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The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are
known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics
to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams
of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our
results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential
of tropical forests requires both protecting them and stabilizing Earth’s climate.

T
he response of tropical terrestrial car-
bon to environmental change is a crit-
ical component of global climate models
(1). Land-atmosphere feedbacks depend
on the balance of positive biomass growth

stimulation by CO2 fertilization (i.e., b) and
negative responses to warmer temperatures
and any change in precipitation (i.e., g). Yet
the climate response is so poorly constrained
that it remains one of the largest uncertainties
in Earth system models (2, 3), with the tem-
perature sensitivity of tropical land carbon

stocks alone differing by >100 Pg C °C−1 among
models (2). Such uncertainty impedes our
understanding of the global carbon cycle, lim-
iting our ability to simulate the future of the
Earth systemunder different long-term climate
mitigation strategies. A critical long-term con-
trol on tropical land-atmosphere feedbacks is
the sensitivity to climate of tropical forests (a
key component of g), where about 40% of the
world’s vegetation carbon resides (4).
The sensitivity to environmental change

of tropical biomass carbon stocks, rates of
production, and the persistence of fixed carbon
can all be estimated by relating their short-term
and interannual responses to variation in climate
(5–7). These sensitivities are then used to con-

strain longer-term projections of climate re-
sponses (2). Such approaches typically find that
higher minimum temperatures are strongly as-
sociated with slower tree growth and reduced
forest carbon stocks, likely owing to increased
respiration at higher temperatures (7–9). Trop-
ical forest carbon is also sensitive to precipita-
tion (10), with, for example, increased tree
mortality occurring during drought events (11).
Yet the sensitivity of ecosystems to inter-

annual fluctuations may be an unreliable guide
to their longer-term responses to climate change.
Such responses will also be influenced by
physiological acclimation (12), changes in dem-
ographic rates (13), and shifts in species com-
position (14). For example, both respiration
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and photosynthesis can acclimate under
sustained temperature increases (15–17), trop-
ical trees exhibit physiological plasticity (18),
and shifts in species composition occur (14)
under sustained drought. These processes
could mean that tropical forests are less sen-
sitive to climate than estimates derived from
interannual variability imply. An alternative,
complementary approach to assessing sensi-
tivity to climate is to measure and analyze
spatial variation in tropical ecosystems across
climate gradients as a space-for-time substi-
tution. Such biome-wide spatial variation in
forest carbon stocks, fluxes, and persistence
offers a distinctive and largely unexplored
window into the potential equilibrium sensi-
tivity of tropical forest vegetation to warming,
because it captures real-world vegetation re-
sponses that allow for physiological and eco-
logical adaptation (12).
To assess the long-term climate controls on

tropical forest growth and carbon stocks, we
assembled, measured, and analyzed a pantrop-
ical network of 590 permanent, long-term in-
ventory plots (Fig. 1; see figs. S1 and S2 for
ability to capture biome climate space). Our
analysis combines standardized measurements
from across South American, African, Asian,
and Australian tropical lowland forests (273,
239, 61, and 17 plots, respectively). For every
plot, we calculated aboveground carbon stocks

(19). Then, to better assess the dynamic controls
on aboveground carbon stocks, we also com-
puted the rate of carbon gained by the system
(aboveground woody carbon production, cal-
culated as tree growth plus newly recruited trees,
in Mg C ha−1 year−1) and the carbon residence
time in living biomass (calculated as the ratio
of living carbon stocks to carbon gains, in years).
We found considerable variation in biomass

carbon among continents, with lower stocks
per unit area in South America comparedwith
the Paleotropics, even after accounting for
environmental variables (Fig. 1). Continents
with high carbon stocks had either large
carbon gains (Asia) or long carbon residence
times (Africa) (Fig. 1). Because of these dif-
ferences among continents, which are poten-
tially due to differences in evolutionary history
(20), we analyzed the environmental drivers of
spatial variation in carbon stocks while ac-
counting for biogeographical differences. We
fitted linearmodels with explanatory variables
representing hypothesized mechanistic con-
trols of climate on tropical forest carbon (table
S1). We also included soil covariates, continent
intercepts, and eigenvectors describing spatial
relationships among plots to account for other
sources of variation (21).
Forest carbon stocks were most strongly

related to maximum temperature [Fig. 2; −5.9%
per 1°C increase in mean daily maximum tem-

perature in the warmest month with a 95%
confidence interval (CI) = −8.6 to −3.1%, which
is equivalent to −9.1 Mg C ha−1 °C−1 for a stand
with the mean carbon stock in our dataset,
154.6 Mg C ha−1] followed by rainfall (Fig. 2;
+2.4% per 100-mm increase in precipitation
in the driest quarter with a 95% CI = 0.6 to
4.3%, equivalent to 0.04 Mg C ha−1 mm−1 for
a stand with the mean carbon stocks in our
dataset), with no statistically significant rela-
tionship with minimum temperature, wind
speed, or cloud cover (Fig. 2). The effects of
maximum temperature and precipitation are
also evident in an analysis considering a wider
suite of climate variables than those tied to
hypothesized mechanisms (fig. S3) and in an
additional independent pantropical dataset of
223 single-census plots (for which carbon gains
and residence time cannot be assessed, fig. S4).
The negative effect of maximum temper-

ature on aboveground carbon stocks mainly
reflects reduced carbon gains with increas-
ing temperature (−4.0% per 1°C, 95% CI = −6.2
to −1.8%; Fig. 2), whereas the positive effect of
precipitation emerges through longer carbon
residence times with increasing precipitation
in the driest quarter (3.3% per 100 mm, 95%
CI = 0.9 to 5.7%; Fig. 2). Carbon residence time
also increased with the proportion of clay in
the soil (Fig. 2). The additive effects of pre-
cipitation and temperature on carbon stocks
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Fig. 1. Spatial variation in tropical forest carbon. (A) The RAINFOR (South America), AfriTRON (Africa), T-FORCES (Asia), and Australian plot networks. Filled
symbols show 590 multicensus plots used in the main analysis; open symbols show 223 single-census plots used as an independent dataset. Symbol color
indicates the region: green, South America; orange, Africa; purple, Asia; and pink, Australia. (B) Variation in carbon among continents. Boxplots show raw variation,
whereas blue points show estimated mean values (±SE) after accounting for environmental variation. Letters denote statistically significant differences between
continents (P < 0.05) based on raw data (black) or after accounting for environmental effects (blue in brackets).

RESEARCH | REPORT
on M

ay 21, 2020
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


were modified by an interaction between them
[change inAkaike information criterion (DAIC) =
15.4 comparing the full linear model with or
without interaction], with temperature effects
more negative when precipitation is low (fig.
S6). The interaction was through shortening
carbon residence time (DAIC = 11.9) rather
than reducing carbon gains (model without
interaction performed better, DAIC = 1.4).
An alternative analysis using decision-tree

algorithms (22) also showed maximum tem-
perature and precipitation to be important
(fig. S7). This decision-tree approach, which
can capture complex nonlinear relationships
(22), indicated potential nonlinearity in the
relationships between carbon stocks and both
temperature and precipitation, with the posi-
tive effect of increasing dry-season precipita-
tion on residence times strengthening when
precipitation was low and the negative effect
of maximum temperature intensifying at high
temperatures (fig. S7).
We further investigated nonlinearity in the

temperature relationship using breakpoint
regression (supported over linear regression
based on lower AIC, DAIC = 15.0), which re-
vealed that above 32.2°C (95% CI = 31.7° to
32.6°C), the relationship between carbon stocks
and maximum temperature became more neg-
ative (cooler than breakpoint, −3.8% °C−1, and
warmer than breakpoint, −14.7% °C−1; Fig. 3).
By partitioning carbon stocks into their pro-
duction and persistence, we found that this
nonlinearity reflects changes to carbon res-
idence time (DAIC = 10.6) rather than gains
(DAIC = 1.7). Overall, our results thus indicate
two separate climate controls on carbon stocks:
a negative linear effect of maximum tem-
perature through reduced carbon gains and a

nonlinear negative effect of maximum tempera-
ture, ameliorated by high dry-season precipita-
tion, through reduced carbon residence time.
The effect of temperature on carbon resi-

dence time only emerges when dry-season
precipitation is low; this is consistent with
theoretical expectations that negative effects
of temperature on tree longevity are exacer-
bated by moisture limitation, rather than being
independent of it and only due to increased
respiration costs (23). This could occur through
high vapor pressure deficits in hot and dry
forests increasing mortality risk by causing
hydraulic stress (23, 24) or carbon starvation
due to limited photosynthesis as a result of
stomatal closure (23). Notably, the temperature-
precipitation interaction we found for above-
ground stocks is in the opposite direction to
temperature-precipitation interactions reported
for soil carbon (25). In soils, moisture limitation
suppresses the temperature response of het-
erotrophic respiration, whereas in trees, mois-
ture limitation increases the mortality risks
of high temperatures.
The negative effects of temperature on

biomass carbon stocks and gains are primarily
due to maximum rather than minimum tem-
perature. This is consistent with high daytime
temperatures reducing CO2 assimilation rates,
for example, owing to increased photorespiration
or longer duration of stomatal closure (26, 27),
whereas if negative temperature effects were
to have increased respiration rates, there should
be a stronger relationship with minimum (i.e.,
nighttime) temperature. Critically, minimum
temperature is unrelated to aboveground
carbon stocks both pantropically and in one
continent, South America, where maximum
and minimum temperature are largely de-

coupled [correlation coefficient (r) = 0.33; fig.
S8]. Although carbon gains are negatively
related to minimum temperature (fig. S9),
this bivariate relationship is weaker than with
maximum temperature and disappears once
the effects of other variables are accounted for
(Fig. 2). Finally, in Asia, the tropical region that
experiences the warmest minimum temper-
atures of all, both carbon stocks and carbon
gains are highest (Fig. 1 and fig. S11).
Overall, our results suggest that tropical

forests have considerable potential to accli-
mate and adapt to the effects of nighttime
minimum temperatures but are clearly sen-
sitive to the effects of daytime maximum tem-
perature. This is consistent with ecophysiological
observations suggesting that the acclimation
potential of respiration (15) is greater than
that of photosynthesis (17). The temperature
sensitivity revealed by our analysis is also
considerably weaker than short-term sensi-
tivities associated with interannual climate
variation (7–9). For example, by relating short-
term annual climate anomalies to responses
in plots, the effect of a 1°C increase in tem-
perature on carbon gains has been estimated
as more than threefold our long-term, pan-
tropical result (28). This stronger, long-term
thermal resilience is likely due to a combi-
nation of individual acclimation and plasticity
(15–17), differences in species’ climate responses
(29) leading to shifts in community composition
due to changing demographic rates (12), and
the immigration of species with higher per-
formance at high temperatures (12).
Our pantropical analysis of the sensitivity to

climate of aboveground forest carbon stocks,
gains, and persistence shows that warming
reduces carbon stocks and woody productiv-
ity. Using a reference carbon stock map (30)
and applying our estimated temperature sen-
sitivity (including nonlinearity) while holding
other variables constant leads to an even-
tual biome-wide reduction of 14.1 Pg C in
live biomass (including scaling to estimate
carbon in roots) for a 1°C increase in mean
daily maximum temperature in the warmest
month (95% CI = 6.9 to 20.7 Pg). This com-
pares with a large range of projected sensitiv-
ities in coupled climate carbon cycle models
that report vegetation carbon (1 to 58 Pg C °C−1),
although these models have not been run to
equilibrium (see supplementary methods).
Our results suggest that stabilizing global

surface temperatures at 2°C above preindus-
trial levels will cause a potential long-term
biome-wide loss of 35.3 Pg C (95% CI = 20.9
to 49.0 Pg, estimates with alternative baseline
biomass maps of 24.0 to 28.4 Pg; fig. S12).
The greatest long-term reductions in carbon
stocks are projected in South America, where
baseline temperatures and future warming
are both highest (Fig. 4 and fig. S13). This
warming would push 71% of the biome beyond
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Fig. 2. Correlates of spatial variation in tropical forest carbon. Points show coefficients from
model-averaged general linear models. Variables that did not occur in well-supported models are
shrinkage-adjusted toward zero. Coefficients are standardized so that they represent change in the
response variable for one standard deviation change in the explanatory variable. Error bars show
standard errors (thick lines) and 95% confidence intervals (thin lines); error bar color is for illustrative
purposes to reflect the category of variable. Soil texture is represented by the percentage clay and
soil fertility by cation exchange capacity. The full models explained 44.1, 31.4, and 30.9% of spatial
variation in carbon stocks, gains, and residence time, respectively. Coefficients are shown in table S2.
Results are robust to using an alternative allometry to estimate tree biomass (fig. S5).
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the thermal threshold—a maximum tem-
perature of 32.2°C—where larger long-term
reductions in biomass are expected (fig. S14).
Of course, growth stimulation by carbon di-
oxide (31) will partially or wholly offset the
effect of this temperature increase, depend-
ing on both the level of atmospheric carbon
dioxide that limits warming to 2°C above pre-
industrial levels and the fertilization effect of
this carbon dioxide on tropical trees. Although

CO2 fertilization will reduce temperature-
induced carbon losses from biomass across
the tropics (table S3), our analysis indicates
that CO2 fertilization will not completely off-
set long-term temperature-induced carbon
losses within Amazonia (fig. S15), consistent
with a recent decadal-scale analysis of inven-
tory data (32).
The long-term climate sensitivities derived

from our pantropical field measurements

incorporate ecophysiological and ecological
adaptation and so provide an estimate of the
long-term, quasi-equilibrium response of trop-
ical vegetation to climate. This thermal adap-
tation potential may not be fully realized in
future responses because (i) the speed of tem-
perature rises may exceed species’ adaptive
capabilities, (ii) habitat fragmentation may
limit species’ ability to track changes in the
environment, and (iii) other human impacts
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such as logging and fire can increase the vul-
nerability of forest carbon stocks to high tem-
peratures. Althoughmany tropical forests are
under severe threat of conversion, our results
show that, in the long run, tropical forests that
remain intact can continue to store high levels
of carbon under high temperatures. Achieving
the biome-wide climate resilience potential that
we document depends on limiting heating and
on large-scale conservation and restoration to
protect biodiversity and allow species tomove.
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such as clearance, logging, or fires.
forest carbon stocks are likely to remain higher under moderate climate change if they are protected from direct impacts 
32°C, and a greater magnitude of climate change thus risks greater loss of tropical forest carbon stocks. Nevertheless,
carbon resides in the ecosystem by killing trees under hot, dry conditions. The effect of temperature is worse above 
dominated by high daytime temperatures. This extreme condition depresses growth rates and shortens the time that
This synthesis of plot networks across climatic and biogeographic gradients shows that forest thermal sensitivity is 

 measured carbon stocks and fluxes in permanent forest plots distributed globally.et al.influence carbon fluxes. Sullivan 
A key uncertainty in climate change models is the thermal sensitivity of tropical forests and how this value might
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