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High-spectral resolution infrared sounders on board satellites can measure atmospheric trace gases 
confined to the planetary boundary layer (PBL). However, their sensitivity to the PBL depends on the 
temperature difference between the surface and the atmosphere, the so-called thermal contrast (TC). 
After reviewing the physical aspects of TC and how it drives measurement sensitivity, we characterize 
the global and temporal behavior of TC in clear-sky conditions. Combining land surface temperatures 
from the Copernicus Global Land Services dataset with air temperatures from the European Centre for 
Medium-Range Weather Forecasts reanalysis v5, we obtain global monthly averages of TC at high spatial 
(31 km) and temporal (1 h) resolution. TCs are analyzed as a function of time of the day, time of the year, 
location and land cover. Daytime maxima are observed from 1130 to 1330 local time, from 5–10 K in winter 
to 10–30 K in summer. A large dependency on land cover type is observed, both in the magnitude of the 
daily variations, and in the seasonality. For bare soils, shrublands, sparse and herbaceous vegetation, 
a maximum is seen in summer with daily TC amplitudes over 30 K. In contrast, for forests, wetlands, 
and croplands, the seasonal maximum occurs in spring, with daily variations below 15 K. Nighttime TCs 
typically range between −5 and −10 K. Occasionally, very favorable nighttime measurement conditions 
occur during winter and autumn due to large temperature inversions. Throughout the paper, we illustrate 
important concepts by means of satellite observations of NH3 over the Po Valley (Italy).

Introduction

Satellite remote sensing has become invaluable for monitoring 
the global emissions of several key pollutants. Improved sound-
ing technology combined with algorithmic advances have in 
particular enabled quantifying the world’s largest localized emis-
sions point sources (e.g., power plants, petrochemical plants, 
mining operations, and animal farms [1]). This was achieved 
both with sounders measuring solar reflected light and with 
those measuring the Earth’s outgoing longwave infrared radia-
tion. The former are sensitive to point sources of, e.g., nitrogen 
dioxide (NO2) [2], sulfur dioxide (SO2) [3], and methane (CH4) 
[4], while the latter can be used to measure emission sources of, 
e.g., sulfur dioxide (SO2) [5,6], carbon monoxide (CO) [7,8], 
ammonia (NH3) [9,10], and ethylene (C2H4) [11].

Except for the emissions from aircraft or very tall industrial 
chimneys, most anthropogenic pollutants are released in the 
planetary boundary layer (PBL), which is the lower-most part 
of the troposphere characterized by rapid vertical mixing [12]. 
Its height varies typically between 25–250 m (at night) and 
250–2,500 m (during daytime). The PBL is unfortunately the 
atmospheric layer to which satellite sounders have the least sen-
sitivity. This is particularly true for sounders measuring in 
the infrared spectral domain, whose sensitivity is primarily 
driven by the thermal contrast (TC), which is the temperature 

difference between the surface and that of the atmosphere 
[5,7,8,13–18]. Because the temperature of the atmosphere gen-
erally decreases with altitude in the troposphere, sensitivity 
generally increases with altitude. Near the surface, TC mainly 
originates from the different cooling and heating rates between 
the surface and atmosphere. TC is usually positive during day-
time, while at night it turns negative, possibly enhanced by 
low-level temperature inversions [8,13]. Both situations provide 
infrared measurement sensitivity to the PBL, but the daytime 
typically provides the best conditions, as the TC in absolute 
value is usually larger during daytime than at night [7,15].

It is known that TC varies as a function of time of the day, 
time of the year, location, and surface type [19–21]. However, up 
to now, no study has characterized in detail the spatiotemporal 
variations of the TC with respect to the altitudes most relevant 
to infrared remote sensing. Given the growing importance of 
infrared sounders for measuring boundary layer pollutants, 
understanding the statistical behavior of TC is essential. Here, 
we combine the Copernicus Global Land Services land surface 
temperature (LST) dataset, derived from geostationary satellite 
measurements, with air temperatures from the European Centre 
for Medium-Range Weather Forecasts (ECMWF) reanalysis v5 
(ERA5) [22] to obtain a global, yearlong, TC dataset at high tem-
poral (1 h) and high spatial (31 km) resolution. We report TCs 
at 3 different altitudes: at the standard meteorological height of 
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2 m, at half the PBL height, and at the height corresponding to 
the maximum temperature of the lower troposphere. As the LSTs 
are derived from direct satellite observations, both this dataset 
and our derived TC datasets are representative of clear-sky condi-
tions. We refer to [19–23] for a discussion of TC in cloudy condi-
tions. The TC datasets presented and analyzed in this paper are 
made publicly available and have numerous applications. They 
can be used to provide constraints on the time windows and 
boundary conditions (e.g., land cover type) for which the sen-
sitivity of thermal infrared instruments is best. It also allows 
determining the most favorable overpass time for polar orbiting 
infrared sounders or the organization of airborne measurement 
campaigns for near-surface pollutants. Finally, this unique data-
set can be used to statistically assess the measurement sensitivity 
of current and future infrared sounders.

In the next section, we recall the notion of TC and explain 
how it drives sensitivity in the thermal infrared. We also present 
a detailed example of a diel TC cycle. Materials and Methods 
presents the different data and methods that were used to build 
the TC dataset. In Analysis, we present and analyze a variety 
of different statistics summarizing the global spatiotemporal 
behavior of TC. Conclusions summarizes the main results of 
this study.

TC and radiative effects
Consider a surface that emits a radiance Is(ν) at wavenumber ν. 
After passage through an isothermal nondiffusive atmospheric 
layer at a temperature Ta, the observed radiance Iobs(ν) can be 
written as [24]

with tν the transmittance and aν = 1 − tν, the absorptivity of 
the layer. Both depend on the composition of the air in the layer. 
B(T, ν) is Planck’s blackbody function. Introducing a wavenumber-
dependent brightness temperature of the surface Tb(ν) such that 
Is(ν) = B(Tb, ν) and observed brightness temperature Tobs(ν) 
such that Iobs(ν) = B(Tobs, ν), we can rewrite Eq. 2 as

or as

From Eq. 3 and 0 ≤ aν ≤ 1 follows that the observed brightness 
temperature lies between the brightness temperature of the 
surface and that of the layer. As expected, when aν tends to zero, 
the observed temperature Tobs(ν) tends toward the surface 
brightness temperature Tb. Conversely, when aν tends to one, 
the layer is opaque and only the layer radiation is observed: 
Tobs(ν) = Ta. We also see that in the absence of TC (TC = 
Tb(ν) − Ta = 0), the observed temperature equals the bright-
ness temperature of the layer and the surface (Tobs(ν) = Ta = 
Tb(ν)), and the measurement is insensitive to the amount of 
absorption within the layer.

The left term of Eq. 4 can be interpreted as the spectral 
change in channel ν with and without the air layer present. 
The right term of the equation shows that this change equals 

the absorptivity of the layer times the TC expressed in radi-
ances (TCR = B(Tb, ν) − B(Ta, ν)). In other words, the mea-
sured signal strength is the product of the radiance TC with 
a factor that depends on the gas amount. Hence, the importance 
of TC in the infrared. We also see from Eq. 4 that when TC is 
positive, the observed temperature is lower than the brightness 
temperature of the surface: Tobs(ν) < Tb(ν). This results in spec-
tral absorption features in the observed spectrum. Conversely, 
when the TC is negative, we have Tobs(ν) > Tb(ν) and spectral 
emission features are observed in the spectrum.

This contrasting behavior is illustrated in Fig. 1, which shows 
2 spectra observed by the Infrared Atmospheric Sounding 
Interferometer (IASI) [25] over the Po Valley (Italy). The spectra 
were selected based on their large NH3 signatures. The spectrum 
in Fig. 1A was measured in the morning in late spring 2021. 
Across the 780- to 1,230-cm−1 range, we observe absorption 
lines and broader absorption features of H2O, O3, CO2 and NH3. 
The TC at the time of the observation was 12.2 K (with respect 
to half the PBL). Figure 1B shows a nighttime spectrum observed 
in the winter. A particularly large negative TC of −9.5 K gives 
rise to NH3 emission features, which are best seen near 930.75 
and 967.25 cm−1. The fact that the direction (absorption or emis-
sion) of the spectral features agrees with the sign of the TC in 
the PBL, is consistent with NH3 being mostly confined to the 
PBL as a short-lived species. Water vapor is present throughout 
the troposphere, and the strong water vapor lines seen in the 
springtime spectrum are highly reduced in magnitude in win-
tertime. This is due to: (a) reduced TC (with respect to the entire 
lower troposphere), (b) a cancellation effect of emission in the 
boundary layer with absorption higher up, and (c) overall lower 
H2O concentrations during winter. For the strongest H2O lines, 
emission is seen in the wings (especially notable in the 1,170- 
to 1,230-cm−1 range), a radiative transfer effect that has also 
been observed for CO [8]. The O3 absorption feature (990 to 
1,070 cm−1) is largely unaffected by negative TC in the PBL, as 
the observed O3 spectral signatures originate mostly from the 
upper troposphere and lower stratosphere.

To conclude this section, we note that the detection thresh-
old of a sounder to a specific trace gas is inversely proportional 
to the radiance TC. This can be deduced from Eq. 4. Assuming 
small trace amounts of the gaseous absorber of interest, the 
absorptivity is proportional to its total column X. Equating the 
sensor-dependent minimal detectable radiance perturbation 
ΔR(ν) with the observed signal B(Tb, ν) − B(Tobs, ν), we then 
see that the minimum amount of trace gas Xmin that can be 
detected can be written as

This relation, as a function of TC, is illustrated in Fig. 2. We 
observe clearly the increased sensitivity for both negative 
and positive TC and the blind spot at zero TC. To remove the 
dependence on ΔR(ν), the y-axis is expressed relative to the 
value at TC = 5 K. We find a normalized detection threshold 
of 5 at TC = 1 K, 0.49 at TC = 10 K, and 0.23 at TC = 20 K.

TC in the PBL, an example
Figure 3B and C shows the diel cycle of the surface, air tem-
perature, and TC as observed during a day in March in the Po 
Valley (Italy). TC is expressed with respect to: (a) a height of 
2 m (yellow), which is a representative height for pollutants 
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located at the surface (b) half of the PBL (PBL/2, green), which 
is a representative height for pollutants in a well-mixed bound-
ary layer, and (c) the height corresponding to the maximum 
lower tropospheric temperature (MaxT, blue). The latter gives 
a lower bound on the TC (i.e., TC at any other altitude is larger). 
In typical daytime conditions (positive TC), this height cor-
responds to the location with the lowest sensitivity, while at 
night (negative TC), it corresponds to the location of the high-
est sensitivity.

We can see from Fig. 3 that after sunrise, the surface warms 
up more quickly than the air. This is because it absorbs solar 
radiation more efficiently [7]. With some delay, the solar energy 
is transferred from the surface to the atmosphere via conduc-
tion, convection, evapotranspiration, and (infrared) radiation. 
This results in an increase in TC at each reference height until 
mid-afternoon. The heating of the atmosphere goes hand in 
hand with the formation and expansion of an unstable (convec-
tive) PBL. Because of the change in reference height, the air 
temperature at half the PBL undergoes the smallest change 
throughout the day. The TC with respect to this temperature 
therefore closely follows the daily cycle of the surface tempera-
ture, with a maximum around or just after noon. In the early 
afternoon, the surface starts cooling down slowly, while the air 
temperature still rises. By as early as 1600, this leads to a nega-
tive TC at 2 m. After a delay of 2 to 3 h, the air temperature also 
starts to decrease, together with the collapse of the boundary 
layer. The behavior observed here, i.e., a peak in surface tem-
perature around noon followed by a peak in air temperature 
several hours later, has been noted to be quite typical for land 
surfaces [19]. From about 1600 until about 0800, all 3 TCs are 
negative. As seen in the vertical temperature profiles of Fig. 3A, 
from midnight until about 0400 in the morning, a strong 
temperature inversion is present at an altitude of about 100 m, 
amplifying the negative TC. This inversion is best seen in the 
TC calculated with respect to the maximum tropospheric 
temperature. This reference height is also commonly used to 
characterize the seasonality of boundary layer temperature 
inversions [26,27].

The example illustrates the typical intradaily patterns that 
are observed globally over land at tropical and mid latitudes. 
While the rest of the paper is focused on these regions, note 
that skin sea surface temperatures vary little throughout the 
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Fig. 2. Relation between TC and the detection threshold normalized at 5 K.
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day [28] so that TC is generally low over ocean. A notable 
exception is that of the transport of hot inland air over coastal 
areas, giving rise to strong negative TC [29]. At high latitudes, 
TCs are generally also low [19], except for the presence of strong 
temperature inversions. These occur especially in winter and 
can persist throughout the day and night. We refer to [5] for a 
detailed case study of infrared measurements of anthropogenic 
SO2 emissions in Norilsk (Siberia).

As a final note, the TC at the maximum temperature, which 
was introduced in this section, has special interest in that it 
allows us to put strict bounds on retrieved gas abundances. 

These can be obtained, for instance, from a retrieval based on 
a 1-layer radiative transfer model (as in Eq. 4). Indeed, suppose 
we have a pollutant that is entirely confined to a thin atmo-
spheric layer situated at the height of the maximum tropo-
spheric temperature. When the TC is positive, the TC at this 
temperature is smaller than the TC calculated with respect to 
any other reference height. Consequently, the retrieved column 
obtained in this way is an upper bound for the actual column 
abundance. On the other hand, when TC is negative, the TC 
with respect to the maximum temperature is the most nega-
tive TC available, or the largest TC in absolute value. Hence, 
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retrieving the column with this TC yields a lower bound on the 
gas abundance at night.

Materials and Methods

Following the example presented in the last section, the global 
hourly dataset of TC presented in this paper relies on air 
temperatures from the ECMWF ERA5 reanalysis [22,30,31] 
at 3 different altitudes: the standard meteorological height of 
2 m, half the PBL (the PBL height itself is also obtained from 
ERA5), and the height corresponding to the maximum tem-
perature of the lower troposphere (within a maximum of 3 km). 
Hourly data were obtained at a regular grid of 0.28125° × 
0.28125°, close to the ERA5 native N320 Gaussian grid. 
The spatiotemporal resolution of ERA5 is coarser than the 
other datasets used in this paper, and subsequently, all 
other datasets are regridded to match the resolution of ERA5 
(see below).

Skin temperatures from 2021 January 18 to 2022 January 18 
were obtained from the LST dataset [32,33]. This dataset is 
based on measurements from several geostationary satellites: 
Meteosat Second Generation satellites for Europe and Africa, 
Meteosat Second Generation Indian Ocean Data Coverage for 
the Middle East, Geostationary Operational Environmental 
Satellite East for North and South America, and finally Himawari 
for eastern Asia and Oceania. Note that high latitudes and 
oceans are not included. The original LST dataset at a horizontal 
resolution of 5 km was interpolated and averaged on the coarser 
ERA5 grid. Skin temperatures Ts were then converted to skin 
brightness temperatures Tb, taking into account the local surface 
emissivity ϵν:

For a surface temperature of 300 K at 1,000 cm−1, this equation 
shows that Tb is lower than Ts by some 1 to 5 K for emissivities 
between 0.92 and 0.98. Surface emissivity depends on land 
cover and was taken here from an IASI-derived monthly cli-
matology [34]. From this, global distributions of TC were 
obtained for each day and each Coordinated Universal Time 
(UTC) hour. These daily, hourly maps were then averaged on 
a monthly basis to create a 4D matrix (latitude, longitude, 
month and UTC hour). However, these TC maps are difficult 
to analyze as a given UTC hour corresponds to a different 

local time depending on the location. For this reason, we 
interpolated and remapped the UTC-based monthly averaged 
maps to a fixed local mean solar time (LMST) with

The resulting 4D matrices, representing the various TCs at each 
reference height, comprise the publicly available dataset and 
form the basis for the subsequent analysis. The analysis pre-
sented in the rest of the paper primarily focuses on the TC with 
respect to half the PBL during daytime, and on the TC with 
respect to the maximum tropospheric temperature at night.

In what follows, we will see that there is a strong dependence 
of TC on the land cover. To conduct a quantitative analysis, 
we used the global 100-m land cover map [35] produced by 
Copernicus Land Service and derived from PROBA-V satellite 
observations and ancillary datasets. This land cover map consists 
of the 23 classes of UN-FAO’s Land Cover Classification System 
[36]. We merged these into the 7 classes as illustrated in Fig. 4: 
(a) forest and wetland, (b) shrubland and herbaceous vegetation, 
(c) cropland, (d) built up, (e) bare and sparse vegetation, (f) perma-
nent water bodies, (g) snow, ice, moss, and lichens. To aggregate 
months into seasons, 3 latitude zones were considered: (a) between 
30°N and 60°N, broadly matching the northern temperate 
zone, (b) a tropical area, between 30°N and 30°S, and (c) between 
30°S and 60°S. As a result, a smaller dataset was obtained with 

(6)Tb(�) = B
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(

ϵ�B
(

Ts, �
)

, �
)

.

(7)LMST = UTC + longitude∕15.

Fig. 4. Global distribution of the land cover used in the analysis. Compared to the 
original Copernicus land cover dataset, the number of classes was reduced from 
23 to 7.

Skin T 
(Ts)

lat, lon, UTC date/time
5 km, hourly

Brightness T
(Tb)

lat, lon, UTC date/time
0.28125°, hourly

Eq. 6

TC 
(2m, PBL/2, MaxT)

lat, lon, month, UTC hour
0.28125°, hourly

Eq. 7

Land cover
lat, lon
100m

Air T 
(2 m, PBL/2, MaxT)

lat, lon, UTC date/time
0.28125°, hourly TC

(2m, PBL/2, MaxT)
lat, lon, month,

LMST hour
0.28125°, hourly

 TC
(2m, PBL/2, MaxT)
 land cover, month,
LMST hour, lat zone

hourly

Copernicus

Copernicus

ERA5

Dataset 1 Dataset 2
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Fig. 6. The left panels (A, C, E, and G) show the global distribution of the mean maximum TC calculated at half the PBL, for each quarter of 2021. The right panels (B, D, F, and 
H) show the global distribution of the average LMST hour at which the maximum is reached. The quarters are abbreviated as March-April-May (MAM), JJA, September-October-
November (SON) and December-January-February (DJF).
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Fig. 7. The left panels (A, C, E, and G) show the global distribution of the mean minimum TC calculated at the height of the maximum temperature, for each quarter of 2021. 
The right panels (B, D, F, and H) show the global distribution of the average LMST hour at which the minimum is reached.
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TC as a function of land cover type, latitudinal zone, month, 
and LMST. These data are also part of the publicly available 
dataset. A flowchart of the data processing is displayed in Fig. 

5. All data manipulation (including interpolation and regrid-
ding), analysis and figure production was carried out with 
Matlab 2023b software.

Fig. 8. The left panels (A, C, E, and G) show the average global distribution of TC calculated at 0000 LMST for the reference height of the maximum temperature of the 
lower troposphere, for each quarter of 2021. The right panels (B, D, F, and H) show the average global distribution of TC measured at half the PBL at 1200 LMST for the same 
3-month periods.
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Results

Seasonal distributions
Based on the seasonal averages, the LMST for which the TC 
reaches the maximum and minimum was found for each spatial 
grid cell. The result is shown in Fig. 6 for the maximum and 
Fig. 7 for the minimum. The white patches on these maps are 
related to cloud cover (e.g., over the Amazon forest) or the 
limited coverage of the satellite measurements on which the 
LST dataset is based (e.g., over the northern latitudes).

The maxima were calculated with the reference height for 
the air temperature at half the PBL. They reveal marked spatial 
and seasonal variability, ranging from around 0 K TC at high 
latitudes in the winter to over 40 K at selected locations in the 
spring and summer. This is consistent with the seasonality 
of the TC with respect to the air at 2 m, reported in [19]. 
Comparing the land cover map of Fig. 4 with Fig. 6 shows that 
TC is highly correlated with the surface type. We will come 
back to this in Land cover type. The time at which this maxi-
mum is reached consistently falls between 1030 and 1430 
LMST, with the majority of maxima occurring between 1130 
and 1330. This timing can be linked to the maxima of the LST, 
which are typically reached around noon, coinciding with 
maxima in solar radiation [19,21]. From the discussion in 
Radiative effects, this suggests that these time windows provide 
the best measurement conditions in the infrared during day-
time. During the winter months, large parts of the world, par-
ticularly at northern latitudes, exhibit average maxima near or 
below zero.

Similar distributions for the minima at the reference height 
corresponding to the maximum tropospheric temperature are 
shown in Fig. 7. They exhibit much less variability than the 

maxima, both seasonally and spatially with a seasonal average 
starting from around −15 to 0 K. The time at which this mini-
mum is reached on the other hand varies much more than for 
the maximum, from approximately 1830 to 0830 in the morn-
ing, with spatial patterns influenced by surface emissivity and 
the inland distance from sea. This larger variability has been 
noted before in [19]. Excluding areas with bare and sparse veg-
etation, such as deserts, we find that TC minima below −10 K 
are primarily observed during the winter season (July to August 
or December to February depending on the hemisphere). In 
winter, it is more common for these minima to occur in the 
early morning.

Figure 8 displays the seasonal average TCs at 0000 and 1200 
LMST. These maps can be used as reference for the sensitivity 
of a polar orbiting instrument with an overpass time at local 
noon and midnight. The maps at noon highlight the large vari-
ability of daytime TC, both as a function of place and time, 
leading to large variations in boundary layer measurement 
sensitivity. The influence of surface elevation on TC, with 
higher altitudes exhibiting lower TCs (e.g., over the Tibetan 
plateau), can also be seen. At midnight, the persistence of nega-
tive TC values implies, at least in principle, measurement sen-
sitivity to some part of the lowermost atmospheric layer.

Land cover type
The previous subsection demonstrated that TC strongly depends 
on location. Here, we explore further the temporal variability of 
TC in relation to land cover types, focusing on the latitudinal 
region between 30°N and 60°N, to ease interpretation of the sea-
sonal dependence. The results are presented in Figs. 9 to 12. Note 
that in these figures, we do not show the land cover types of 
permanent water bodies (mainly represented by the Great Lakes 
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and the Caspian Sea) and built up areas. These were excluded as 
the interpretation of their average TC values is hampered by their 
uneven global distribution and as these land cover types are often 
contaminated with other land cover types because of their small 
spatial extent.

Figure 9 presents the seasonally averaged diel cycles of TC 
for different land cover types. The TC measured at half the PBL 
(solid lines) consistently peaks at around 1200 or 1300 LMST 
across all land cover types and seasons. Daytime TC maxima 
in summer and spring are nearly double those in winter. In 
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addition, extended daylight hours in the summer lead to 
a longer daytime window with positive TCs. The TC mea-
sured at the height corresponding to the maximum tempera-
ture of the lower troposphere (MaxT, dashed lines) shows 
that the best nighttime measurements are on average in the 
autumn and winter. Negative TCs are observed after sunset, 

and show little variation throughout the night, even though 
on average an ever so slight decrease can be observed until 
sunrise. Although the magnitude of negative TCs varies little 
seasonally, the time window for potential nighttime measure-
ments is substantially longer in winter than in spring and 
summer.
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Among the different land cover types, the smallest absolute 
TC values are found over forest and wetland. This land cover 
type is characterized by high soil moisture and an important 
amount of vegetation, which reduces the magnitude of the diel 
variations in surface temperature compared to other surface 
types due to cooling associated with evapotranspiration and 
evaporation [7,21,23]. Even in the summer, TCs never exceed 
10 K. The measurement sensitivity of infrared sounders over 
this surface type is therefore generally weak. In practice, this 
poses a challenge to measure, e.g., biogenic emissions of volatile 
organic compounds in the lower part of the troposphere [37].

On the other end of the TC spectrum is the bare and sparse 
vegetation land cover type [7,20], which includes most large 
deserts. Sand and dry soils have a much lower heat capacity 
than water or vegetation and therefore heat up and cool down 
more quickly [21]. Average maxima reach almost 30 K, while 
the minima drop below −10 K. Comparable characteristics are 
observed for the shrubland and herbaceous vegetation land 
cover type. This land cover type is defined by a plant cover-
age above 4% for at least 2 months of the year [36], and thus 
includes a large part of bare soil as well. It encompasses, e.g., 
most of Australia and south-west US. Here, daily maxima are 
observed around 23 K in the summer, while the minima reach 
−9 K in the winter.

The cropland land cover type is intermediate in terms of 
measurement sensitivity. The maxima for this land cover type 
occur during spring (see further), reaching around 15 K. For 
the built-up land cover type (not shown) average maxima TC 
show results similar to cropland. One would expect larger TCs 
in the built up areas due to the fact that paved areas heat up 
more quickly than cropland. This was verified to be true on the 
metropolitan areas of Paris and Chicago, where the surface 
temperature in the built-up area was found to be some 5 K 
larger than that of the surrounding cropland. The fact that this 
is not seen in the average TC is likely a statistical effect related 
to the uneven distribution of built-up areas versus cropland 
in the considered latitude band. In fact, at the horizontal reso-
lution of the dataset, the cropland type includes a lot of built 
up area.

Figure 10 provides histograms with the distribution of 
TC maxima and the LMST at which these occur, calcu-
lated at half the PBL, for the June-July-August (JJA) and 
December-January-February (DJF) seasons. As we are analyzing 
the northern hemisphere, these correspond respectively to 
summer and winter. Land cover types with little vegetation 
exhibit the largest scatter and strongest seasonal TC variability. 
The LMST histograms confirm that TC reaches its maximum 
between 1130 and 1330, consistent across all land cover types, 
with more than 80% of the observations falling into this time 
window. Figure 11 illustrates the distribution of TC at 0000 and 
1200 LMST. The TC at 1200 shows results comparable to the 
distribution of TC maxima. The TC at 0000 shows very little 
seasonal variability, indicating that land cover and not season 
is the largest driver of TC at night. Bare and sparse vegetation 
stand out because of their large negative TC at night.

Figure 12 illustrates the monthly evolution of the TC in 
2021, as before, at half of the PBL at 1200 (solid lines) and at 
the height of the maximum tropospheric temperature at 0000 
(dashed lines). Both the average TC and the maximum (for 
the daytime) or minimum (for the nighttime) TC are shown. 
A large seasonal cycle is evident in the daytime values, with 
a clear difference in the maxima between bare and sparse 
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vegetation and between shrubland and herbaceous vegeta-
tion, which peak in May–July, and cropland as well as forest 
and wetland, which peak in April–May. The earlier peak, seen 
especially for cropland, might be due to increased vegetation 
cover in the summer, reducing its TC compared to that of 
spring. The monthly maxima are consistently about 2 to 8 K 
larger than the monthly averages.

At night, there is almost a complete absence of seasonality 
in the average TC across all land cover types. However, when 
looking at the averaged minimum TCs, a clear seasonal varia-
tion is exposed, with the most favorable observation conditions 
occurring in winter. This is especially marked for forest and 
wetland as well as cropland. The minima are caused by surface 
based temperature inversions that are much stronger but not 
more frequent in winter than in the other seasons [26].

Detection of NH3 over the Po Valley
We conclude our analysis with an illustration of the measure-
ment sensitivity over the Po Valley. It serves to make some 
important points, particularly on subtleties related to negative 
TC and temperature inversions, which are more difficult to 
convey in large-scale averages. Figure 13A shows the monthly 
averages and extremes of the hyperspectral range index (HRI) 
of NH3 [15,18,38] observed over the Po Valley for IASI’s morn-
ing and evening overpasses. The HRI quantifies the magnitude 
of NH3 spectral signatures, with a positive HRI indicating 
absorption, and a negative HRI indicating emission. By defini-
tion, the HRI of spectra without detectable NH3 have a mean 
of zero and a standard deviation of 1. Note that the HRI time 
series, as a measure of signal strength, convolves both the TC and 

NH3 seasonality (similar to the left side of Eq. 4). The observed 
daytime seasonality shows enhanced HRI values throughout 
spring, summer, and autumn, and very little detectable NH3 in 
winter, consistent with both the expected TC and NH3 seasonality. 
The nighttime plot exhibits 2 clear periods with enhanced HRIs, 
one in late winter and another in autumn. The low HRIs, in abso-
lute terms, observed in December and January are likely not a 
result of poor measurement sensitivity (low TCs) but can be 
attributed to low NH3 concentrations. This is consistent with 
in situ observations and the fact that fertilizer application is gener-
ally prohibited in those months. In the late winter and autumn, 
negative TCs, together with the presence of enhanced NH3 col-
umns (due to, e.g., manure spreading, which typically takes place 
in those time periods [39]) result in negative average HRIs. 
Interestingly, before mid-March, the nighttime provides better 
measurement conditions for NH3 than the daytime. The plot also 
shows the occurrence of very large negative HRIs on single days 
over the Po Valley, caused by large temperature inversions that 
coincide with large NH3 columns.

The absence of negative HRIs during the warmer months 
is initially somewhat surprising, as the seasonal characteriza-
tion that was presented before indicates on average an almost 
constant negative TC throughout the year. It can be explained 
by the NH3vertical profile over the Po Valley during the 
warmer months: during daytime, NH3 is mixed throughout 
the boundary layer, which in the summer extends well above 
1,500 m compared to 200 to 600 m in late winter (see Fig. 13B). 
At 2130, the overpass time of IASI, there is likely still a large 
amount of background NH3 present at high altitude in spring 
and summer, leading to a cancellation effect of spectral emission 

0

20

40

60

N
H

3 h
yp

er
sp

ec
tra

l r
an

ge
 in

de
x

A
Mean 0930
Max 0930
Mean 2130
Min 2130

Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec
0

1,000

2,000

3,000

4,000

PB
L 

he
ig

ht
 (m

)

B
Mean 0930
Daily max
Mean 2130
Daily min
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in the lowest layer of the atmosphere and absorption higher 
up. This illustrates that TC at a fixed altitude is only a proxy 
for measurement sensitivity at that altitude, whereas the sen-
sitivity to the entire tropospheric column depends on the full 
vertical profiles of both the species of interest and the atmo-
spheric temperature.

Conclusions
We started this paper with an overview of TC, how it originates 
in the lowest layers of the atmosphere, and how it drives mea-
surement sensitivity of infrared nadir sounders. In the second 
part of the paper, we presented a global, year-long dataset of 
clear-sky TC at 3 different altitudes that can be used for a range 
of infrared remote sensing applications. The dataset enables 
evaluation of the seasonal and spatial variability of TC, reveal-
ing marked differences in daily maxima and minima of TC 
across different altitudes, latitudes, seasons, and land cover 
types. The dataset’s high temporal resolution (1 h) enables an 
intraday assessment of the measurement sensitivity for current 
and future infrared sounders. Its high spatial resolution (31 km) 
reveals substantial local variability that can be exploited in 
regional studies.

We demonstrated that the optimal daytime measurement 
window for infrared sounders to detect near-surface pollut-
ants consistently falls between 1130 and 1330 LMST in the 
spring and summer, depending on the land cover type. 
Variability of negative TC is driven by the duration of the 
night and land cover. Wintertime is the more favorable 
period for nighttime measurements when considering the 
maximum tropospheric temperature as a reference height. 
Finally, as illustrated on the Po Valley, depending on the 
vertical profile of the species of interest, large winter and 
autumn time inversions can lead to very favorable measure-
ment conditions.
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