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Abstract— Performing simulations with electromagnetic (EM)
solvers can be a computationally complex task that is time con-
suming and resource demanding. Adaptive frequency sampling
(AFS) techniques are very effective in reducing the computational
complexity of frequency-domain simulations performed by EM
solvers. In this work, we propose a novel AFS technique based
on local rational models. This brings multiple advantages, such
as accurate and efficient model uncertainty estimation, the local
refinement of subintervals of the full frequency range of interest,
and suitability toward parallel computing. Multiple numerical
examples thoroughly validate the proposed technique. The local
rational models can also be used as an accurate frequency-domain
macromodeling technique after the AFS process is completed.

Index Terms— Adaptive sampling, frequency-domain
modeling, frequency-domain simulations, local rational
modeling.

I. INTRODUCTION

ELECTROMAGNETIC (EM) simulation tools are neces-
sary tools for the design of a variety of systems, such

as microwave filters, antennas, high-speed interconnects, and
printed circuit boards. The frequency-domain behavior of these
systems can result quite complex (e.g., multiple resonances
and antiresonances). Performing EM computations with an EM
solver (e.g., the method of moments, finite-element method,
and partial eElement equivalent circuit (PEEC) methods [1],
[2], [3], [4]) can be a computationally complex task that is
time consuming and resource demanding. Therefore, one very
often needs to restrict the number of computed frequency
samples in order to obtain results in an acceptable time
frame. Consequently, valuable system characteristics, such as
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(anti-)resonances and coupling effects, can be partly identified
or even missed.

Adaptive frequency sampling (AFS) algorithms are often
used to find a minimal set of frequencies, in such a way that
each frequency sample contains as much valuable information
as possible about the system’s behavior. In the literature,
adaptive sampling is also sometimes denoted by active learn-
ing. Current AFS algorithms add additional frequency data
samples in an iterative way without requiring any prior system
knowledge [5], [6], [7], [8], [9], [10]. In each consecutive
iteration, a data-driven model order reduction (MOR) method
is used to steer the frequency sampling process. The aim of
these MOR methods is to capture the frequency-dependent
behavior of microwave systems with a reduced-order macro-
model [11], [12], [13], [14]. In the microwave community,
vector fitting (VF) is a very widely adopted data-driven MOR
technique [12], [13], [15]. Starting from data available at
a discrete set of frequencies, VF uses rational least-squares
estimation to produce a reduced frequency-domain macro-
model. VF has become popular mainly due to its numerical
robustness in estimating high-order models, and the ease of
physical interpretation with the adoption of the pole-residue
format. Depending on the AFS algorithm used, one or multiple
frequency-domain macromodels with varying model order
need to be identified to quantify the model uncertainty. The
model uncertainty is used here as a metric to determine in
which frequency regions the response of the system should
be sampled more densely. Therefore, the AFS algorithm adds
additional frequency data samples in those frequency regions,
where the uncertainty exceeds a certain threshold level. The
proper functioning of existing AFS algorithm depends greatly
on the assumption that the response of the system can be
approximated sufficiently well by a global macromodel. As the
name suggests, a global macromodel aims to capture the
dynamic response of a system over the whole frequency
band of interest. This has the advantage that only one sin-
gle, potentially complicated, model is needed. The downside
of using a global model is that generally extensive model
order selection is required to eliminate both overfitting and
undermodeling.

Another important aspect to consider is that the distributed
character of a microwave system introduces a propagation
delay. For a transfer function type of format (i.e., S-, Z-,

0018-9480 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on August 13,2024 at 13:14:10 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-6474-6846
https://orcid.org/0000-0003-3640-8617
https://orcid.org/0000-0003-2738-7914
https://orcid.org/0000-0003-1060-3713


PEUMANS et al.: AFS BASED ON LOCAL RATIONAL MODELING FOR MICROWAVE EM SIMULATIONS 4569

Fig. 1. Global rational modeling focuses on the whole frequency band of interest. Local rational modeling only uses on a sub-band around a specific center
frequency. ×: available data, −: estimated rational model, and •: center frequency.

or Y-parameters) this delay expresses itself through terms in
an exponential form e−sτ in the frequency domain, where s
denotes the complex Laplace variable and τ denotes a delay
term. As a result, global rational models generally endure a
significant increase in model order complexity merely for the
sake of fitting the complex exponential terms.

In recent years, local rational modeling (LRM) techniques
have been introduced that greatly mitigate the computational
complexity associated with model order selection [16], [17].
The advantages of these local techniques have already been
demonstrated in the context of AFS [18], [19]. By only focus-
ing on a small sub-band around a specific center frequency,
the local dynamic variations can more be easily modeled by a
low-order rational approximation model. This is an attractive
feature for microwave systems that often contain the influence
of time delays in their dynamic behavior. The basic idea behind
any LRM techniques is to approximate the dynamic behavior
of a system with a local rational model as a function of the
frequency f . Fig. 1 illustrates the major difference between
global and local rational models.

In this article, we propose a novel AFS technique based
on local rational models. There are several main advantages
of using local rational models, which provide a very valuable
and solid foundation for advanced AFS techniques. Below,
we summarize these advantages.

1) The use of accurate and efficient uncertainty estimation
metrics without the need for a model order selection
to drive the convergence of the AFS method. AFS
techniques based on global models might likely need
to refine the model order as needed, while the sampling
iterations advance.

2) The estimation of local rational models does not nec-
essarily need to be repeated at all frequencies in each
iteration. Once all the rational models are obtained after
the first iteration, consecutive iterations only need to
update the models around those frequencies that are
affected by the inclusion of new frequency samples.

3) Local rational models can better handle the distributed
behavior of microwave systems with respect to global
rational models.

4) Furthermore, local rational modeling is very suitable for
using in parallel computing.

We highlight that the use of local rational models in this
work is focused on the development of a novel AFS approach.

After the AFS is carried out, any modeling techniques suitable
for frequency-domain data samples (as the VF approach) can
be used based on the collected data. It is important to note
that the local rational models can also be used as an accurate
frequency-domain macromodeling technique after the AFS
process is completed. The proposed technique can be very
useful in multiple simulation and modeling tasks such as fast
frequency-sweeping for EM simulations and the significant
reduction of the CPU time needed to collect the EM data
samples for parameterized modeling techniques [20], [21],
[22], [23], where multiple EM simulations as a function of
design parameters have to be carried out.

This article is organized as follows. Section II introduces
existing AFS techniques and provides a review of the current
state of the art. Section III discusses the fundamental concepts
of LRM techniques. Section IV describes the proposed AFS
algorithm. Section V shows the extensive numerical results
that validate the accuracy and efficiency of the proposed AFS
method. The conclusion is drawn in Section VI.

II. EXISTING AFS TECHNIQUES

Over the years, numerous AFS algorithms have been devel-
oped, using global rational macromodeling techniques [5], [6],
[7], [8], [9], [10]. These algorithms employ a global rational
macromodel, represented by a partial fraction expansion

R( f ) =

n p∑
i=1

ci

j2π f − pi
+ d. (1)

Here, ci represents the residues associated with the poles
pi , and d is a real constant. Irrespective of the estimation
technique employed to determine the unknown coefficients
in the expansion, current AFS techniques use these rational
models to automatically select the next sampling frequency
location.

In general, current AFS algorithms follow a two-step
approach. In the first step, multiple rational models with
varying orders (n p) are fit using the available data samples.
The model order is initially set to a low value and iteratively
increased until the model error falls below a predefined
accuracy threshold. This step aims to improve the model
accuracy by adjusting the complexity of the rational model.
In the second step, the two models with the lowest model
error are selected and compared using a set of rules known
as reflective functions [7]. These reflective functions provide
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a basis for evaluating the model quality and determining
the next sampling location. Based on the outcome of the
reflective functions, the algorithm selects the next sampling
location and the entire two-step procedure is reinitialized. This
iterative process allows for refining the sampling strategy and
improving the accuracy of the models as more information is
gathered.

Although AFS techniques have demonstrated high effi-
ciency, they depend on an important assumption that the data
samples can be accurately approximated by the estimated
global rational models. However, a challenge arises when the
dynamic behavior of the system is such that even with large
model orders, the global rational model yields a substantial
model error. In such cases, comparing the “best” rational
models would lead to an erroneous comparison, and conse-
quently, the selection of the next frequency sample would be
incorrect. This limitation highlights the need for an alternative
approach that can handle situations where a global model
fails to accurately represent the system’s behavior. To address
this limitation, we have incorporated local rational modeling
techniques, which offer two significant advancements. First,
we employ an error assessment that directly measures the
discrepancy between the model and the data samples. This
approach eliminates the reliance on reflective functions that
compare models against each other. By focusing on the direct
error evaluation, we can more accurately assess the adequacy
of the model and avoid erroneous comparisons. Second, the
integration of local rational modeling techniques allows us to
eliminate the need for model order selection. This reduction in
computational load simplifies the AFS algorithm and improves
its efficiency.

III. LOCAL RATIONAL MODELING TECHNIQUES

This section provides the necessary background for the pro-
posed AFS algorithm. It discusses the fundamental concepts
underlying the proposed LRM technique.

In this article, we use the matrix X( f ) ∈ CN×N to
describe the electrical input–output behavior of an N -port
system as a function of the frequency f . X can denote
multiple representations of interest, such as the impedance,
admittance, and scattering parameters. We assume that simula-
tion/measurement data of X is available at a set of frequencies
ξ = { f1, . . . , fk, . . . , fF } (k = 1, . . . , F). In general, the
local modeling technique does not assume reciprocity for the
N -port system being analyzed. However, if the matrix X is,
indeed, reciprocal, then, it is only necessary to consider either
the upper or lower triangular portion of X for modeling and
analysis purposes.

The underlying concept of these local modeling techniques
is to approximate the behavior of X at each frequency fk

with a local rational model. As X is expected to be a
smooth function of fk , practically any continuous function can
be employed for this purpose. Among the popular choices,
polynomial matrices [24] and rational matrix parameteriza-
tions [17] have exhibited remarkable outcomes in the past.
To illustrate the functioning of these local modeling tech-
niques, let us assume that we aim to estimate X( fk) through
a local rational model. For this estimation, a local set of

frequencies fk+r centered around fk is used to approximate
X ∈ CN×N with a common-denominator rational model

X( fk+r ) = X( fk + δr ) ≈
Bk(δr )

Ak(δr )
(2)

where r ∈ {−n f , . . . ,−1, 0, 1, . . . , n f }. δr quantifies the local
frequency variation around the center frequency fk . The total
number of data points considered for the estimation in the
local sub-band equals 2n f + 1. The complex numerator and
denominator matrix polynomials Bk and Ak are defined as
follows:

Bk(δr ) =

nB∑
n=0

bkn δn
r Ak(δr ) =

n A∑
n=0

akn δn
r (3)

where bkn ∈ CN×N and akn ∈ C are the unknown rational
model coefficients that capture the dynamic variations within
each local model. nB and n A define the model order of the
denominator and numerator polynomial, respectively.

Over recent years, several estimation techniques with vary-
ing computational complexity have been proposed to identify
the coefficients of the local rational model (see [17], for an
overview). The goal of any of these techniques is to solve the
following least-squares minimization problem:

min
θ k

n f∑
r=−n f

∥∥∥∥∥X( fk + δr ) −
Bk(δr )

Ak(δr )

∥∥∥∥∥
2

2

(4)

where θ k is the stacked vector of all unknown model coef-
ficients bkn and akn . Since (4) contains a division by the
denominator polynomial, the minimization problem becomes
inherently nonlinear in the parameters. Finding an optimal
solution to (4), therefore, generally requires an iterative min-
imization scheme (Gauss–Newton and Levenberg–Marquardt)
that is computationally expensive. To lower the computational
complexity, it is common practice to linearize the original
problem in (4) by multiplication with the denominator poly-
nomial Ac(δr ) (e.g., Levy, Sanathanan–Koerner, and vector
fitting). The cost of performing this linearization is that a bias
is introduced during the estimation [16]. To counteract this
linearization bias, we choose to use the so-called bootstrapped
total-least squares (BTLSs) estimator [25]. The BTLS estima-
tor is an iterative total-least squares estimator that provides an
unbiased estimate of the local model coefficients, even when
X is corrupted with noise.

The estimation of the local rational model is influenced
by three hyperparameters that regulate the estimation process.
These hyperparameters are the model orders, nB and n A, and
the number of data points considered, 2n f + 1. Frequently,
the last hyperparameter is substituted with the “degrees of
freedom” (q) of the estimation. It is calculated by subtracting
the total number of model parameters from the total number
of local data points [17]

q = 2 n f + 1 −
nθ

N
(5)

with

nθ = n A + (nB + 1) N 2. (6)
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An essential aspect of local modeling techniques is determin-
ing optimal values for the hyperparameters. As the model order
increases, it enhances not only the modeling capability but
it also inevitably widens the sub-bands width for a constant
number of degrees of freedom [see (5)]. This widening leads
to more dynamic variations that the model needs to capture.
Consequently, boosting the model orders does not always
result in better modeling accuracy. After extensive application
of the local modeling methods in diverse application areas,
encompassing both mechanical and EM domains, it has been
observed that utilizing polynomial orders up to the 8th degree
in conjunction with 6 or 8 degrees of freedom typically strikes
a beneficial balance between model complexity and sub-band
width [16], [17].

Since optimization is executed in a least-squares sense, the
residuals (which represent the disparity between the original
data and the estimated model) encapsulate the combined
impact of two types of uncertainty.

1) Model Uncertainty: A poor model selection results in
overfitting or underfitting of the provided data.

2) Noise Uncertainty: Data samples can be corrupted by
noise. Stochastic noise remains present in the residuals
since the model only aims to capture the deterministic
behavior of the system.

Depending on the type of uncertainty that is dominant,
different metrics can be used to quantify the uncertainty.
In a simulation setting, the model uncertainty is considered
dominant as no measurement noise is present. Therefore, most
often the (weighted) magnitude of the residual ϵk is adopted
as a metric

|ϵk(δr )| =

∣∣∣∣X( fk + δr ) −
Bk(δr )

Ak(δr )

∣∣∣∣. (7)

In a measurement setting, on the other hand, the noise uncer-
tainty plays an important role and other metrics can be used.
The scope of this article is on simulated data; therefore, we do
not tackle the case of noisy data, which is future work.

The local rational modeling assumes that n f frequencies are
available at the left- and right-hand sides of each frequency
fk . This is not the case at the left and right borders of the
frequency set { fk}. At those borders, an asymmetric window is
used to resolve this issue. The first and last n f +1 frequencies
of ξ use the same sub-band for the rational model estimation,
which inevitably results in the same estimated local rational
model. As a consequence, the estimated uncertainty is constant
at the borders.

IV. PROPOSED ADAPTIVE SAMPLING ALGORITHM

This section describes the proposed AFS algorithm that uses
local rational macromodels to guide the sampling process in
an iterative way. In each consecutive iteration, the proposed
technique runs through some steps to make an optimal decision
(see Fig. 2). A more in-depth explanation of each step is
provided in the following paragraphs.

Step 0 (Initialization): To start the AFS algorithm, we need
an initial set of samples X( fk) that are simulated at evenly
spaced intervals across the frequency range of interest
[ fmin, fmax]. It is important to avoid having too many initial

samples, as this defeats the purpose of the AFS algorithm.
However, the minimum number of initial samples is equal to
the sub-band width 2n f + 1. This width is determined by the
degrees of freedom q and the model orders n A and nB in (5).
It is recommended to add a margin to the minimum number of
initial samples because if we use only the minimum number,
we cannot shift the sub-band window, resulting in all local
models using the same data. As a consequence, the uncertainty
for each frequency fk will be constant, making it impossible
to make an initial decision with the AFS algorithm. For that
reason, the total number of initial samples corresponds to the
sub-band width derived from (5), augmented by half of the
sub-band width n f

Fmin = q +

⌈nθ

N

⌉
+ n f (8)

where ⌈•⌉ represents the ceil operator.
Step 1 (Estimation of Local Rational Models): The aim of

Step 1 is to quantify the model uncertainty at each frequency
fk belonging to the current set ξ = { fk}(k = 1, . . . , F).
To do so, a local rational model first needs to be estimated
at each frequency fk using the LRM technique described in
Section III. As mentioned earlier in Section III, the AFS
algorithm’s ability to select a minimal set of samples relies
on the user’s selection of the rational model hyperparameters
(n A, nB , and q). To set these hyperparameters, the user
can refer to some guidelines that are available. Section III
already indicated that choosing polynomial orders up to the
8th degree, in combination with 6 or 8 degrees of freedom,
strikes a balance between model complexity and sub-band
width. In addition, it is advisable to set n A equal to nB , which
ensures that the algorithm does not show any preference for
modeling resonances or antiresonances. Earlier research has
also demonstrated that selecting an even polynomial order
can enhance the accuracy of the model in the (anti-)resonance
regions [17]. Based on these two restrictions, there are only
four possible options for the polynomial orders: {2, 4, 6, 8}.
In general, the higher the polynomial orders chosen, the better
the rational model’s modeling capabilities for describing local
dynamic variations (lower residual error), and the lower the
number of samples that the AFS algorithm will need to
select. It is worth noting that once the polynomial model
orders n A and nB are selected, they remain fixed during the
entire duration of the AFS algorithm. Consequently, the model
uncertainty becomes a direct measure of the undersampling
of X .

Once the rational model estimation is finished, the model
uncertainty is derived from the residuals ϵk in (7). Many
definitions exist to quantify the model uncertainty [26]. In a
simulation-based scenario, a commonly used uncertainty met-
ric µ is based on the computation of the maximum of
the relative error across both the frequency δr and different
input–output combinations

µ( fk) = max
δr ,i, j

{∣∣∣∣∣ ϵ
[i, j]
k (δr )

B[i, j]
k (δr )/Ak(δr )

∣∣∣∣∣
}

(9)

where •
[i, j] selects the matrix element on the i th row and

j th column. By defining uncertainty in this manner, we can
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Fig. 2. Algorithmic overview of the proposed AFS technique. A thorough explanation of different steps is provided in Section IV.

ensure that the relative error remains bounded across all
input–output combinations and frequencies, thereby providing
a comprehensive evaluation of the model’s accuracy on a
global scale.

Local rational models not only provide an uncertainty metric
but also serve as frequency-domain macromodels similar to
global rational macromodels. Rather than relying on a single

global model, we now have a rational model for each sam-
ple fk , enabling local modeling in the vicinity of a given
sample. For instance, if we need to predict the value of
X at a specific frequency f , we can use the local rational
model at the frequency fk closest to f . Since a rational
model is obtained for each sample fk , a smooth prediction
is achieved by overlapping sub-bands, which are shifted by

Authorized licensed use limited to: Zhejiang University. Downloaded on August 13,2024 at 13:14:10 UTC from IEEE Xplore.  Restrictions apply. 



PEUMANS et al.: AFS BASED ON LOCAL RATIONAL MODELING FOR MICROWAVE EM SIMULATIONS 4573

one frequency sample every time. Without these overlapping
sub-bands, a discontinuous modeling behavior would occur at
the boundaries.

Another advantage of the use of local rational models is that
the estimation does not necessarily need to be reperformed
at all frequencies during each iteration. Once all the rational
models are obtained after the first iteration, consecutive iter-
ations only need to update the models at those frequencies
that are affected by the inclusion of new frequency samples.
More specifically, only n f frequencies to the left and the
right of a novel sample require an update. Implementation of
this updating scheme results in a highly efficient estimation.
Furthermore, a high level of parallelism is possible as each
local rational model is estimated independently.

Step 2 (Local Interpolation of the Model Uncertainty):
After Step 1, an estimate of the uncertainty µ is available at
the discrete set of frequencies { fk}. If all these uncertainties
are smaller than a user-defined accuracy level γ , the AFS
algorithm can be stopped. If not, a model is required to assess
the uncertainty in all the frequency regions where no samples
are available. A straightforward way to obtain this model is
by interpolation. However, many types of interpolation exist,
each with their respective (dis)advantages [27]. We choose a
local modeling flavor of the well-known cubic spline interpo-
lation since it provides a good balance between computational
complexity and attainable accuracy [28].

Global interpolation of the uncertainty with cubic splines
does not yield accurate results. Due to the local rational
modeling, the uncertainty shows a rapid decrease (almost
discontinuous) in the frequency regions, where the dynamic
deviations are modeled correctly. As a result, the cubic spline
interpolation is afflicted by the Gibbs phenomenon [29]. The
occurrence of the Gibbs phenomenon is prevented if the
interpolation of µ is also performed in a local setting. To do
so, an iterative scheme is devised that performs the local
interpolation in an automatic way.

1) Set the iteration counter m equal to 1. Determine the
set of frequencies { fµ>γ } ⊂ { fk}, where µ exceeds the
threshold level γ . The borders of { fk} (the n f + 1 first
and last frequencies) are excluded from this search as
the uncertainty is constant in those regions. Instead,
a random sample is taken in the border regions if the
uncertainty exceeds the threshold level.

2) From { fµ>γ }, select the frequency f m
max(µ), where the

uncertainty is maximal.
3) Locally interpolate µ with cubic splines in a sub-band

around f m
max(µ). Similar to the local rational mod-

eling in Step 1, the sub-band consists of a local
set of frequencies f m

max(µ)+r from { fµ>γ } where r ∈

{−n f , . . . ,−1, 0, 1, . . . , n f }. If no n f frequencies to the
left or the right of f m

max(µ) are available in { fµ>γ }; then,
the sub-band becomes asymmetric and only continues
to the left or right boundary of { fµ>γ }. In the special
case that { fµ>γ } contains only a single point, use the n f

frequencies to the left and the right for the uncertainty
interpolation. The resulting interpolation model of the
model uncertainty is denoted by αm( f ). This interpo-
lation model is only valid in the frequency interval

Fig. 3. Example uncertainty profile from which the interpolation models
αm( f ) are derived. All samples below the threshold level γ are not considered
in the creation of the interpolation models.

f ∈ [ f αm

min, f αm

max]. The boundaries f α
min and f αm

max represent
the far-left and far-right samples in { f m

max(µ)+r }.
4) Exclude the sub-band frequencies { f m

max(µ)+r } from the
set { fµ}: { fµ>δ} = { fµ>δ} \ { f m

max(µ)+r }. If the resulting
set is empty, the iteration can be stopped. If not, go back
to 2) and increase the iteration counter m.

Once the iterative scheme above is finished in Step 4, a total
of nµ different interpolation models αm( f ) (m = 1, . . . , nµ)

of the model uncertainty are identified. Each one of these
interpolation models αm( f ) is only valid in a local frequency
interval f ∈ [ f αm

min, f αm

max].
To provide a more comprehensive understanding of how

the local interpolation algorithm operates, we can utilize an
example scenario. Let us assume that we have an uncertainty
profile, which can be visualized in Fig. 3. Initially, we exclude
all samples for which the uncertainty level is below the spec-
ified threshold level, denoted by γ . Subsequently, we select
the maximum value of the remaining samples, denoted by
f 1
max(µ), and use a total of n f = 5 samples on either side of

f 1
max(µ) to construct the first cubic spline interpolation function,

which can be represented as α1( f ). In the second iteration, the
samples utilized in the interpolation of α1( f ) are excluded
from the search space, and the maximum value is again iden-
tified, which correspond to f 2

max(µ). Ideally, we would select
a symmetric window around f 2

max(µ); however, in this specific
case, only three samples are available to the right of f 2

max(µ),
resulting in the use of an asymmetric window for the local
interpolation function, represented as α2( f ). In the third and
final iterations, only the left boundary region remains, where
the uncertainty remains constant due to boundary effects.
In this region, a random sample is selected to complete the
local interpolation process.

Step 3 (Construction of the Sampling Metric): Now that
local models for the uncertainty are available, they are used to
steer the frequency sampling process. As the model uncertainty
is a measure for undersampling, the most plausible sampling
decision would be to let new frequency locations coincide
with the maxima of different local interpolation models αm( f ).
However, adoption of this sampling metric results in an AFS
algorithm that does not function consistently. More specifi-
cally, the algorithm sometimes gets stuck in frequency regions
where constantly new samples are added without lowering the
uncertainty. The reason for this phenomenon is that taking
decisions based on the local model uncertainty only, greatly
favors exploitation but ignores exploration [30]. Exploitation
generates new sampling frequencies based on information
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obtained from previous sampling points, as is done with
the local rational modeling. Exploration on the other hand
performs this generation independently by, for example, taking
a random sample.

To obtain a sampling metric that better balances exploitation
and exploration, the uncertainty model is combined with the
so-called crowding distance [31]. The crowding distance of a
frequency point represents the density of frequency samples
around that specific point. Given a certain local model αm( f ),
the crowding distance CDm( f ) that is valid within the fre-
quency range [ f αm

min, f αm

max] of that specific interpolation model
is defined as follows:

CDm( f ) =

n f∑
r=−n f

∥∥ f − f m
max(µ)+r

∥∥2
2 with f ∈

[
f αm

min, f αm

max

]
.

(10)

A large crowding distance reflects a small sampling density
and vice versa. It is expected that in the frequency regions
with larger crowding distances, relatively less information
about the system is available. Incorporation of the crowding
distance in the sampling metric, therefore, favors exploration
independently of the model uncertainty. As the value of the
crowding distance in (10) relies on the absolute difference
between frequencies, it needs to be normalized to obtain a uni-
form metric across different frequency ranges. The normalized
crowding distance is defined as follows [31]:

NCDm( f ) =
max(CDm) − CDm( f )

max(CDm) − min(CDm)
. (11)

The eventual sampling metric βm that combines the uncer-
tainty αm and the normalized crowding distance is constructed
as follows:

βm( f ) = αm( f )
(

1 + NCDm( f )
)
. (12)

Step 4 (Addition of New Frequency Samples): The AFS
algorithm bases itself on the sampling metric βm to add new
frequency samples. The frequency point f m

max corresponding
to the maximum of βm( f ) is selected as the next frequency to
be evaluated by the simulator. However, if f m

max is too close to
an already evaluated point (i.e., relative frequency difference
smaller than 0.1%), the next location is randomly selected
from [ f αm

min, f αm

max]. The inclusion of this random selection
increases the exploration capabilities of the AFS algorithm
even further. Once new data samples of X( f m

max) are obtained
at different frequencies f m

max for m = 1, . . . , nµ; then, all f m
max

are added to the set { fk} and the adaptive sampling iteration
is restarted from Step 1.

V. NUMERICAL EXAMPLES

The proposed AFS algorithm is applied to several examples.
First, an artificial example is generated on which we can
demonstrate the basic functioning and performance of the
algorithm. In the second example, a dual-band microstrip
bandpass filter is analyzed. The final example examines an
eight-port PCIe-2 module. A computer with an Intel i7-8665U
CPU at 2.11 GHz has been used. All examples are compared
with an established VF-based technique [7]. This technique

Fig. 4. Magnitude response and pole map of the artificial resonating system.

relies on estimating multiple global rational models, each with
a different model order. Subsequently, the two models that
exhibit the highest accuracy are compared and a frequency
sample is added to the region where these two models disagree
the most. Antonini et al. [7] did not specify the maximal VF
order that the model order selection needs to take into account
given a certain number of samples. We choose to restrict the
maximal VF order in each iteration to the number of samples
minus the number of degrees of freedom used in the proposed
local AFS technique. By doing so, we obtain a fair comparison
between the two techniques in terms of the number of degrees
of freedom.

A. Artificial Resonating System

In the first example, an artificial system H(s) has been
generated that contains 25 complex pole pairs combined with
a delay (see Fig. 4). The system’s frequency-domain transfer
function H(s) is defined as follows:

H(s) =

25∑
i=1

(
Ri

s − pi
+

Ri

s − pi

)
e−τ s (13)

where s is the complex Laplace variable, and τ is the delay.
Ri and pi are, respectively, the complex residue and pole
locations of the i th pole pair. • is the complex conjugate oper-
ator. To achieve a magnitude response with a high dynamic
range, the poles pi are deliberately selected to ensure that the
quality factor Q of each pole pair is equal to 25. This approach
results in a pole pattern where each pole pair has a constant
angle with the imaginary axis. Meanwhile, the residues Ri are
randomly selected within the unit circle. We have furthermore
added a time delay τ of 100 ps to the system (τ fmax = 2.5)
that emulates the distributed behavior of a microwave system.
Furthermore, we evaluate the performance of the proposed
technique in two scenarios: one with n A = nB = 4 and
another with n A = nB = 6. In both scenarios, the number
of degrees of freedom q is chosen equal to 6. These choices
correspondingly yield n f values of 7 and 9, respectively. The
accuracy threshold γ is set to 0.01 (−40 dB).

As the adaptive sampling algorithm progresses, more sam-
ples become available. Correspondingly, the uncertainty µ

gives an increasingly better view of the regions, where new fre-
quency samples are needed. Furthermore, more local sampling
metrics βm( f ) become available, which means that multiple
samples can be added in parallel. This parallel addition is
a major advantage of local modeling compared with global
methods. In the n A = nB = 4 scenario, on average 34
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iterations are needed in this example which results in an
average total number of 179 samples to achieve an accuracy
level below −40 dB over the frequency range of interest
(0–25 GHz). Choosing n A = nB = 6, requires on average
29 iterations and an average total number of 128 samples to
reach the same accuracy level. Remark that the total number of
samples and iterations are no longer deterministic quantities.
They partly depend on the locations of the random samples
taken at the edges or when a new sample is relatively close to
an existing one (see Section IV, Step 4).

To demonstrate the performance of the proposed AFS
algorithm, the local approach is compared with the global
VF-based AFS technique proposed in [7]. We selected the
VF model for verification purposes because it is readily
available and computationally convenient. However, other
global modeling approaches can also be used. The VF-based
approach involves 43 iterations, corresponding to a total of
54 samples. No stability constraints are applied to the pole
locations during the estimation process. In Fig. 5, we compare
the relative error of the local LRM-based approach, with
n A = nB = 4, and n A = nB = 6, to the VF-based approach.
The local LRM-based approach consistently exhibits a relative
error below −40 dB across the entire frequency spectrum.
While the global VF-based approach demonstrates excellent
performance at lower frequencies, it experiences an increased
relative error in the frequency range from 10 to 15 GHz. This
discrepancy arises from the VF-based approach’s inadequacy
in selecting sufficient samples within this frequency region to
distinguish additional dynamic behavior. This limitation arises
from the global approach’s termination decision, which relies
on the discrepancies between the two best VF models in a
given iteration. Consequently, the VF-based approach may not
adequately capture all the system dynamics in the specified
frequency range. The local LRM-based approach mitigates
this limitation by using an uncertainty metric that compares
the model against the original data, without necessitating
comparisons among multiple models.

B. Dual-Band Microstrip Bandpass Filter

In the second example, a dual-band microstrip bandpass
filter is analyzed (see Fig. 6) [32]. A Rogers RO4003 substrate
is used with a relative dielectric constant of 3.55, a dielectric
height of 1.542 mm, and a loss tangent of 0.0022. The EM
behavior of the filter is simulated using the Advanced Design
System (ADS) software suite. The frequency region of interest
is between 1.3 and 3.3 GHz. The simulated S-parameters
clearly show two passbands that are closely spaced (see
Fig. 7). We choose n A = nB = 6 and q = 6 in this example,
which correspond to an n f equal to 8. The accuracy threshold
γ equals 0.01 (−40 dB).

The adaptive sampling algorithm requires on average of
six iterations with an average total number of 39 samples.
A comparison with the VF-AFS proposed in [7] is also
performed (Fig. 8). The VF-based algorithm chooses 27 sam-
ples (19 iterations) over the frequency range of interest and
targets the same relative error accuracy as the proposed
LRM-based approach. Through model order selection the

Fig. 5. Comparison between the relative error of the local LRM-based
approach and the global VF-based approach.

Fig. 6. Top view of the dual-band microstrip bandpass filter used in example
B. P1 and P2 represent the ports of the structure.

Fig. 7. Simulated S11 and S21 of the dual-band bandpass filter.

VF-based algorithm determined that 21 poles are optimal
to reach the accuracy requirements. As further validation,
we compare the accuracy of the LRM and VF models gener-
ated by the proposed LRM-based and the VF-based algorithms
over a dense grid of 1001 frequency samples (8). The plots in
Fig. 8 show that the LRM-based approach reaches an average
relative error below −80 dB, while the VF-based algorithm
reaches a consistent relative error below −50 dB.

In each iteration of the proposed AFS algorithm, two CPU
time components are present: one (EM solver dependent)
related to EM calculations at a set of frequency samples and
another one (EM solver independent) related to all the rest
(local model generation and metrics computations). We focus
on the second component in what follows to show the compu-
tational efficiency of the proposed algorithm. For this two-port
system, the generation time for one local rational model is
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Fig. 8. Bandpass filter comparison of the relative error of the LRM-based
approach with the VF-based approach of [7].

on average 4 ms. The number of local rational models that
need to be estimated depends on the number of frequency
samples that are added in a certain iteration. As a result,
the total computation time varies with the iteration count.
The maximum recorded computation time to complete one
iteration is 150 ms. On average of six iterations are needed.
Therefore, the EM solver independent CPU time component of
the proposed AFS algorithm results to be very efficient. Note
that the cumulative estimation time for the VF models in the
VF-based approach amounts to 1.76 s, while the LRM-based
approach needs 0.9 s.

C. PCIe-2 Module

As a final example, we consider a channel simulation of
a Peripheral Component Interconnect Express (PCIe) Gen
2.0 module. This example is part of the signal integrity
design kit in ADS and is considered as one of the reference
examples for signal integrity applications. The simulated PCIe
module comprises four multiconductor transmission lines that
establish connections between a four-port transmitter and a
four-port receiver. Consequently, the module consists of a total
of eight ports, resulting in a 8 × 8 S-parameter matrix. It is
important to note that due to the long electrical length of the
transmission lines, multiple differing delays are present in the
simulated phase profiles. The frequency range of interest is
between 0 and 20 GHz. Due to the complexity of the dynamic
variations, we choose n A = nB = 8 and q = 6 in this example.
This choice translates into a sub-band width of 19 samples.
The accuracy threshold γ is again set to 0.01 (−40 dB). Fig. 9
shows the amplitude and phase responses of three arbitrarily
selected S-parameters of the PCIe-2 module.)

Fig. 9. Amplitude and phase response of three arbitrarily selected
S-parameters of the PCIe-2 module. A total of 64 S-parameters are available.

Fig. 10. Comparison of modeling prediction errors obtained using local
rational models as a function of frequency for the PCIe-2 example.

On average, the adaptive sampling algorithm requires
98 iterations, with a total of 1310 samples. The average estima-
tion time for one local rational model is 87 ms. Unlike previous
examples, it is not possible to assess the adaptive sampling
quality using a global VF model in this case. The model order
for a global VF model has been gradually increased up to
order 1000, but none of these global models achieve an accept-
able relative accuracy level below −10 dB across the entire
frequency range. This is due to significant distributed effects
(delays) in this example. Therefore, the global VF model
cannot be used for showing results related to the adaptive
sampling quality as in the previous examples. Furthermore,
a comparison with the VF-based algorithm [7] is attempted,
but proved very difficult within a reasonable timeframe due
to the notable distributed effects, particularly delays, present
in this example. To reach 750 samples with the VF-based
algorithm, it took more than one day of estimation time. While
the accuracy of the standard VF model can be improved by
employing multidelay rational modeling techniques [33], [34],
this topic is beyond the scope of this article. However, irrespec-
tive of a global model, we can evaluate the model prediction
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quality of the local rational models across the entire frequency
range. For this purpose, the local rational models are evaluated
at multiple frequency samples different from those used during
estimation in the AFS process. Fig. 10 illustrates the absolute
error profiles for the S-parameters S11, S48, and S67. The error
profiles demonstrate the consistent performance of the local
rational models across the frequency range, maintaining an
error level below −55 dB. This indicates that, besides guiding
the adaptive sampling algorithm, the local rational models can
also serve as an accurate frequency-domain macromodeling
tool.

VI. CONCLUSION

We have introduced a new AFS algorithm using local ratio-
nal modeling. This approach offers several advantages over
AFS techniques relying on global models. First, our algorithm
eliminates the need for model order selection during its execu-
tion. In addition, it is better equipped to handle the distributed
behavior commonly found in microwave systems. To validate
the effectiveness of our method, we conducted numerous
numerical examples, which consistently demonstrated its accu-
racy and efficiency. The algorithm successfully identifies the
most informative samples of the frequency-domain response of
microwave systems while maintaining an effective exploration
capability.
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