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Abstract

Due to climate change, intensive storms and severe precipitation will continue to happen,
causing destructive flooding. In July 2021, a series of storms with prolonged rain episodes
took place in Europe. Several countries were affected by severe floods following that
rainfall, causing many deaths and material damage. Thus, a good understanding and
forecasting of such events are of uttermost importance. This study highlights the interest
of multi-GNSS tomography for the 3D modelling of the neutral atmosphere refractivity.
The tropospheric parameters have been retrieved for the July 2021 flood in Germany from
two tomographic solutions with different constraining options using either GPS-only or
multi-GNSS estimates. Our investigations show that the stand-alone solution (especially
the multi-GNSS) is producing more patterns of refractivity, and is temporally more stable.
We compare the tomographic results with external observations such as radiosondes and
GNSS radio-occultations from Metop-A & -B satellites. The results show that tomography
is producing wetter conditions than the reference. However, we can see the precursor
information of the initiation of deep convection in the ground-based GNSS technique.
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1 Introduction

GNSS tomography is a technique that unwraps a simple
integrated signal into a 3D distribution of the atmosphere
parameters, usually related to water vapor (Flores et al. 2000;
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Seko et al. 2000; Gradinarsky and Jarlemark 2004; Champol-
lion et al. 2005). The method is based on the inverse Radon
transform (Fiddy 1985), which states that a continuous field
can be successfully reconstructed from integrated observa-
tions providing an infinite number of observations pene-
trating the field from an infinite number of angles. Due to
the geometrical constraints such as one-way communication
between satellite and receiver, availability of visible satellites
only above the receiver, and very limited number of side
observations, the tomography system is ill-conditioned and
ill-posed (Troller et al. 2006), which evokes many research
questions.

The idea of GNSS tomography originated in the early
2000s (Flores et al. 2000). In the traditional voxel approach,
the tropospheric parameters, i.e. the refractivity or water
vapor density, are obtained from the GNSS Slant Tropo-
spheric Delay (STD) products on a 3D grid (voxels). Many
methodological enhancements have been introduced. Some
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included adding supplementary data from external sources
into the functional model (e.g., Bender et al. 2011a; Rohm
et al. 2014), some new parametrizations (e.g., Perler et al.
2011; Brenot et al. 2019). Improvements are expected by
using multi-GNSS (Bender et al. 2011b). The recent studies
focus on function-based tomography, instead of voxel-based
(e.g., Haji-Aghajany et al. 2020; Forootan et al. 2021).

In this study, we focus on the voxel-based tomography
using multi-GNSS STD retrievals for a part of Germany
that was affected by severe rainfall and flooding in July
2021. We have retrieved the total refractivity using Sin-
gular Value Decomposition method, with a novel iterative
approach. We show the comparisons of the tomography-
based total refractivity from different strategies with the
reference data.

2 Data andMeteorological Conditions

We retrieve the tomography solutions for the period of July
10–18, when the severe rainfall and devastating floods in
Europe occurred. The rain episodes started between July 6
and 12. Additional heavy precipitation on July 13–15 along
with the slow-moving pressure system led to destructive
flooding (Puca et al. 2021). In Germany, the most affected
regions were North Rhine-Westphalia and Rhineland-
Palatinate, especially in the district of Ahrweiler. In Cologne,
the rain gauges indicated 154 mm of rainfall for July 14, the
day of the highest rainfall. More detail on the meteorological
conditions can be found in Wilgan et al. (2023). Figure 1

shows the chosen tomography area, indicating the GNSS
stations and their GPS (G), GLONASS (R) and Galileo (E)
signals’ capability. The GNSS data are calculated using the
GFZ-developed software EPOS.P8 with 2.5 min temporal
resolution for the 70 stations located between 6ı and 10ı

longitude and 49ı and 52ı latitude. More details about the
processing can be found in Wilgan et al. (2022).

Figure 1 also shows the location of the radiosonde (RS)
station Essen, 10410 (near GNSS station EDZE), situated
within the tomography region as well as the two radio-
occultations (RO) from Metop-A&B satellites that occurred
during our chosen period (July 15, 19:55 UTC and July 14,
17:07 UTC). Both RS and RO are used as reference data in
this study. The GNSS RO can be used to retrieve the vertical
properties of the atmosphere with high accuracy and high
vertical resolution (Scherllin-Pirscher et al. 2011). Each GPS
Receiver for Atmospheric Sounding (GRAS) on board of the
Metop satellites (Luntama et al. 2008) provides more than
600 daily atmospheric profiles globally distributed and it is
the only operational RO instrument at the moment. The ROs
can be downloaded here: https://www.cosmic.ucar.edu/what-
we-do/data-processing-center/data.

The a priori model for tomography and another
reference is Numerical Weather Model (NWM) Icosahedral
Nonhydrostatic (ICON) run by the German Weather Service
(DWD). We have used the nested ICON-D2 version of the
global model with the resolution of 0.02ı � 0.02ı with 65
vertical layers up to 20 km. The GNSS ZTDs and ROs are
assimilated into the ICON global model, but not into the
nested, regional model.

Fig. 1 The location of the
tomography region with marked
GNSS and radiosonde stations as
well as the two radio-occultations

https://www.cosmic.ucar.edu/what-we-do/data-processing-center/data
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3 Strategy of GNSS Tomography

Located in western Germany (see Fig. 1), the tomography
grid has a latitude � longitude horizontal resolution of
0.2ı � 0.3ı ( 21 � 22 km2; 15 � 14 elements). With 15
vertical levels, from 0 km above the sea level, every km
until 15 km, the number of tomography voxels is 3,150.
The temporal resolution of tomography matches the 2.5 min
resolution of the GNSS data. We retrieve the total refractivity
with the GNSS tomography principle, i.e., using the GNSS
STDs. The STD can be related to the total refractivity Ntot

using the equation:

STD D 10�6
�

Ntot ds Š 10�6
X

Ntot �s: (1)

The tomographic model m can be represented as:

m D m0 C
�
Gt C �1

d G C C �1
m

��1
Gt C �1

d .d � Gm0/ ; (2)

where d is the data (GNSS STDs), G the geometrical matrix
(15� 14� 15 voxels),m the model solution (calculated using
Singular Value Decomposition), m0 a priori model (forecasts
from the ICON-D2), Cd the covariance operator of the data
and Cm covariance operator of the a priori model.

The solutions are calculated using an iteration process,
which stops when the absolute bias between previous and
new retrievals is under 1% (convergence to the final solu-
tion). Cd characterizes the confidence in the data and Cm

the confidence in the a priori model. In this study, we test
estimates of Cd D (STD * coeff_Cd)2 with coeff_Cd D 10%,
15%, 20%, 25% or 30%, and Cm D (Nap *coeff_Cm)2 with
coeff_Cm D 90%, 85%, 80%, 75% or 70%. Nap is the
refractivity from the m0 a priori model. The interest of using
multi-GNSS in tomography is to improve the geometrical
representation by increasing the number of forced voxels
(the ones that tomography retrieves, i.e., with STDs crossing
the voxels). In this study, for the G solution, the number of
forced voxels is 70% (2,205 voxels) and it is improved to
74% (2,331 voxels) and 76% (2,394 voxels) by using GR
and GRE, respectively.

We have used two types of tomographic solutions: con-
strained and stand-alone. In the constrained solution, we take
the hourly a priori information from the ICON-D2, while in
the stand-alone solution, ICON-D2 is used only to initiate
the tomography, and then a priori values are taken from
the previous tomography retrievals (TRs). On average, three
iterations are needed for the constrained solution and only
one iteration is required for the stand-alone solution.

4 Results

This section shows the results of the tomography retrievals.
First, we compare different solutions with each other and
then the TRs to the reference ICON-D2, RS and RO data.

4.1 Tomography Cross-Section

We present the total refractivity values obtained using the
constrained and stand-alone solutions. Figure 2 shows the
results using different GNSS signals: G, GR and GRE for
a sample date and height of 1.5 km and Fig. 3 the time
evolution of the two TRs for a fixed altitude and longitude.

We can see in Fig. 2 that the three constrained solu-
tions are similar, while the three stand-alone solutions show
stronger differences with more patterns. Especially the GRE
solution shows more variability, compared to the G and GR
solutions, which are closer to each other. However, if we
have considered solutions for the consecutive times (Fig.
3), we can see that the constrained solutions show a lot
more time variability as they try to move from the a priori
ICON-D2 to the converge solution (closer to the stand-
alone results), while the stand-alone solutions are smoother.
In the above comparisons, a set-up of coeff_Cd D 10%
and coeff_Cm D 90% is used. These parameters indicate
how much confidence we have in the data and the a priori
model, respectively, and can be modified. Figure 4 shows
five different set-ups of the covariance parameters for the
GRE stand-alone solutions. We can see that the set-ups
differ from each other. The higher the coeff_Cd values,
the lower the refractivity obtained with this solution. More
detailed analyses are in the comparisons with RS and RO
chapters.

4.2 Comparisons with ICON-D2

In the next step, we compare the TRs to the reference ICON-
D2 data. Please note that these comparisons are not indepen-
dent, because ICON data is used as a priori to calculate the
tomography solutions. Figure 5 shows the total refractivity
fields from ICON and TRs for the GRE solution on 13 July
2021, at 08:00 UTC and for the altitude of 1.5 and 2.5 km.
For the constrained solution, the Root-Mean-Square Error
(RMSE) is 11.4 ppm (12.5 ppm for the ICON datasets from
July 10–18, 2021), and 15.7 ppm (17.9 ppm) for the stand-
alone solution.
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Fig. 2 Total refractivity from the constrained (top) and stand-alone (bottom) TR (G, GR and GRE solutions, from left to right) on 13 July, 00:30
UTC, for a fixed altitude of 2.5 km a.s.l.

Fig. 3 Total refractivity from the constrained (top) and stand-alone (bottom) TR (GRE solution) on 12 July, from 00:00 to 24:00 UTC, for a fixed
altitude (2.5 km) and a fixed longitude (8.65ıE)

As shown in Fig. 5, the TRs are producing wetter con-
ditions than ICON data. Moreover, the constrained solu-
tion is 40% closer to ICON than the stand-alone, which
is not surprising, as we have used ICON as the a priori
for the constrained solution. However, the two TRs are
still closer to each other than to ICON, with a RMSE
of 8.4 ppm (10.2 ppm) for the G solutions, and 6.3 ppm
(8.0 ppm) for the GRE solutions. Moreover, closer to the

ground (1.5 km vs 2.5 km) and when deep convection
took place on July 13 northeastwards of the Grand Duchy
of Luxembourg, Fig. 5 shows more structured refractivity
fields, as there, the water vapor content and thus refractivity
is higher and more variable. Such pattern is not seen by
ICON, even though it offers more detailed fields, as the
resolution of the model is 0.02ı, which is 10 times larger
than TRs.
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Fig. 4 The evaluation of using different covariance values coeff_Cd D 10%, 15%, 20%, 25%, 30% while coeff_Cm D 90%, 85%, 80%, 75%,
70%. Results are shown for the stand-alone GRE TR

Fig. 5 Comparison of ICON (left), GRE tomography constrained (middle) and GRE tomography stand-alone (right) for July 13 (08:00 UTC),
height 2.5 km (top) and 1.5 km (bottom)

4.3 Comparisons with Radiosonde Data

Another reference data in this study is radiosonde. There
is one RS station 10410 located in the north-east of the
chosen area, in Essen (see Fig. 1). Figure 6 shows the total
refractivity values from the RS, ICON and TR from G and
GRE solutions for a sample date of July 13, 0:00 UTC.
The RMSE RS-ICON is of 5.2 ppm (4.3 ppm for the 18
radiosondes from July 10–18, 2021).

As seen in Fig. 6, RS and ICON data are closer to each
other than to the TRs, meaning that tomography produces
wetter conditions than the reference data. For the constrained
retrievals, both G and GRE solutions are very similar (RMSE
of 1.2 ppm for the 18 radiosondes), but, there are some differ-
ences for the stand-alone solution (RMSE of 4.7 ppm), where

GRE is closer to the reference data (RMSE of 15.7 ppm
against 17.3 ppm for the G solution). In the bottom panel, we
see the impact of using different covariance operators for the
stand-alone GRE solution. The variant with coeff_Cd D 20%
and coeff_Cm D 80% is closer to the RS on the ground level
(15% decrease of the RMSE with respect to the solution
with coeff_Cd D 10% and coeff_Cm D 90%), while with
coeff_Cd D 30% and coeff_Cm D 70% is the closest for the
middle layers (45% decrease of the RMSE).

4.4 Comparisons with Radio-Occultations

In the next step, the TRs are compared to the RO data (two
profiles; see Fig. 1). Figure 7 shows the total refractivity
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Fig. 6 Reference RS and ICON-D2 data vs. TRs for the constrained
(top), stand-alone (middle) and stand-alone solution with different
covariance operators (bottom) solutions

Fig. 7 Reference RO and ICON-D2 data vs. TRs for the constrained
(top), stand-alone (middle) and stand-alone solution with different
covariance operators (bottom) solutions
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from RO, ICON and TRs for July 14, 17:07, one of the
occultations occurrences.

As shown in Fig. 7, for the RO we have a similar
situation to RS: the RO and ICON are close to each other
(RMSE of 3.1 ppm for the two ROs), while the TRs are
producing wetter conditions (RMSE of about 21 ppm for
the G/GRE constrained/stand-alone solutions). Here, we see
an improvement for the stand-alone GRE solution for the
layer close to the ground, i.e., under 3 km with a 28%
decrease of the RMSE, however, a 25% increase of the
RMSE is observed for the middle layers, i.e., between 4 and
8 km. From the covariance parameters, the closest to RO
is coeff_Cd D 10% and coeff_ Cm D 90% for the lowest
layers and coeff_Cd D 15% and coeff_Cm D 85% for the
middle layers (26% decrease of the RMSE with respect to
the solution with coeff_Cd D 10% and coeff_Cm D 90%), so
slightly different options than for RS.

5 Conclusions

We showed the first results of multi-GNSS tomography for
a severe precipitation and flooding event in July 2021. We
presented a new retrieval algorithm with an iteration process
for stand-alone and constrained tomography solutions based
on G, GR and GRE data. The two types of TRs differed
between each other, especially in space, where the stand-
alone solution was smoother, while the constrained solution
tried to converge to the a priori data, here taken from ICON.
The GRE solution was the best fit, as it showed more patterns
in the obtained total refractivity. Using the multi-GNSS also
retrieved more forced voxels. The TRs were compared with
reference ICON, RS and RO data. In general, the TRs tended
to produce wetter conditions compared to the reference data,
which was, however, in line with the previous findings. Dur-
ing the phase of the initiation of deep convection on July 13,
2021, TRs show high values of total refractivity northeast-
wards of the Grand Duchy of Luxembourg (see Fig. 5), which
is not seen by ICON-D2 NWM and could be substantial
information to be considered in an assimilation system.

Moreover, we checked the impact of different covariance
operators on the tomography retrievals. We reached a better
agreement with the reference data for some of the variants.
TRs show wetter estimates for the lower layers (between 0
and 3 km) than reference external solutions. As the impact of
GNSS ground-based data is stronger for the lower layers than
for the middle layers (between 3 and 5 km), we suggest using
a low covariance coefficient for the data (coeff_Cd D 10%)
and a high covariance coefficient for the a priori model
(coeff_Cm D 90%). However, this requires having good a

priori estimates. To improve the quality of TRs, we think
a mixed strategy/solution can be implemented, which com-
bines the use of conservative covariance for the lower layers
and less conservative coefficients for the middle layers (e.g.,
with coeff_Cd D 20% and coeff_Cm D 80%).
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