of false alarm

PR Precipitation radar

QQ Quantile–quantile

ResV Research version

ResSE Residual standard error

RT Near–real time

SRE Satellite rainfall estimate

TMI TRMM Microwave Imager

TMPA TRMMMultisatellite Precipitation Analysis

TRMM Tropical Rainfall Measuring Mission

APPENDIX B

Top 10 Most Extreme Rainfall Events Measured
by TMPA RT

Figure B1 shows the top 10 most extreme rainfall

events measured by TMPA RT.

FIG. B1. Top 10 most extreme rainfall events (1 5 most extreme) measured between 2000

and 2018 by TMPARTwere matched with reported hydrometeorological hazards, if available:

F 5 flood and LS 5 landslide. The corresponding rainfall measured by the gauge in the same

pixel (G) as well as the TMPA ResV are also shown.

1524 JOURNAL OF HYDROMETEOROLOGY VOLUME 19

https://disc-beta.gsfc.nasa.gov/
https://disc-beta.gsfc.nasa.gov/
http://resist.africamuseum.be/
http://afreslide.africamuseum.be/
http://afreslide.africamuseum.be/
http://georisca.africamuseum.be/


REFERENCES

Abdelkareem, M., 2017: Targeting flash flood potential areas using

remotely sensed data and GIS techniques. Nat. Hazards, 85,

19–37, https://doi.org/10.1007/s11069-016-2556-x.

Adeyewa, Z. D., and K. Nakamura, 2003: Validation of TRMM

radar rainfall data over major climatic regions in Africa.

J. Appl. Meteor., 42, 331–347, https://doi.org/10.1175/1520-

0450(2003)042,0331:VOTRRD.2.0.CO;2.

Alfieri, L., B. Bisselink, F. Dottori, G. Naumann, A. De Roo,

P. Salomon, K. Wyser, and L. Feyen, 2017: Global projections

of river flood risk in a warmer world. Earth’s Future, 5, 171–

182, https://doi.org/10.1002/2016EF000485.

Avalon Cullen, C., R. Al-Suhili, and R. Khanbilvardi, 2016:

Guidance index for shallow landslide hazard analysis. Remote

Sens., 8, 866, https://doi.org/10.3390/rs8100866.

Barnes, L. R., D. M. Schultz, E. C. Gruntfest, M. H. Hayden, and

C. C. Benight, 2009: Corrigendum: False alarm rate or false

alarm ratio. Wea. Forecasting, 24, 1452–1454, https://doi.org/

10.1175/2009WAF2222300.1.

Behera, S. K., and T. Yamagata, 2001: Subtropical SST dipole

events in the southern Indian Ocean. Geophys. Res. Lett., 28,

327–330, https://doi.org/10.1029/2000GL011451.

Bitew, M. M., and M. Gebremichael, 2011: Assessment of satellite

rainfall products for streamflow simulation in medium wa-

tersheds of the Ethiopian highlands. Hydrol. Earth Syst. Sci.,

15, 1147–1155, https://doi.org/10.5194/hess-15-1147-2011.

Brunetti, M. T., M. Melillo, S. Peruccacci, L. Ciabatta, and

L. Brocca, 2018: How far are we from the use of satellite

rainfall products in landslide forecasting? Remote Sens.

Environ., 210, 65–75, https://doi.org/10.1016/j.rse.2018.03.016.

Cattani, E., A. Merino, and V. Levizzani, 2016: Evaluation of

monthly satellite-derived precipitation products over East

Africa. J. Hydrometeor., 17, 2555–2573, https://doi.org/10.1175/

JHM-D-15-0042.1.

Chen, C.-T., andT.Knutson, 2008:On the verification and comparison

of extreme rainfall indices from climate models. J. Climate, 21,

1605–1621, https://doi.org/10.1175/2007JCLI1494.1.

Delvaux, D., J. Mulumba, M. Ntabwoba, S. Sebagenzi, S. Fiama,

F. Kervyn, and H. Havenith, 2017: Seismic hazard assessment

of the Kivu rift segment based on a new seismotectonic zo-

nation model (western branch, East African Rift system).

J. Afr. Earth Sci., 134, 831–855, https://doi.org/10.1016/

j.jafrearsci.2016.10.004.

Derin, Y., and K. K. Yilmaz, 2014: Evaluation of multiple satellite-

based precipitation products over complex topography.

J. Hydrometeor., 15, 1498–1516, https://doi.org/10.1175/

JHM-D-13-0191.1.

Devrani, R., V. Singh, S. M. Mudd, and H. D. Sinclair, 2015: Pre-

diction of flash flood hazard impact from Himalayan river

profiles. Geophys. Res. Lett., 42, 5888–5894, https://doi.org/

10.1002/2015GL063784.

Dezfuli, A. K., 2017: Climate of western and central equatorial

Africa. Climate science,OxfordResearchEncyclopedias, https://

doi.org/10.1093/acrefore/9780190228620.013.511.

——, C. M. Ichoku, G. J. Huffman, K. I. Mohr, J. S. Selker,

N. van de Giesen, R. Hochreutener, and F. O. Annor, 2017:

Validation of IMERG precipitation in Africa. J. Hydrometeor.,

18, 2817–2825, https://doi.org/10.1175/JHM-D-17-0139.1.

Dinku, T., S. Chidzambwa, P. Ceccato, S. J. Connor, and C. F.

Ropelewski, 2008: Validation of high-resolution satellite

rainfall products over complex terrain. Int. J. Remote Sens., 29,

4097–4110, https://doi.org/10.1080/01431160701772526.

——, S. J. Connor, and P. Ceccato, 2010: Comparison of CMORPH

and TRMM-3B42 over mountainous regions of Africa and

South America. Satellite Rainfall Applications for Surface

Hydrology, M. Gebremichael and H. Faisal, Eds., Springer,

193–204, https://doi.org/10.1007/978-90-481-2915-7_11.

Docquier, D., W. Thiery, S. Lhermitte, and N. P. M. van Lipzig,

2016: Multi-year wind dynamics around Lake Tanganyika.

Climate Dyn., 47, 3191–3202, https://doi.org/10.1007/s00382-

016-3020-z.

Ebert, E. E., 2007: Methods for verifying satellite precipitation

estimates. Measuring Precipitation from Space, V. Levizzani,

P. Bauer, and F. J. Turk, Eds., Springer, 345–356, https://

doi.org/10.1007/978-1-4020-5835-6_27.

El Kenawy, A. M., J. I. Lopez-Moreno, M. F. McCabe, and S. M.

Vicente-Serrano, 2015: Evaluation of the TMPA-3B42 pre-

cipitation product using a high-density rain gauge network over

complex terrain in northeastern Iberia. Global Planet. Change,

133, 188–200, https://doi.org/10.1016/j.gloplacha.2015.08.013.

Funk, C., and Coauthors, 2015: The climate hazards infrared pre-

cipitation with stations — A new environmental record for

monitoring extremes. Sci. Data, 2, 150066, https://doi.org/

10.1038/sdata.2015.66.

Gao, Y. C., and M. F. Liu, 2013: Evaluation of high-resolution

satellite precipitation products using rain gauge observations

over the Tibetan Plateau.Hydrol. Earth Syst. Sci., 17, 837–849,

https://doi.org/10.5194/hess-17-837-2013.

Gariano, S. L., and F. Guzzetti, 2016: Landslides in a changing

climate. Earth-Sci. Rev., 162, 227–252, https://doi.org/10.1016/

j.earscirev.2016.08.011.

Gasse, F., F. Chalié, A. Vincens, M. A. Williams, and

D. Williamson, 2008: Climatic patterns in equatorial and

southern Africa from 30,000 to 10,000 years ago reconstructed

from terrestrial and near-shore proxy data.Quat. Sci. Rev., 27,

2316–2340, https://doi.org/10.1016/j.quascirev.2008.08.027.

Gebregiorgis, A. S., P. E. Kirstetter, Y. E. Hong, N. J. Carr, J. J.

Gourley, W. Petersen, and Y. Zheng, 2017: Understanding

overland multisensor satellite precipitation error in TMPA-

RT products. J. Hydrometeor., 18, 285–306, https://doi.org/

10.1175/JHM-D-15-0207.1.

Grimaldi, S., A. Petroselli, L. Baldini, and E. Gorgucci, 2018: De-

scription and preliminary results of a 100 square meter rain

gauge. J. Hydrol., 556, 827–834, https://doi.org/10.1016/

j.jhydrol.2015.09.076.

Habib, E., A. Henschke, and R. F. Adler, 2009: Evaluation of

TMPA satellite-based research and real-time rainfall esti-

mates during six tropical-related heavy rainfall events over

Louisiana, USA. Atmos. Res., 94, 373–388, https://doi.org/

10.1016/j.atmosres.2009.06.015.

Heidke, P., 1926: Berechnung des Erfolges und der Giite der

Windstarkevorhersagen im Sturmwarnungsdienst.Geogr.Ann.,

8, 310–349.

Hobouchian, M. P., P. Salio, Y. García, D. Vila, and R. Garreaud,

2017: Assessment of satellite precipitation estimates over the

slopes of the subtropical Andes. Atmos. Res., 190, 43–54,

https://doi.org/10.1016/j.atmosres.2017.02.006.

Hou, A. Y., and Coauthors, 2014: The global precipitation mea-

surement mission. Bull. Amer. Meteor. Soc., 95, 701–722,

https://doi.org/10.1175/BAMS-D-13-00164.1.

Huffman, G. J., and D. T. Bolvin, 2014: TRMM and other data pre-

cipitation data set documentation. NASA TRMM Doc., 42 pp.,

ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf.

——, and Coauthors, 2007: The TRMMmultisatellite precipitation

analysis (TMPA): Quasi-global, multiyear, combined-sensor

SEPTEMBER 2018 MONS I EURS ET AL . 1525

https://doi.org/10.1007/s11069-016-2556-x
https://doi.org/10.1175/1520-0450(2003)042<0331:VOTRRD>2.0.CO;2
https://doi.org/10.1175/1520-0450(2003)042<0331:VOTRRD>2.0.CO;2
https://doi.org/10.1002/2016EF000485
https://doi.org/10.3390/rs8100866
https://doi.org/10.1175/2009WAF2222300.1
https://doi.org/10.1175/2009WAF2222300.1
https://doi.org/10.1029/2000GL011451
https://doi.org/10.5194/hess-15-1147-2011
https://doi.org/10.1016/j.rse.2018.03.016
https://doi.org/10.1175/JHM-D-15-0042.1
https://doi.org/10.1175/JHM-D-15-0042.1
https://doi.org/10.1175/2007JCLI1494.1
https://doi.org/10.1016/j.jafrearsci.2016.10.004
https://doi.org/10.1016/j.jafrearsci.2016.10.004
https://doi.org/10.1175/JHM-D-13-0191.1
https://doi.org/10.1175/JHM-D-13-0191.1
https://doi.org/10.1002/2015GL063784
https://doi.org/10.1002/2015GL063784
http://dx.doi.org/https://doi.org/10.1093/acrefore/9780190228620.013.511
http://dx.doi.org/https://doi.org/10.1093/acrefore/9780190228620.013.511
https://doi.org/10.1175/JHM-D-17-0139.1
https://doi.org/10.1080/01431160701772526
https://doi.org/10.1007/978-90-481-2915-7_11
https://doi.org/10.1007/s00382-016-3020-z
https://doi.org/10.1007/s00382-016-3020-z
https://doi.org/10.1007/978-1-4020-5835-6_27
https://doi.org/10.1007/978-1-4020-5835-6_27
https://doi.org/10.1016/j.gloplacha.2015.08.013
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.5194/hess-17-837-2013
https://doi.org/10.1016/j.earscirev.2016.08.011
https://doi.org/10.1016/j.earscirev.2016.08.011
https://doi.org/10.1016/j.quascirev.2008.08.027
https://doi.org/10.1175/JHM-D-15-0207.1
https://doi.org/10.1175/JHM-D-15-0207.1
https://doi.org/10.1016/j.jhydrol.2015.09.076
https://doi.org/10.1016/j.jhydrol.2015.09.076
https://doi.org/10.1016/j.atmosres.2009.06.015
https://doi.org/10.1016/j.atmosres.2009.06.015
https://doi.org/10.1016/j.atmosres.2017.02.006
https://doi.org/10.1175/BAMS-D-13-00164.1
ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf


precipitation estimates at fine scales. J. Hydrometeor., 8, 38–

55, https://doi.org/10.1175/JHM560.1.

——, R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM

Multi-Satellite Precipitation Analysis (TMPA). Satellite Appli-

cations for Surface Hydrology, F. Hossain andM. Gebremichael,

Eds., Springer, 3–22.

——, D. T. Bolvin, and E. J. Nelkin, 2015: Integrated Multi-

satellitE Retrievals for GPM (IMERG) technical documen-

tation. NASA/GSFCCode 612 Tech.Doc., 48 pp., http://pmm.

nasa.gov/sites/default/files/document_files/IMERG_doc.pdf.

——, A. Pendergrass, and NCAR Research Staff, Eds., 2017: The

Climate Data Guide: TRMM: Tropical Rainfall Measuring Mis-

sion. UCAR, accessed 6 January 2017, https://climatedataguide.

ucar.edu/climate-data/trmm-tropical-rainfall-measuring-mission.

IPCC, 2013: Climate Change 2013: The Physical Science Basis.

Cambridge University Press, 1535 pp., https://doi.org/10.1017/

CBO9781107415324.

Islam, N., S. Das, and H. Uyeda, 2010: Calibration of TRMM de-

rived rainfall over Nepal during 1998-2007. Open Atmos. Sci.

J., 4, 12–23, https://doi.org/10.2174/1874282301004010012.

Islam, T., M. A. Rico-Ramirez, D. Han, P. K. Srivastava, andA.M.

Ishak, 2012: Performance evaluation of the TRMM pre-

cipitation estimation using ground-based radars from the

GPM validation network. J. Atmos. Solar-Terr. Phys., 77, 194–

208, https://doi.org/10.1016/j.jastp.2012.01.001.

Jacobs, L., O. Dewitte, J. Poesen, D. Delvaux, W. Thiery, and

M. Kervyn, 2016a: The Rwenzori Mountains, a landslide-

prone region?Landslides, 13, 519–536, https://doi.org/10.1007/

s10346-015-0582-5.

——, and Coauthors, 2016b: Reconstruction of a flash flood event

through a multi-hazard approach: Focus on the Rwenzori

Mountains, Uganda. Nat. Hazards, 84, 851–876, https://

doi.org/10.1007/s11069-016-2458-y.

——, and Coauthors, 2017: Landslide diversity in the Rwenzori

Mountains (Uganda).WLF 2017: Advancing Culture of Living

with Landslides, M. Mikos et al., Eds., Springer, 79–86, https://

doi.org/10.1007/978-3-319-53498-5_10.

Kidd, C., 2001: Satellite rainfall climatology: A review. Int.

J. Climatol., 21, 1041–1066, https://doi.org/10.1002/joc.635.

——, and G. J. Huffman, 2011: Global precipitation measurement.

Meteor. Appl., 18, 334–353, https://doi.org/10.1002/met.284.

Kim, K., J. Park, J. Baik, and M. Choi, 2017: Evaluation of topo-

graphical and seasonal feature using GPM IMERG and

TRMM 3B42 over Far-East Asia. Atmos. Res., 187, 95–105,

https://doi.org/10.1016/j.atmosres.2016.12.007.

Kirschbaum, D. B., and T. Stanley, 2018: Satellite-based assess-

ment of rainfall-triggered landslide hazard for situational

awareness. Earth’s Future, 6, 505–523, https://doi.org/10.1002/

2017EF000715.

——, ——, and J. Simmons, 2015: A dynamic landslide hazard

assessment system for Central America and Hispaniola. Nat.

Hazards Earth Syst. Sci., 15, 2257–2272, https://doi.org/10.5194/

nhess-15-2257-2015.

Kjekstad, O., and L. Highland, 2009: Economic and social impacts

of landslides. Landslides – Disaster Risk Reduction, K. Sassa

and P. Canuti, Eds., Springer, 573–587, https://doi.org/10.1007/

978-3-540-69970-5_30.

Kumar, A., A. K. L. Asthana, R. Singh, R. Jayangondaperumal,

A. K. Gupta, and S. S. Bhakuni, 2017: Geomorphology as-

sessment of landslide hazards induced by extreme rain-

fall event in Jammu and Kashmir Himalaya, northwest

India. Geomorphology, 284, 72–87, https://doi.org/10.1016/

j.geomorph.2017.01.003.

Kummerow, C. D., and Coauthors, 2000: The status of the Tropical

Rainfall Measuring Mission (TRMM) after two years in orbit.

J. Appl. Meteor., 39, 1965–1982, https://doi.org/10.1175/1520-

0450(2001)040,1965:TSOTTR.2.0.CO;2.

——, D. L. Randel, M. Kulie, N. Y. Wang, R. Ferraro, S. J.

Munchak, and V. Petkovic, 2015: The evolution of the God-

dard profiling algorithm to a fully parametric scheme.

J. Atmos. Oceanic Technol., 32, 2265–2280, https://doi.org/

10.1175/JTECH-D-15-0039.1.

Li, L., and Coauthors, 2009: Evaluation of the real-time TRMM-

based multi-satellite precipitation analysis for an operational

flood prediction system in Nzoia Basin, Lake Victoria, Africa.

Nat. Hazards, 50, 109–123, https://doi.org/10.1007/s11069-008-

9324-5.

Maki Mateso, J., and O. Dewitte, 2014: Towards an inventory of

landslide processes and the elements at risk on the Rift flanks

West of Lake Kivu (DRC). Geo-Eco-Trop, 38, 137–154.

Mantas, V. M., Z. Liu, C. Caro, and A. J. S. C. Pereira, 2015:

Validation of TRMM multi-satellite precipitation analysis

(TMPA) products in the Peruvian Andes. Atmos. Res., 163,

132–145, https://doi.org/10.1016/j.atmosres.2014.11.012.

Martelloni, G., S. Segoni, R. Fanti, and F. Catani, 2012: Rainfall

thresholds for the forecasting of landslide occurrence at re-

gional scale. Landslides, 9, 485–495, https://doi.org/10.1007/

s10346-011-0308-2.

Mashingia, F., F. Mtalo, and M. Bruen, 2014: Validation of re-

motely sensed rainfall over major climatic regions in North-

east Tanzania. Phys. Chem. Earth, 67–69, 55–63, https://

doi.org/10.1016/j.pce.2013.09.013.

Mekonnen, G. B., S. Matula, F. Dole�zal, and J. Fi�sák, 2015: Ad-

justment to rainfall measurement undercatch with a tipping-

bucket rain gauge using ground-level manual gauges. Meteor.

Atmos. Phys., 127, 241–256, https://doi.org/10.1007/s00703-

014-0355-z.

Michellier, C., P. Pigeon, and F. Kervyn, 2016: Contextualizing

vulnerability assessment: A support to geo-risk management

in central Africa. Nat. Hazards, 82, 27–42, https://doi.org/

10.1007/s11069-016-2295-z.

Monsieurs, E., and Coauthors, 2017: Constraints on landslide-

climate research imposed by the reality of fieldwork in

Central Africa. Third North American Symp. on Landslides,

Roanoke, VA, Association of Environmental and Engi-

neering Geologists, 158–168.

——, and Coauthors, 2018: Landslide inventory for hazard as-

sessment in a data-poor context: A regional-scale approach

in a tropical African environment. Landslides, https://doi.org/

10.1007/s10346-018-1008-y, in press.

Munzimi, Y. A., M. C. Hansen, B. Adusei, and G. B. Senay, 2015:

Characterizing Congo basin rainfall and climate using Tropi-

cal Rainfall Measuring Mission (TRMM) satellite data

and limited rain gauge ground observations. J. Appl. Meteor.

Climatol., 54, 541–555, https://doi.org/10.1175/JAMC-D-14-

0052.1.

Nelkin, E., 2017: Equator-crossing times (local). Microwave sat-

ellite overpass time history.MesoscaleAtmospheric Processes

Laboratory, NASA Goddard Space Flight Center, accessed

20 June 2017, https://precip.gsfc.nasa.gov/times_allsat.jpg.

Nicholson, S. E., 1996: A review of climate dynamics and climate

variability in easternAfrica.TheLimnology, Climatology, and

Paleoclimatology of East African Lakes, I. Johnson and

E. O. Odada, Eds., Gordon and Breach Publishers, 25–56.

Nobile, A., A. Dille, E. Monsieurs, J. Basimike, T. Mugaruka

Bibentyo, N. d’Oreye, F. Kervyn, and O. Dewitte, 2018:

1526 JOURNAL OF HYDROMETEOROLOGY VOLUME 19

https://doi.org/10.1175/JHM560.1
http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf
http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf
https://climatedataguide.ucar.edu/climate-data/trmm-tropical-rainfall-measuring-mission
https://climatedataguide.ucar.edu/climate-data/trmm-tropical-rainfall-measuring-mission
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.2174/1874282301004010012
https://doi.org/10.1016/j.jastp.2012.01.001
https://doi.org/10.1007/s10346-015-0582-5
https://doi.org/10.1007/s10346-015-0582-5
https://doi.org/10.1007/s11069-016-2458-y
https://doi.org/10.1007/s11069-016-2458-y
https://doi.org/10.1007/978-3-319-53498-5_10
https://doi.org/10.1007/978-3-319-53498-5_10
https://doi.org/10.1002/joc.635
https://doi.org/10.1002/met.284
https://doi.org/10.1016/j.atmosres.2016.12.007
https://doi.org/10.1002/2017EF000715
https://doi.org/10.1002/2017EF000715
https://doi.org/10.5194/nhess-15-2257-2015
https://doi.org/10.5194/nhess-15-2257-2015
https://doi.org/10.1007/978-3-540-69970-5_30
https://doi.org/10.1007/978-3-540-69970-5_30
https://doi.org/10.1016/j.geomorph.2017.01.003
https://doi.org/10.1016/j.geomorph.2017.01.003
https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2
https://doi.org/10.1175/JTECH-D-15-0039.1
https://doi.org/10.1175/JTECH-D-15-0039.1
https://doi.org/10.1007/s11069-008-9324-5
https://doi.org/10.1007/s11069-008-9324-5
https://doi.org/10.1016/j.atmosres.2014.11.012
https://doi.org/10.1007/s10346-011-0308-2
https://doi.org/10.1007/s10346-011-0308-2
https://doi.org/10.1016/j.pce.2013.09.013
https://doi.org/10.1016/j.pce.2013.09.013
https://doi.org/10.1007/s00703-014-0355-z
https://doi.org/10.1007/s00703-014-0355-z
https://doi.org/10.1007/s11069-016-2295-z
https://doi.org/10.1007/s11069-016-2295-z
https://doi.org/10.1007/s10346-018-1008-y
https://doi.org/10.1007/s10346-018-1008-y
https://doi.org/10.1175/JAMC-D-14-0052.1
https://doi.org/10.1175/JAMC-D-14-0052.1
https://precip.gsfc.nasa.gov/times_allsat.jpg


Multi-temporal DInSAR to characterise landslide ground

deformations in a tropical urban environment: Focus on

Bukavu (DR Congo). Remote Sens., 10, 626, https://doi.org/

10.3390/rs10040626.

Peel,M. C., B. L. Finlayson, and T.A.McMahon, 2007: Updated world

map of the Köppen-Geiger climate classification. Hydrol. Earth

Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007.

Poméon, T., D. Jackisch, and B. Diekkrüger, 2017: Evaluating the

performance of remotely sensed and reanalysed precipitation

data over West Africa using HBV light. J. Hydrol., 547, 222–

235, https://doi.org/10.1016/j.jhydrol.2017.01.055.

Prakash, S., A. K. Mitra, D. S. Pai, and A. Aghakouchak, 2016a:

From TRMM to GPM: How well can heavy rainfall be de-

tected from space?Adv. Water Resour., 88, 1–7, https://

doi.org/10.1016/j.advwatres.2015.11.008.

——, ——, E. N. Rajagopal, and D. S. Pai, 2016b: Assessment of

TRMM-based TMPA-3B42 and GSMaP precipitation prod-

ucts over India for the peak southwest monsoon season. Int.

J. Climatol., 36, 1614–1631, https://doi.org/10.1002/joc.4446.

Rossi, M., S. Luciani, D. Valigi, D. Kirschbaum, M. T. Brunetti,

S. Peruccacci, and F. Guzzetti, 2017: Statistical approaches for

the definition of landslide rainfall thresholds and their un-

certainty using rain gauge and satellite data.Geomorphology,

285, 16–27, https://doi.org/10.1016/j.geomorph.2017.02.001.

Salio, P., M. Paula, Y. García, and D. Vila, 2015: Evaluation of

high-resolution satellite precipitation estimates over southern

SouthAmerica using a dense rain gauge network.Atmos. Res.,

163, 146–161, https://doi.org/10.1016/j.atmosres.2014.11.017.

Satgé, F., and Coauthors, 2016: Assessment of satellite rainfall

products over the Andean plateau. Atmos. Res., 167, 1–14,

https://doi.org/10.1016/j.atmosres.2015.07.012.

Scheel, M. L. M., M. Rohrer, C. Huggel, D. Santos Villar,

E. Silvestre, and G. J. Huffman, 2011: Evaluation of TRMM

Multi-satellite PrecipitationAnalysis (TMPA) performance in

the Central Andes region and its dependency on spatial and

temporal resolution. Hydrol. Earth Syst. Sci., 15, 2649–2663,

https://doi.org/10.5194/hess-15-2649-2011.

Segoni, S., L. Piciullo, and S. L. Gariano, 2018: A review of the

recent literature on rainfall thresholds for landslide occur-

rence. Landslides, 15, 1483–1501, https://doi.org/10.1007/s10346-

018-0966-4.

Serrat-Capdevila, A., M. Merino, J. B. Valdes, and M. Durcik,

2016: Evaluation of the performance of three satellite pre-

cipitation products over Africa. Remote Sens., 8, 836, https://

doi.org/10.3390/rs8100836.

Sevruk, B., M. Ondrás, and B. Chvíla, 2009: The WMO pre-

cipitation measurement intercomparisons. Atmos. Res., 92,

376–380, https://doi.org/10.1016/j.atmosres.2009.01.016.

Shaaban, A. A., and P. E. Roundy, 2017: OLR perspective on the

Indian Ocean dipole with application to East African pre-

cipitation.Quart. J. Roy. Meteor. Soc., 143, 1828–1843, https://

doi.org/10.1002/qj.3045.

Shen, Y., A. Xiong, Y. Wang, and P. Xie, 2010: Performance of high-

resolution satellite precipitation products over China. J.Geophys.

Res., 115, D02114, https://doi.org/10.1029/2010JD014481.

Sidle, R. C., and T. A. Bogaard, 2016: Dynamic earth system and

ecological controls of rainfall-initiated landslides.Earth-Sci. Rev.,

159, 275–291, https://doi.org/10.1016/j.earscirev.2016.05.013.
Smets, B., D. Delvaux, K. Ann, S. Poppe, M. Kervyn, and

F. Kervyn, 2016: The role of inherited crustal structures and

magmatism in the development of rift segments: Insights from

the Kivu basin, western branch of the East African Rift. Tecto-

nophysics, 683, 62–76, https://doi.org/10.1016/j.tecto.2016.06.022.

Souverijns, N., W. Thiery, M. Demuzere, and N. P. M. van Lizpig,

2016: Drivers of future changes in East African precipitation.

Environ. Res. Lett., 11, 114011, https://doi.org/10.1088/

1748-9326/11/11/114011.

Stanley, T., and D. B. Kirschbaum, 2017: A heuristic approach to

global landslide susceptibility mapping. Nat. Hazards, 87,

145–164, https://doi.org/10.1007/s11069-017-2757-y.

Su, F., Y. Hong, andD. P. Lettenmaier, 2008: Evaluation of TRMM

Multisatellite Precipitation Analysis (TMPA) and its utility in

hydrologic prediction in the La Plata Basin. J. Hydrometeor., 9,

622–640, https://doi.org/10.1175/2007JHM944.1.

Sun, X., and A. P. Barros, 2010: An evaluation of the statistics of

rainfall extremes in rain gauge observations, and satellite-

based and reanalysis products using universal multifractals.

J. Hydrometeor., 11, 388–404, https://doi.org/10.1175/

2009JHM1142.1.

Tan, J., W. A. Petersen, P. E. Kirstetter, and Y. Tian, 2017: Per-

formance of IMERG as a function of spatiotemporal scale.

J. Hydrometeor., 18, 307–319, https://doi.org/10.1175/JHM-D-

16-0174.1.

Tang, G., A. Behrangi, D. Long, C. Li, and Y. Hong, 2018: Ac-

counting for spatiotemporal errors of gauges: A critical step to

evaluate gridded precipitation products. J. Hydrol., 559, 294–

306, https://doi.org/10.1016/j.jhydrol.2018.02.057.

Thiemig, V., R. Rojas, M. Zambrano-Bigiarini, V. Levizzani, and

A. De Roo, 2012: Validation of satellite-based precipitation

products over sparsely gaugedAfrican river basins. J. Hydrometeor.,

13, 1760–1783, https://doi.org/10.1175/JHM-D-12-032.1.

Thiery, W., E. L. Davin, H. J. Panitz, M. Demuzere, S. Lhermitte,

and N. Van Lipzig, 2015: The impact of the African Great

Lakes on the regional climate. J. Climate, 28, 4061–4085,

https://doi.org/10.1175/JCLI-D-14-00565.1.

——, ——, S. I. Seneviratne, K. Bedka, S. Lhermitte, and N. P. M.

van Lizpig, 2016: Hazardous thunderstorm intensification

over Lake Victoria. Nat. Commun., 7, 12786, https://doi.org/

10.1038/ncomms12786.

——, L. Gudmundsson, K. Bedka, F. H. M. Semazzi, P. Willems,

N. P.M. vanLipzig, and S. I. Seneviratne, 2017: Early warnings

of hazardous thunderstorms over LakeVictoria.Environ. Res.

Lett., 12, 074012, https://doi.org/10.1088/1748-9326/aa7521.

Tian, Y., and C. D. Peters-Lidard, 2007: Systematic anomalies

over inland water bodies in satellite-based precipitation esti-

mates.Geophys. Res. Lett., 34, L14403, https://doi.org/10.1029/

2007GL030787.

Vandecasteele, I., J. Moeyersons, and P. Trefois, 2010: An assess-

ment of the spatial and temporal distribution of natural

hazards in Central Africa. African Palaeoenvironments and

Geomorphic Landscape Evolution, J. Runge, Ed., Palae-

oecology of Africa, Vol. 30, CRC Press, 279–300.

Vila, D. A., L. G. G. de Goncalves, D. L. Toll, and J. R. Rozante,

2009: Statistical evaluation of combined daily gauge observa-

tions and rainfall satellite estimates over continental South

America. J. Hydrometeor., 10, 533–543, https://doi.org/10.1175/

2008JHM1048.1.

Villarini, G., and W. F. Krajewski, 2007: Evaluation of the

research-version TMPA three-hourly 0.258 3 0.258 rainfall

estimates over Oklahoma. Geophys. Res. Lett., 34, L05402,

https://doi.org/10.1029/2006GL029147.

Washington, R., and Coauthors, 2006: African climate change:

Taking the shorter route. Bull. Amer. Meteor. Soc., 87, 1355–

1366, https://doi.org/10.1175/BAMS-87-10-1355.

Wilks, D. S., 2006: Forecast verification. Statistical Methods in the

Atmospheric Sciences, Academic Press, 260–268.

SEPTEMBER 2018 MONS I EURS ET AL . 1527

https://doi.org/10.3390/rs10040626
https://doi.org/10.3390/rs10040626
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.1016/j.jhydrol.2017.01.055
https://doi.org/10.1016/j.advwatres.2015.11.008
https://doi.org/10.1016/j.advwatres.2015.11.008
https://doi.org/10.1002/joc.4446
https://doi.org/10.1016/j.geomorph.2017.02.001
https://doi.org/10.1016/j.atmosres.2014.11.017
https://doi.org/10.1016/j.atmosres.2015.07.012
https://doi.org/10.5194/hess-15-2649-2011
https://doi.org/10.1007/s10346-018-0966-4
https://doi.org/10.1007/s10346-018-0966-4
https://doi.org/10.3390/rs8100836
https://doi.org/10.3390/rs8100836
https://doi.org/10.1016/j.atmosres.2009.01.016
https://doi.org/10.1002/qj.3045
https://doi.org/10.1002/qj.3045
https://doi.org/10.1029/2010JD014481
https://doi.org/10.1016/j.earscirev.2016.05.013
https://doi.org/10.1016/j.tecto.2016.06.022
https://doi.org/10.1088/1748-9326/11/11/114011
https://doi.org/10.1088/1748-9326/11/11/114011
https://doi.org/10.1007/s11069-017-2757-y
https://doi.org/10.1175/2007JHM944.1
https://doi.org/10.1175/2009JHM1142.1
https://doi.org/10.1175/2009JHM1142.1
https://doi.org/10.1175/JHM-D-16-0174.1
https://doi.org/10.1175/JHM-D-16-0174.1
https://doi.org/10.1016/j.jhydrol.2018.02.057
https://doi.org/10.1175/JHM-D-12-032.1
https://doi.org/10.1175/JCLI-D-14-00565.1
https://doi.org/10.1038/ncomms12786
https://doi.org/10.1038/ncomms12786
https://doi.org/10.1088/1748-9326/aa7521
https://doi.org/10.1029/2007GL030787
https://doi.org/10.1029/2007GL030787
https://doi.org/10.1175/2008JHM1048.1
https://doi.org/10.1175/2008JHM1048.1
https://doi.org/10.1029/2006GL029147
https://doi.org/10.1175/BAMS-87-10-1355


Xu, R., F. Tian, L. Yang, H. Hu, H. Lu, and A. Hou, 2017: Ground

validation of GPM IMERG and TRMM 3B42V7 rainfall

products over southern Tibetan Plateau based on a high-

density rain gauge network. J. Geophys. Res. Atmos., 122,
910–924, https://doi.org/10.1002/2016JD025418.

Yaduvanshi, A., P. K. Srivastava, and A. C. Pandey, 2015: In-

tegrating TRMM and MODIS satellite with socio-economic

vulnerability for monitoring drought risk over a tropical re-

gion of India.Phys. Chem. Earth, 83–84, 14–27, https://doi.org/

10.1016/j.pce.2015.01.006.

Yuan, F., L. Zhang, K. Wah, W. Win, L. Ren, and C. Zhao, 2017:

Assessment of GPM and TRMM multi-satellite precipitation

products in streamflow simulations in a data-sparse moun-

tainous watershed in Myanmar. Remote Sens., 9, 302, https://
doi.org/10.3390/rs9030302.

Zambrano-Bigiarini, M., A. Nauditt, C. Birkel, K. Verbist, and

L. Ribbe, 2017: Temporal and spatial evaluation of satellite-

based rainfall estimates across the complex topographical

and climatic gradients of Chile. Hydrol. Earth Syst. Sci., 21,

1295–1320, https://doi.org/10.5194/hess-21-1295-2017.

1528 JOURNAL OF HYDROMETEOROLOGY VOLUME 19

https://doi.org/10.1002/2016JD025418
https://doi.org/10.1016/j.pce.2015.01.006
https://doi.org/10.1016/j.pce.2015.01.006
https://doi.org/10.3390/rs9030302
https://doi.org/10.3390/rs9030302
https://doi.org/10.5194/hess-21-1295-2017

