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a Université de Reims Champagne-Ardenne, CNRS, GSMA, Reims, France 
b Planetary Atmospheres, Royal Belgian Institute for Space Aeronomy, 3 Avenue Circulaire, 1180 Brussels, Belgium 
c Research Unit Lasers and Spectroscopies (LLS), Institute of Life, Earth and Environment (ILEE), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, 
Belgium 
d Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA   

A R T I C L E  I N F O   

Keywords: 
High resolution infrared spectroscopy 
Line shape parameters 
Water vapor 
Carbon dioxide 
Line profiles 
Planetary atmospheres 

A B S T R A C T   

H2O is an important molecule in the quest to better understand the evolution of solar system. In the study of 
Venus and Mars CO2-rich atmospheres (around 96 % of their composition) and because of the space instruments 
constant improvements, the planetary community needs spectroscopic data as accurate as possible. 

Continuing from our previous study [JQSRT 231, 126(2019)], new spectra of H2O perturbed by CO2 were 
measured with our new experimental set-up in the 2.7 µm region to compare with the previous results. After the 
improvement in the determination of the partial pressure of water vapor, the line parameters were then deter
mined with a multispectrum fitting procedure using a Voigt profile in the same way as in [JQSRT 231, 126 
(2019)]. This led to characteristic W-shape residuals that have been improved using beyond-Voigt profiles. Our 
investigation showed that considering the speed dependence of collisional line parameters is essential to obtain 
better line-shape parameters in the considered experimental conditions.   

1. Introduction 

As part of the study of our solar system evolution and research on 
terrestrial water’s origins, it is particularly important to know the dis
tribution of water vapor and its isotopologues in the atmosphere of our 
planetary neighbors, Venus and Mars. Venus Express (2008–2014) and 
ExoMars Trace Gas Orbiter (2016-), both ESA missions and also ground- 
based measurements have mapped water [1–7]. From these measure
ments, the isotopic ratio, deuterium to hydrogen, D/H, has been 
deduced to constrain atmospheric evolution scenarios [8–11]. 

Until recently, collisional parameters of H2O broadened by air were 
used due to lack of data instead of H2O broadened by CO2 line collisional 
parameters in planetary spectrum analysis. It was therefore essential to 
provide the planetary science community with measurements of H2O 
broadened by CO2 line-shape parameters in several regions of atmo
spheric interest. Some studies have already contributed to the deter
mination of these collisional parameters [12–20] for H2O and [21–24] 
for HDO. Note, to our knowledge, CO2-broadening parameters of D2O 
have never been measured. Among these studies, Ref. [12] presented 
spectra recorded in the 2.7 and 6 µm regions with a step-by-step Connes’ 

type Fourier-Transform spectrometer (FTS) and analyzed with a Voigt 
profile. More recently new spectra were measured in the 2.7 µm region 
with a Bruker IFS 125 HR FTS coupled to a 2-m White-type cell. The 
pressure of water vapor was kept sufficiently low to avoid 
self-broadening contribution, as was already done in our previous study 
[12]. As water vapor is a polar molecule, it is well-known that the 
sample adsorption must be considered. So, the H2O partial pressure 
needs to be determined precisely. The differences between observations 
and the modeling (i.e. the residuals) showed that the partial pressure of 
water vapor in the experiment may not have been considered properly. 
Another gas injection method was tested. In [12], an initial mixture of 
H2O – CO2 was injected in the cell and one spectrum was measured after 
each pumping. Whereas in this work, after the injection of a low pressure 
of water vapor, the CO2 was injected gradually, and a spectrum was 
recorded after each new mixture. The analysis of these new measure
ments required to go beyond the Voigt profile. Using this common 
profile led to W-shape residuals due to a narrowing effect. More complex 
line profiles were investigated to obtain more accurate collisional line 
parameters. 

Section 2 describes the experimental setup and the method for line 
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parameters’ retrieval. Section 3 is dedicated to comparisons and results. 

2. Experimental conditions 

2.1. Spectra measurements 

A FTS, commercial Bruker IFS 125 HR, was used to measure water 
vapor broadened by carbon dioxide spectra in the 2.7 µm region at room 
temperature. The wavelength range was selected to be able to compare 
to previous measurements [12]. The characteristics of the FTS are listed 
in Table 1. During the experiment, a primary oil pump and a turbomo
lecular secondary pump maintained the absorption path under vacuum - 
around 5.10− 5 mbar - to reduce residual background water. 

A 2-m White-type cell in stainless-steel was combined with the 
spectrometer to reach absorption path lengths from 8 to 104 m. 

For the cell pressure monitoring, three thermalized Leybold 
CTR101N Baratron gauges heads with a range of respectively 10, 100 
and 1000 Torr were used, coupled with a conversion box for pressure 
reading. They have an accuracy of 0.2 % and are calibrated beforehand. 
Temperatures were measured in the cell by four TCSA Pt100 probes with 
0.6 K of accuracy, coupled with a Meilhaus Electronics conversion box. 

Experimental conditions are given in Table 2 for a series of spectra 
shown in Fig. 1. The partial pressure of H2O was 1.465 Torr. Within 
these conditions, line intensities from 4.10− 21 to 1.10− 23 cm− 1 / 
(molecule cm− 2) were measured in the 2.7 µm region, choosing to 
analyze lines ranging from 15 to 80 % of absorption. As seen in Fig. 1, by 
increasing the partial pressure of CO2 in the cell, the water vapor lines 
were increasingly broadened, hence the maximum path difference 
(MPD) was reduced (see Table 2) to maintain a good signal to noise ratio 
with a shorter measurement duration. This led to reach a mean signal to 
noise ratio around 3500, determined with Bruker’s software Opus by 
selecting several spectral intervals without visible lines. The CO2 gas was 
purchased from Air Liquid with a stated purity (CO2 N48) of 99.998 %. 
The gas injection method is discussed in Section 2.2.1. 

2.2. Line parameters retrieval 

A multispectrum fitting procedure was used to determine collisional 
parameters of H2O broadened by CO2 lines. Two software packages were 
used complementarily. The first one called MultiFiT [25] - MFT - was 
developed in-house. The second one called MultiSpectrum Fitting - MSF 
- is described in [26]. Both can fit simultaneously several parameters, 
such as position, intensity, broadening and shift coefficients, but only 
MFT enables one to fit the partial pressure. However, MSF is not limited 
to the Voigt profile and offers more complex line profiles. 

The analysis was carried out only on isolated lines with an absorption 
between 15 % and 80 % to ensure well defined parameters without any 
saturation effect. 

2.2.1. Gas mixture 
Using both the MFT [25] and MSF [26] software with the Voigt 

profile on absorption lines, signatures on observed - calculated residuals 
as shown on Fig. 2 (left panel) were observed. This type of residuals 

differs from the typical W-shape signature generally induced by an 
inadequate line profile. In our case, the residuals are off-centered sug
gesting an uncertainty on the water vapor partial pressure. This possi
bility was investigated and developed further in the next sections. 

First, the water vapor was produced by pumping over a sample of 
liquid water in natural abundance. The use of a static setup for water is 
quite tricky. H2O being a polar molecule, it can easily stick on stainless- 
steel cell walls, because of the adsorption effect. That is why our partial 
pressure does not correspond to the pressure injected. Therefore, the 
way the gas mixture is injected will have an impact on the spectra. 
Indeed, in Ref [12], the water vapor was injected, before adding a single 
500 Torr pressure of CO2 in the cell. The mixture was then pumped to 
reach lower pressures. So, the partial pressure of H2O was different for 
each spectrum. 

For this work, the procedure of gas injection was modified to have 
the same H2O partial pressure for each spectrum of a series. Before each 
new recording, adequate time was taken to allow the mixture to become 
homogeneous and the pressure to stabilize. With this method, the 
pressure of H2O was stable, whereas the mixing ratio changed radically 
between the four spectra (see Table 3). 

As our experimental gas injection facility is static and not based on a 
constant flow that avoids the sticking of water molecules to cell walls 
[27], a post-correction of the water vapor partial pressure needs to be 
performed to take into account adsorption [28]. It was then necessary to 
better determine the H2O partial pressure to obtain the best fit residuals 
and line parameters. Our method consisted in fitting the H2O partial 
pressure with the MFT software [25] by fixing the intensity values at 
those of HITRAN2020 [29] on 14 isolated lines. Among these, eleven 
lines have a relative uncertainty of less than 1 %, while the three others 
have a relative uncertainty between 2 % and 5 %. This results in a 
maximum relative uncertainty of approximately 1.9 % (weighted mean) 
for the selected intensities. 

It was found that for the 100, 200 and 300 Torr spectra, the fitted 
H2O partial pressure was always around 3 % lower than the measured 
one, as seen in Table 3. For the 500 Torr spectrum, the fitted pressure 
had an aberrant value probably coming from the large broadening of the 
lines and which did not allow convergence to a coherent fitted pressure 
value. Thus, by considering that the deviation remained constant, the 
mean of the three first H2O partial pressures was used for the 500 Torr 
spectrum. Fig. 2 (right panel) shows a finer improvement of the residuals 
and clear W-shape signature due to the use of an inappropriate profile. 

2.2.2. Line profiles and collisional line parameters 
The common profile used to fit spectral lines and provided to spec

troscopic databases is the Voigt profile (VP) [30], but several studies 
[31–34] (non-exhaustive list) have already shown that it is not the most 
suitable for H2O studies and that it usually can bring a W-shape in the fit 
residuals coming from a narrowing of the line. To correctly model the 
lines, other more elaborate line profiles were developed that include 
physical mechanisms of broadening. The MSF software [26] allows the 
use of the Rautian profile (RP) [35], the quadratic Speed-Dependent 
Voigt profile (qSDVP) [36–41] and the quadratic Speed-Dependent 
Rautian profile (qSDRP) [42]. The VP, RP and qSDVP are limiting 
cases of the qSDRP [43,44], as shown in Table 4. 

The Rautian profile takes into account the Dicke narrowing effect 

Table 1 
Experimental conditions for the FT-IR spectrometer for measurements in 2.7 
µm region, i.e. around 3704 cm− 1.  

Source Globar SiC 
Tension 24 V 
Intensity 3.28 A 
Iris radius 0.85 mm 
Focal length 41.8 cm 
Modulation frequency 40 kHz 
Optical filter Band pass 3060–4370 cm− 1 

Beam splitter CaF2 

Detector InSb, 77 K  

Table 2 
Experimental conditions of the four H2O – CO2 spectra for the 2.7 µm region. The 
path length was 826.2 cm, and the aperture radius was 0.85 mm.  

Total pressure 
[Torr] 

MPD 
[cm] 

Spectral resolution 
[cm− 1] 

Temperature [K] 

99.4 56.25 0.016 291.8 
200.4 50.00 0.018 291.7 
300.1 45.00 0.020 291.8 
500.6 40.90 0.022 291.8  
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[45] due to collision-induced velocity changes in the case of hard col
lisions. In this model, active light molecules are colliding in a heavy 
molecule environment at a pressure sufficiently low that the 
Maxwell-Boltzmann distribution is not maintained. Each new collision 
causes a speed change, independent of the initial speed of the molecule. 
And because it is more likely that a molecule will lose speed after a 
collision rather than gain it, the Doppler shift decreases and the line 
narrows. 

The quadratic speed-dependent Voigt profile allows to consider the 
speed dependences of the line width and shift (Eq. 1) [43] by taking into 

Fig. 1. Example of H2O broadened by CO2 spectra in 2.7 µm region, with a zoom around 3957 cm− 1.  

Fig. 2. Fit residuals without (left panel) and with (right panel) water vapor partial pressure correction (Table 3) for one transition centered at 3421.74 cm− 1 using a 
Voigt profile. 

Table 3 
Comparison between measured and fitted H2O partial pressures of H2O – CO2 
spectra for the “injection” series in 2.7 µm region. The relative deviation was 
calculated as follows (fitted pressure - measured pressure)/measured pressure.  

Total pressure 
[Torr] 

Measured P(H2O) 
[Torr] 

Fitted P(H2O) 
[Torr] 

Relative 
deviation 

99.4 1.465 1.422 − 2.9 % 
200.4 1.465 1.419 − 3.1 % 
300.1 1.465 1.421 − 3.0 % 
500.6 1.465 1.421 − 3.0 %  

Table 4 
Profiles used for the H2O – CO2 collision system. The 
parameters are described as follows: Γ0 the pressure- 
induced broadening coefficient (cm− 1.atm− 1), Δ0 the 
pressure-induced shift coefficient (cm− 1.atm− 1), Γ2 
the speed-dependence of the pressure-induced 
broadening coefficient (cm− 1.atm− 1), Δ2 the speed- 
dependence of the pressure-induced shift coefficient 
(cm− 1.atm− 1), νVC the frequency rate of velocity- 
changing collisions (cm− 1.atm− 1).  

Profile Parameters 

VP Γ0, Δ0 

RP Γ0, Δ0, νVC 

qSDVP Γ0, Δ0, Γ2, Δ2 

qSDRP Γ0, Δ0, Γ2, Δ2, νVC  
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account the relative speed between the absorbing and the perturbing 
molecules, which leads to a narrowing and an asymmetry of the line. 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Γ(v) = Γ0 + Γ2

[(
v
vp

)2

−
3
2

]

Δ(v) = Δ0 + Δ2

[(
v
vp

)2

−
3
2

] (1) 

Γ0 and Δ0 are respectively the averaged values over all molecular 
speed υ of the line collisional width and shift. Γ2 and Δ2 are respectively 
the quadratic speed dependence of the line collisional width and shift. vp 

=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2kBT/m

√
is the most probable speed at temperature T of the active 

molecule of mass m. 
The quadratic dependence model [38,39] is a good approximation 

allowing a relatively short time of numerical computation. 
Finally, the quadratic speed-dependent Rautian profile is a combi

nation of two profiles mentioned above considering the confinement 
narrowing effect and the speed dependence of the broadening and shift 
coefficients. It results in a longer calculation time compared to that of 
the qSDV profile. 

3. Results and discussion 

In this section, the results obtained with the four spectra of the series 
given in Table 2 were presented. As the partial pressure of H2O was 
previously determined (see previous section) with the MFT program 
[25], the line intensity was fixed during the fitting procedure; the po
sition, the CO2 broadening and shift coefficients were adjusted. The 
following results were obtained using the MSF software [26]. 

3.1. Comparisons using Voigt profile 

First, in Fig. 3 the CO2 broadening coefficients coming from our 
previous study [12] were compared with those obtained in this work 
(called “S2023” from now on), all determined with the Voigt profile. 
Followed mean relative deviations were found: 2.8 % between the 
experimental coefficients from spectra recorded in 2023 with and 
without water vapor pressure correction and 2.3 % between the exper
imental coefficients from [12] and S2023 with pressure correction. Be
tween MCRB calculations provided in [12] and S2023 with pressure 
correction, only 2.0 % were obtained against 4.1 in [12] for the same 
selected lines. So, making a correction to the water vapor partial pres
sure helped to obtain a better agreement between the experiments and 
the calculations. The plot was made with respect to the index J’’* 
(J’’+1)+Ka’’-Kc’’+1, which is unique for each line. 

3.2. Line profile comparisons 

After the correction of the water vapor partial pressure on our 
spectra, there remained a W-shape on our residuals, typical of the Voigt 
profile model (Fig. 2, right panel). To go beyond, more complex line 
profiles, described above, were used: the Rautian profile, the quadratic 
Speed-Dependent Voigt profile and the quadratic Speed-Dependent 
Rautian profile. An example of the fit residuals obtained using the 
four different line profiles is shown in Fig. 4. 

Considering firstly the Dicke narrowing effect using the Rautian 
profile, Fig. 4 shows that it did not bring significant improvement. In 
contrast, the residuals are really improved by a factor of at least five if 
the speed-dependence on CO2 broadening and CO2 pressure-induced 
shift coefficients are considered using the quadratic Speed-Dependent 
Voigt profile. The W-shape, previously visible, was greatly diminished. 
Using quadratic Speed-Dependent Rautian profile led to residuals like 

Fig. 3. Comparison for 20 ν3 transitions of experimental CO2 broadening coefficients from [12] and MCRB calculations performed for our previous study [12] with 
S2023 using a Voigt profile with and without the water vapor partial pressure correction. The uncertainties are the numerical errors provided by the multi-spectrum 
fitting procedure at 3-sigma. 

É. Ducreux et al.                                                                                                                                                                                                                                



Journal of Quantitative Spectroscopy and Radiative Transfer 323 (2024) 109026

5

those obtained with the qSDVP. 
The quadratic Speed-Dependent Voigt and the quadratic Speed- 

Dependent Rautian profiles were more suitable than the other models 
to obtain very low residuals. And because the first had a lower compu
tation time and a lower number of parameter than the second for similar 
results, the quadratic Speed-Dependent Voigt profile seems to be in the 
considered experimental conditions, the best choice in the analysis of 
H2O broadened by CO2 lines. 

3.3. Literature comparison 

By comparing our CO2 broadening coefficient measurements ob
tained with the quadratic Speed-Dependent Voigt profile with those 
obtained with the Voigt profile, a mean relative deviation of approxi
mately 4.1 % has been found for 78 transitions in ν1, 2ν2 and ν3 bands. A 
similar observation was done in [17], where the broadening with the 
quadratic speed-dependent Voigt profile was found higher of 4.7 % for 
ν1+ 2ν2+ ν3, 2ν1+ ν3 and 3ν1 bands, than broadening with the Voigt 
profile. 

Fig. 4. Example in 2.7 µm region of H2O broadened by CO2 spectra fits using different line profiles and their 100x (Obs.-Calc.) residuals.  

Fig. 5. Comparison between our CO2 broadening coefficients and their speed dependence (S2023 with H2O partial pressure correction) with those of Deichuli et al., 
2022a [18]. The uncertainties came from numerical errors provided by the multi-spectrum fitting procedure at 3-sigma. 
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In the literature, the only study at 2.7 µm using a profile considering 
the speed is the work of Deichuli et al. [18]. Since in our study, a cell 
with a longer path length was used (8 m compared to 24 cm), these two 
studies did not have access to the same transitions. However, 18 lines 
were common with our measurements and comparisons are presented in 
Fig. 5. The mean relative deviation for CO2 broadening coefficients and 
their speed dependence was found of, respectively of 0.6 % and 15.3 %. 
So, a good agreement was found for the first parameter and quite far for 
the second one with no clear explanations. Nevertheless, it was not 
surprising given that the speed dependence coefficients are difficult to 
determine. Note that in [18], the speed-dependence of the shift induced 
by the CO2 pressure was fixed to zero whereas it was not the case in this 
work. By using the same configuration in our study, the mean relative 
deviations for CO2 broadening coefficients and their speed dependence 
are larger, respectively 1.3 % and 33.6 %. 

4. Conclusions 

An IFS 125 HR Bruker Fourier-Transform spectrometer was used to 
measure spectra of H2O broadened by CO2 in the 2.7 µm spectral region 
of atmospheric interest. A multispectrum fitting procedure was used to 
better determine the water vapor partial pressure. The line-shape pa
rameters were determined with several line profiles: Voigt profile, 
Rautian profile, quadratic speed-dependent Voigt profile and quadratic 
speed-dependent Rautian profile and their fit residuals compared. The 
quadratic speed-dependent Voigt profile was the more appropriate line 
profile to fit H2O broadened by CO2 spectral lines yielding low residuals. 
This work is a part of an ambitious investigation aiming at preparing 
future space missions. Spectral regions of interest for Ariel [46,47] and 
EnVision [48], for instance, will be studied. 
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