
Article https://doi.org/10.1038/s41467-024-52247-z

Space-based observations of tropospheric
ethane map emissions from fossil fuel
extraction

Jared F. Brewer1, Dylan B. Millet 1 , Kelley C. Wells 1, Vivienne H. Payne 2,
Susan Kulawik3, Corinne Vigouroux4, Karen E. Cady-Pereira 5, Rick Pernak5 &
Minqiang Zhou6

Ethane is the most abundant non-methane hydrocarbon in the troposphere,
where it impacts ozone and reactive nitrogen and is a key tracer used for
partitioning emitted methane between anthropogenic and natural sources.
However, quantification has been challenged by sparse observations. Here, we
present a satellite-based measurement of tropospheric ethane and demon-
strate its utility for fossil-fuel source quantification. An ethane spectral signal is
detectable from space in Cross-track Infrared Sounder (CrIS) radiances,
revealing ethane signatures associatedwith fires and fossil fuel production.We
use machine-learning to convert these signals to ethane abundances and
validate the results against surface observations (R2 = 0.66, mean CrIS/surface
ratio: 0.65). The CrIS data show that the Permian Basin in Texas and New
Mexico exhibits the largest persistent ethane enhancements on the planet,
with regional emissions underestimated by seven-fold. Correcting this
underestimate reveals Permian ethane emissions that represent at least 4-7%of
the global fossil-fuel ethane source.

Ethane (C2H6) is one of themost abundant volatileorganic compounds
(VOCs) present in the global atmosphere1–3. It is a precursor of tro-
pospheric ozone, affects the transport and fate of reactive nitrogen
through the formation of peroxyacetyl nitrate (PAN)4, and influences
the atmosphere’s oxidizing capacity3,5–7. Ethane is also co-emitted with
methane from fossil fuel sources and has become an important tracer
for fingerprinting and quantifying anthropogenic methane emissions
on regional8,9 and national10 scales. Attempts have been made to
replicate this technique at the global11–13 scale, but success has proven
difficult due in part to insufficient observational coverage and uncer-
tainty in the methane:ethane emission ratios11–13.

The sources of ethane are primarily anthropogenic: recent esti-
mates of fossil fuel-relatedethane emissions range from7-13 teragrams
per year (Tg yr−1), with biofuel and biomass burning contributing an
additional 2–8 Tg yr−13,14,15. Geologic emissions of ethane are uncertain,

and not always included in budget assessments, though some studies
estimate them at 2-6 Tg yr−11,3,16–18. Natural ethane sources, including
oceanic and biogenic emissions, are believed to be globally
negligible5,7,17,19. Atmospheric ethane is primarily destroyed by reaction
with hydroxyl radicals (OH) on a global-mean timescale of ~2months20,
sufficiently long that it provides a valuable airmass and source tracer
over long distances21–23.

Uncertainty in the fossil fuel ethane source is large, with top-down
studies often indicating substantially higher emissions than inventories
predict (e.g., a factor of 1.4 to 3 more3,14,24,25). Fossil ethane emission
ratios relative tomethane also vary temporally and spatially in amanner
that is not well constrained10,14. These two issues challenge ethane’s use
as a source tracer alongwith efforts toquantify its atmospheric impacts.

Satellite-basedmeasurements of tropospheric ethanewould offer
a major advance by providing globally continuous and long-term
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observations to address the above challenges26–28. Ethane is a relatively
weak absorber but features distinctive bands in the shortwave infrared
(IR; ν7 band near 3000 reciprocal centimeters [cm−1])29 and thermal IR
(ν9 band near 815 cm−1)30 that are amenable to remote sensing. The ν7
feature has been used for ground-based solar Fourier Transform
Infrared (FTIR)measurements such as those produced by the Network
for the Detection of Atmospheric Composition Change (NDACC)31–33.
Satellite-based ethane measurements have so far been performed by
solar occultation (using ν7)34 and by limb sounding (using ν9)35.
However, these ethane retrievals are limited to the upper troposphere
and stratosphere and are unable to capture spatial and temporal
variability linked to surface emissions.

In this work, we present a retrieval of tropospheric ethane using
the Cross-Track Infrared Sounder (CrIS; see Methods) onboard the
Suomi-National Polar-orbiting Partnership (Suomi-NPP) satellite, an
instrument well-suited for the task. CrIS has low noise in the longwave
IR (LWIR) relative to similar sensors36, an afternoon overpass that
maximizes sensitivity in the troposphere27, and high resolution in both
space and time. Compared to observations at shorter wavelengths, the
LWIR radiances detected by CrIS are much less impacted by atmo-
spheric and surface scattering but have lower near-surface sensitivity
due to atmospheric absorption. This issue is partly counteracted by
the CrIS nadir view, which provides far more tropospheric sensitivity
than the limb-based observations previously used for space-based
ethane detection26,28. Below, we first demonstrate the spectral detec-
tion of ethane in the CrIS radiances and highlight the coherence of this
signal with known fossil fuel and biomass burning sources. We next
employ aneuralnetwork toderive ethane columnconcentrations from
these spectral signals and evaluate the results against established
ground-based observations. Finally, we combine this dataset with
chemical transport model (CTM) simulations to investigate the largest
persistent ethane enhancements visible in the global CrIS data record,
which occur over the Permian basin in the southwestern United
States (US).

Results
Spectral detection of ethane from space
We use the hyperspectral range index (HRI) to characterize the ethane
spectral signal detected by CrIS. The HRI is a dimensionless measure

of the spectral signature of a target atmospheric gas37,38 that is
computed via28:

HRI =
1
N

KTS�1
y ðy� �yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KTS�1
y K

q : ð1Þ

where y is a measured spectrum from CrIS and �y is the mean back-
ground spectrum calculated iteratively from background scenes in
which ethane is undetectable39. The same background scenes are used
to calculate the spectral covariance matrix Sy, which accounts for
correlations between spectral channels due to factors other than
ethane40.K is the spectral Jacobian reflecting the change in absorption
per change in ethane39 (Supplementary Fig. 1). A normalization factor
N is applied based on the HRI standard deviation over a region where
no ethane enhancements are expected. HRI values computed in this
way specifically quantify the above-background signal strength, andby
definition have a mean of 0 and a standard deviation of 1 under
background conditions. Higher values imply a strong signal from the
target gas. Initially developed and applied to quantify ammonia and
sulfur dioxide fromthe InfraredAtmosphericSounding Interferometer
(IASI)38,40, theHRI has subsequently been employed tomeasure a range
of VOCs from IASI28 and to quantify isoprene from CrIS39. Here, we use
an updated version of the Retrieval of Organics from CrIS Radiances39

(ROCRv2) to iteratively derive an ethane HRI between 800 and
850cm−1, a range that encompasses the ν9 absorption feature
(Supplementary Fig. 1). The subsequent conversion of these spectral
signals to ethane column abundances is described below.

Figure 1 illustrates the spectral detection of ethane from CrIS
using the HRI approach. Plotted are data from January 2nd, 2020, over
the South Pacific downwind of Australian megafires that occurred
during that period. Plumes from these fires provide a useful test-case
scenario for ethane detection, given (1) strong expected ethane
emissions from the fires, (2) lofting of those emissions high into the
troposphere and lower stratosphere41, and (3) over-ocean transport,
which minimizes any spectral influences from the surface (as ocean
emissivity is less variable than over land). Three independent char-
acterizations of the transported biomass burning plume are shown: (a)

a) CO b) Ethane HRI c) Ethane Peak Residual
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Fig. 1 | Spectral detection of ethane in radiances measured by the Cross-track
Infrared Sounder (CrIS). Plotted are (a) CrIS carbon monoxide (CO) columns42,
b ethanehyperspectral range indices (HRIs), and (c) ethane brightness temperature
differences for a fire plume over the South Pacific on January 2, 2020. All quantities

are normalized and screened for clouds using the 900cm−1 brightness/surface-skin
temperature difference27. The CrIS data shown is primarily from granule 13, with
additional data from granules 12, 14, 29, 232, 233, and 234.
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the CrIS carbon monoxide (CO) column abundance obtained via
optimal estimation42; (b) the CrIS ethane HRI computed as above; and
(c) the mean on-peak/off-peak brightness temperature difference at
the wavenumbers with highest ethane absorption (Supplementary
Fig. 1). For (c), we use CrIS spectral residuals processed with theMUlti-
SpEctra, MUltiSpEcies, Multi-SEnsors (MUSES) algorithm from the
TRopospheric Ozone and its Precursors from Earth System Sounding
(TROPESS) project43,44. Several modifications were made to the
MUSES/TROPESS processing strategy for this work, and these are
described in Methods. Once the spectral residuals are derived, values
at the eight largest ethane peaks in the ν9 band are then each
background-corrected by subtracting the mean adjacent off-peak
value as indicated in Supplementary Fig. 1 and Supplementary Table 1.
These background-corrected ethane residuals are averaged to obtain
the single spectral index shown in Fig. 1c. All quantities (a-c) are cloud-
screened using the difference between the 900 cm−1 brightness tem-
perature and surface skin temperature27.

Figure 1 shows strong consistency between the above measure-
ments, with all three mapping the same large fire plume stretching
from (50° S, 180° E) to (30° S, 165° E). This coherence reflects the
physical structure of the fire plume and the distribution of co-emitted

absorbers within that plume (in this case, CO and ethane). The
brightness-temperature difference ethane metric is noisier than the
corresponding HRI, reflecting the sensitivity and noise advantages of
the latter. While factors such as water vapor and ash can interfere with
thermal IR retrievals in wildfire smoke45, the spatial consistency
between the twoentirelydifferent indices shown in Fig. 1 demonstrates
that both are capturing the underlying signal due to ethane rather than
that of potential interferences.

Spatial patterns in the ethane signal
Along with fires, the strongest ethane HRI enhancements that emerge
in the global CrIS record are associated with major fossil fuel pro-
duction regions. This is illustrated in Fig. 2, which shows CrIS ethane
HRI values over four oil and gas basins: the Permian in Texas and New
Mexico, US46, the Hassi Messaoud oil field in Algeria47, the Burun oil
field in Turkmenistan47, and the Ordos basin in northern China48. Of
these four areas, we see the highest ethane HRI values over the Per-
mian. In fact, this finding extends across the entire CrIS data record—
the Permian basin nearly always exhibits the highest ethane HRI of any
location on the globe. The Permian also shows a clear spatial correla-
tion between fossil fuel production and ethane signal: Fig. 2b, f both
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Fig. 2 | Ethane hyperspectral range indices (HRIs) derived from CrIS radiances
over fossil fuel production regions. Panel (a) shows the location and spatial
extent of the other panels, which contain data for the Permian basin in Texas and
NewMexico, US46 (b, f), the HassiMessaoud oil field in Algeria47 (c, g), the Burun oil
field in Turkmenistan47 (d, h), and the Ordos basin in northern China48 (e, i). Panels
(b–e) show the 2013–2021 mean ethane HRI values as detected by CrIS over these

areas. Panels (f–i) show bottom-up fossil fuel data for the same locations based on
oil productionbywell49 (f; 2018data) or based on the estimatedmethane emissions
from oil extraction and production50 (g–i). Blue rectangles highlight high-HRI
regions on each set of paired figures, with annual oil-related methane emissions
from within those squares listed beneath50. Color scale maxima vary between
regions.
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show a clear two-lobed distribution corresponding to the Delaware
(western) and Midland (eastern) component basins. Of these, the
Delaware basin has both a higher mean ethane HRI and a higher total
fossil fuel extraction rate, producing 54% and 61% of Permian oil and
natural gas, respectively46,49. The corresponding methane emissions
were estimated at 1.7 Tg CH4 yr−1 (Delaware) and 1.0 Tg CH4 yr−1

(Midland) in 2018–2019 using TROPOspheric Monitoring Instrument
(TROPOMI) satellite-based observations46.

The other basins highlighted in Fig. 2 show lower ethane HRI
values, but nevertheless exhibit a tight spatial coherence between the
ethane spectral signal and underlying fossil fuel extraction activities.
We highlight this coherence in Fig. 2 with boxes delineating the HRI
enhancements for each basin (panels b-e); these boxes are then
replicated for reference over the corresponding emission/production
maps (panels f-i). This coherence is particularly strong over the Hassi
Messaoud oil field. Ethane HRI enhancements over the Burun oil field
in Turkmenistan have a distribution thatmatches that of oil-extraction
methane emissions, but with the highest ethane signals at the base of
the Cheleken peninsula. The Ordos basin in China features the second-
highest ethane HRI values across the regions in Fig. 2 but with much
lowermethane emissions (50 GgCH4 yr

−1) than those in Burun (690Gg
CH4 yr

-1)50.
These observations represent an opportunity to characterize

atmospheric ethane sources through time and space, and for under-
standing their connections to fossil fuel production and to the co-
emission of methane. However, the HRI is a unitless measure that
depends not only on ethane abundance but also on spectral and
environmental factors as described previously39,45. We therefore
employ a retrieval (described below) to convert the CrIS HRI values
into ethane column amounts.

Retrieval of Organics from CrIS Radiances (ROCR)
algorithm updates
We convert the satellite-derived HRI fields to ethane columns using an
artificial neural network (ANN). The retrieval involves two significant
updates to version 1 of the Retrieval of Organics from CrIS Radiances
(ROCR) algorithm described by Wells et al.39. In ROCRv2, we use the
Line-by-Line Radiative Transfer Model51,52 (LBLRTM) rather than the
Earth Limb and Nadir Operational Retrieval53 (ELANOR) model to cal-
culate spectral Jacobians and synthetic radiances. LBLRTM computes
molecular optical depths line-by-line rather than via pre-computed
lookup tables, thus increasing accuracy and species flexibility. The
second update involves an explicit and customizable means of
accounting for vertical retrieval sensitivity and is described later in this
section.

Reactive trace gasfields (VOCs, ozone, ammonia) for ANN training
use 2019 output from the GEOS-Chem CTM (Version 13.354; see
Methods) for 12:00–15:00 local time (LT), reflecting the ~13:30 LT CrIS
observations. The model is sampled between 60° S and 75° N every
16 days throughout the year (total: 23 days), with random positive
scaling (σ = 1, μ = 1) applied to the VOC profiles tominimize any effects
from correlations with atmospheric conditions39. Profiles for other
spectrally relevant species (e.g., chlorofluorocarbons, carbon dioxide,
methane, nitrous oxide, carbon tetrachloride) are based on a clima-
tology from the Model for OZone and Related chemical Tracers
(MOZART)55. Meteorological fields (temperature, water vapor) use the
Modern-Era Retrospective analysis for Research and Applications
(MERRA-2).

The above input data are used in LBLRTM to generate synthetic
HRIs as would be detected by CrIS. For eachmodel scene, we simulate
top-of-atmosphere radiances with andwithout atmospheric ethane for
three view angles selected randomly from each of three bins (0-16°, 17-
32°, 33-48°).We then addCrIS-like randomnoise, with zeromean and a
standard deviation derived from values reported in the CrIS L1B
product. These CrIS noise values are (1) lowest in the middle of the

LWIR band (700–1000 cm–1) and (2) lower at higher brightness
temperatures36. We next calculate our set of training HRIs by com-
bining the LBLRTM-derived synthetic radiances with background
spectral covariances obtained from the CrIS measurements them-
selves, as detailed by Franco et al. for IASI28. Calculation of the syn-
thetic HRIs against a background of zero ethane reduces sensitivity to
model errors, but (as will be discussed) if the true ethane background
is above the CrIS detection threshold it would then need to be added
post-hoc to theANNoutput prior to data analysis28. Through the above
procedure we obtain a training HRI dataset for which the underlying
ethane columns are known. The range of synthetic HRIs encompasses
that of theCrISHRIs, so that theANNpredictions describednext are in-
sample.

A feed-forward ANN is trained on this dataset to predict ethane
column amounts from the corresponding HRI values. The employed
ANN includes two hidden layers (with 20 and 10 nodes, respectively)
and a single output node, and is trained on 10 random extractions of
the input dataset. The ANN includes as predictors relevant ancillary
variables that affect the spectroscopy. For ethane, these include water
vapor (column amount), surface skin temperature, atmospheric tem-
peratures (surface air temperature, ~1 kilometer, ~4 km, ~10 km), sur-
facepressure, and viewangle. AswithROCRv139, latitude and longitude
are not included as predictors. As an improvement over ROCRv139 we
introduce here an additional predictor to account for the sensitivity of
thermal IR satellite measurements to the vertical profile of the absor-
ber: P90, the atmospheric pressure below which 90% of the ethane
column resides. For training purposes these vertical profiles are
obtained from the randomized GEOS-Chem simulations referenced
above; inclusion of P90 in the ANN then allows the vertical sensitivity of
the measurement to be explicitly represented via a single variable. As
will be outlined below, it also allows the retrieved ethane column to be
adjusted a posteriori to any assumed vertical profile shape—e.g., for an
internally consistent comparison with model fields, or where an
observational constraint on the profile shape is available.

Training performance and uncertainty
Figure 3 summarizes the ANN training performance. The network
mean can reproduce 88%of the ethane column variance in the training
set with a root-mean-square error of 4.1 × 1015 molecules cm–2. Fig-
ure 3b and Supplementary Fig. 2 compare the relative impacts of the
input variables on the columnpredictions, demonstrating that the HRI
is most important—particularly when ethane is enhanced. Next in
importance is P90, and its influence is likewise most pronounced for
higher ethane columns. The leading importance of the HRI and P90
variables show that the retrieval is predominantly determined by the
ethane column amount and its vertical distribution, as expected for a
thermal IR measurement. The five temperature variables individually
have only modest impacts on the predictions (Supplementary Fig. 2)
but are collectively important given that thermal IR retrieval sensitivity
depends on the surface-atmosphere thermal contrast.

The relative error in the predicted value increases as column
values decrease, from ~10% at a column abundance of 5 × 1016 mole-
cules cm-2 to ~30%at 1 × 1016molecules cm-2. Supplementary Fig. 3 plots
the prediction error (the absolute value of the difference from the true
value) andbias (the simpledifference from the true value) as a function
of both thermal contrast and P90. The mean error exceeds 100% for
ethane columns below 4 × 1015 molecules cm-2, defining an approx-
imate detection threshold for the CrIS observations (this threshold
does not vary significantly with thermal contrast or P90). The lack of a
strong relationship between error and thermal contrast seen in Sup-
plementary Fig. 3 is notably different from the isoprene case39. We
attribute this difference to the longer atmospheric lifetime of ethane:
isoprene is highly concentrated in the lowermost atmosphere and thus
more sensitive to near-surface thermal contrast. Ethane is more dis-
persed through the vertical column and this dependence is thus
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distributed amongst the suite of atmospheric temperature inputs. The
bias plots in Supplementary Fig. 3 further reveals a modest tendency
for the retrieval to overpredict the training valueswhenethane column
amounts are low and to underpredict them at high column amounts
and when ethane is lofted vertically (by a mean of 12% for columns
>2 × 1016 molecules cm–2 and P90 < 300 hectopascals [hPa]). This
moderate underestimate at high column amounts, revealed in Sup-
plementary Fig. 3, also manifests in the predicted vs. true regression
slope (0.94; Fig. 3).

Ethane column derivation and comparison with observations
We use the 10-ANN ensemble described in the prior section to derive
ethane column densities from the CrIS-measured HRI values. Meteor-
ological inputs for the retrieval use MERRA-2 reanalysis. We perform
the ANN retrieval on a 0.5° × 0.625° horizontal grid and for a range of
P90 values (150, 250, 350, 450, 550, and 650 hPa; chosen based on
global P90 statistics from a GEOS-Chem simulation). The CrIS retrieval
output for a given location can hence be adapted to any assumed
vertical profile by interpolating between the ethane columns derived
for the two proximal P90 values.

We evaluate the resulting CrIS ethane measurements against
surface-based solar FTIRobservations collectedby theNetwork for the
Detection of Atmospheric Composition Change (NDACC; see Meth-
ods). A map of NDACC stations used in this analysis is shown in Sup-
plementary Fig. 4. NDACC ethane retrievals are well-characterized,
with <6% systematic error and <3% random error33, exhibit good
agreement with in-situ observations56, and have a long history of
use3,21,32,33,57–63. In our baseline comparison approachweuse theNDACC
a posteriori profiles to specify the ethane P90 value used in the CrIS
retrieval for each time and location. This provides a CrIS-independent
constraint and ensures internally consistent profile assumptions
between the two datasets.

Figure 4 displays the CrIS-NDACC comparison results obtained in
this way. The two datasets are significantly correlated (R2 = 0.66),
showing that CrIS can capture variability in atmospheric ethane across
the NDACC locations and sampling times. The CrIS data are lower than

the surface column observations, with a mean CrIS/NDACC column
ratio of 0.65 and a major axis slope of 0.60 (bootstrapped 95% con-
fidence interval: 0.59–0.61). The intercept of (–1.1 [–1.2 to –0.9]) × 1015

molecules cm−2 is near-zero and below the CrIS limit of detection,
obviating any background addition that would otherwise be required
from the HRI formulation. Restricting the analysis to the single CrIS
grid cell containing the NDACC station rather than the 3 × 3 matrix
mean increases the slope to 0.75 (0.72–0.77), increases the scatter
(R2 = 0.48), and shifts the intercept slightly (–3.2 [–3.4 to –2.9] × 1015).
Despite the greater noise, this latter approach likely provides a more
robust comparison near source regions (e.g., for the St. Petersburg,
Bremen, Xianghe, and Toronto sites). Relaxing the ±2 h temporal
overlap window to ±8 hours, or excluding the altitude-dependent
scaling for high-elevation sites (see Methods), does not appreciably
change these results. Averaging the results in Fig. 4 by station (see
Supplementary Fig. 5) shows that theCrIS:NDACCcomparisons adhere
to a single statistical relationship (R2 = 0.92; CrIS/NDACC column
ratio = 0.65; slope =0.45) across the global distribution of observing
stations—arguing against any large regional differences in retrieval
performance.

The NDACC degrees of freedom for signal (averaging ~1.5) indi-
cate that their a posteriori profile shapes and associated P90 values are
largely determined by the NDACC prior rather than by the observa-
tions. For that reason, we performed an additional CrIS-NDACC com-
parison instead using P90 values predicted by GEOS-Chem for each
time and location. Results (slope = 0.66; R2 = 0.55) are consistent with
the baseline comparison, supporting the robustness of the conclu-
sions above.

Possible reasons for the non-unity CrIS:NDACC slope shown in
Fig. 4 could include inconsistency between the employed thermal and
shortwave infrared cross-sections, a misspecification of the CrIS noise
in the vicinity of the ν9 ethane feature (as used for deriving the syn-
thetic HRIs), or radiative transfer model uncertainties (different for-
ward models are used for the two datasets). Future refinements of the
CrIS ethane product presented here will explore such factors for
potential improvement.

Fig. 3 | Artificial Neural Net (ANN) training set and predictor importance. Panel
(a) displays predicted vs true ethane columns for the full training set, shown as the
mean (red dots) and standard deviation (blue error bars) across the 10 individual
ANNs. Panel (b) displays the relative importance of selected individual predictors

via their impact on the overall 10-ANN root-mean-square error (RMSE). ‘All Pre-
dictors’ shows theRMSEwhen including all predictors; other results show theRMSE
when the designated predictor is omitted. A version of this figure including all
predictors is included in the supplement (Supplementary Fig. 2).
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Ethane in the Permian Basin
The ~400 km2 Permian basin in New Mexico and west Texas con-
sistently exhibits the largest ethane enhancements over the 2013–2021
CrIS record (Fig. 2). Over the last decade, with advances in drilling
technology this region has become themost productive oil-producing
basin in the US and one of the largest in the world46. As a result, the
Permian has been a focus of methane-related research46,64,65, with a
recent top-down analysis concluding that leakage rates 60% higher
than the national average led to a methane flux of 2.7 ± 0.5 Tg yr−1 in
2018–2019—the largest reported amount from any US oil/gas pro-
duction region46.

The accompanying ethane emissions are less well known.
Bottom-up inventories used by GEOS-Chem6 suggest an ethane
flux of 0.074 Tg yr−1 from the Permian: however, this leads to a
dramatic underestimate of the resulting column amounts com-
pared to those seen by CrIS, indicating that the true flux is much
higher. Barkley et al.66 obtained a regional ethane flux estimate of
0.28 Tg yr−1 based on airborne sampling downwind of the Permian
that mainly took place in 2017, though the authors report low
confidence in this finding due to limited regional sampling cov-
erage. A recent bottom-up estimate for 2015 from NOAA’s Fuel-
based Oil and Gas (FOG) inventory67 suggests considerably higher
Permian ethane emissions for 2015 (0.56 Tg) than those inferred
by Barkley et al.66 for 2017 (0.28 Tg) or predicted by GEOS-Chem.

We performed a series of sensitivity simulations with the GEOS-
Chem CTM (configured as described in Methods) to determine the
Permian ethane flux required to match the CrIS observations. Simu-
lations were first performed for 2019 over a nested 0.5° × 0.625°
domain containing the Permian basin (29°–34° N; 100°–106° W). In
addition to the reference run with standard model emissions, simula-
tions were performed with ethane emissions from the subregion
encompassing the Delaware and Midland basins (31°-34° N, 101°–105°
W) scaled by factors of 2, 5, 6, 7, 8, 10 and 11. The model was sampled
from 12:00 to 15:00 LT daily to match the CrIS overpass, with the
simulated profile shapes thenused to determine the grid-cell and time-
specific P90 values for the corresponding CrIS retrievals.

The top panel of Fig. 5 plots the mean CrIS/GEOS-Chem column
difference over the full Permian domain as a function of the emission
scale factor employed in the model. The intercept of 7.4 (95%

confidence interval: 7.3–7.6) reflects the factor by which the bottom-
up Permian emissions need to be scaled to be consistent with the
space-borne constraints. The above confidence interval was generated
by bootstrapping the statistical fit shown in Fig. 5 and thus does not
account for any systematic satellite ormodel errors. The result implies
an ethane flux of 0.53 Tg in 2019, with the Permian basin alone then
responsible for 4–7%of the total estimated fossil-fuel ethane emissions
worldwide3,14.

Figure 5 also spatially compares the CrIS ethane columns over
the Permian with those derived by the base-case GEOS-Chem simu-
lation and by an optimized simulation with regional emissions
scaled by the derived factor of 7.4. The updated simulation captures
the mean ethane column magnitude observed by CrIS over the
Permian but not the underlying spatial features, because the
bottom-up inventory employed in the model (which is scaled uni-
formly over the indicated subdomain) inaccurately maps the dis-
tribution of emissions across the Delaware and Midland basins.
Advancing ethane emission inventories, and improving on the Per-
mian flux estimate presented here, will thus require improved and
up-to-date spatial mapping of the underlying activities (e.g., as
provided via GFEI and FOG50,67).

We extended the above inversion technique through the
2014–2019 period to characterize the associated ethane emission
trend as seen by CrIS. Figure 6 shows the results and compares them
to US Energy Information Agency records of regional oil
production46,47,66–68 (natural gas follows a similar trend) and to other
bottom-up and top-down constraints. The Permian fossil fuel pro-
duction rates rise strongly through this period, with slightly lower
rates of increase in 2016-2017. The CrIS-derived ethane emissions
likewise show an overall increase, with a 2016 dip followed by a
through the remainder of the period. The CrIS ethane emission
trend arises entirely from changes in the measured ethane columns,
as the prior fluxes in GEOS-Chem are static over this time3.

Figure 6 also shows that theCrIS-derived Permianemissions agree
match well with the Barkley et al.66 estimate for 2017 (0.31 Tg vs 0.28
Tg, respectively) but are ~2 × lower than the FOG bottom-up estimate
for 2015, and are also lower than those implied by applying a regional
17–18% mol/mol ethane:methane emission ratio (32-34% on a mass
basis)3,66,69 to recent satellite-inferred methane fluxes46,65. Appling a
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Fig. 4 | Evaluation of Suomi-NPP Cross-track Infrared Sounder (CrIS) ethane
retrievals against ground-based observations from the Network for the
Detection of Atmospheric Composition Change (NDACC). NDACC observations
are averaged over ±2 h of the local satellite overpass time. CrIS observations reflect
a 3 × 3 pixel mean (0.5° × 0.625° resolution) centered on the NDACC site. The black

line shows a standard major axis fit, with parameters given inset (intercept
units: 1016 molecules cm−2). Vertical scaling corrections (Methods) have been
applied to the CrIS columns for the six high-altitude sites (Altzomoni, Maido,
Mauna Loa, Izaña, Rikubetsu, and Zugspitze). The 1:1 line is also shown (dashed
gray line).
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Fig. 5 | Derivation of 2019mean ethane columns over the Permian basin. Panel
(a) displays thedifference in the 2019-meanethane columnsover the Permianbasin
between CrIS and GEOS-Chem as a function of the regional emissions multiplier
used in the model. Error bars reflect 95% confidence intervals for each mean. The
blue line and shaded region show a linear least-squares fit and associated 95%
confidence interval, with the intercept indicating a true Permian emission scale
factor of 7.4 ±0.1 (vertical dashed line). The bottompanel shows 2019mean ethane
columns over the Permian basin as (b) simulated by the GEOS-Chem base-case (GC

a priori), (c) observed from space by CrIS, and (d) simulated by the updated GEOS-
Chem run based on a Permian emission scale factor of 7.4 (GC a posteriori). Vertical
profile shape information (P90 values, defined as the pressure level above 90% of
the ethane column) for the CrIS retrievals are obtained from the corresponding GC
a posteriori output. The gray square indicates the subdomain over which the
emission scale factors were applied in the model. Total annual ethane emissions
from the full Permian domain are indicated in white on panels (b, d).
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Fig. 6 | Trends in oil production and emissions over the Permian Basin. Annual
mean ethane emission estimates are plotted in gold on the left axis, while annual oil
production rates for the same region68 are plotted in purple on the right axis. The
Barkley et al.66 flux estimate was derived from airborne ethane measurements; the
Francoeur et al.67 estimate is a bottom-up estimate of ethane emissions; the GEOS-

Chem ethane emissions are from Tzompa-Sosa et al.3; and the Varon et al.65 and
Zhang et al.46 values were obtained by applying a basin-average ethane:methane
emission ratio of 18%3,66,69 to their satellite-derived methane flux estimates. The
Cross-track Infrared Sounder (CrIS) ethane emissions in this plot were derived
using the same methodology as shown in Fig. 5.
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factor of two correction to the CrIS values, as would be implied by the
NDACC comparison in Fig. 4, yields 2014-2019 emissions that more
closely match FOG and fall between the twomethane-based estimates
—while degrading agreement with Barkley et al.66.

Discussion
We present a space-based retrieval of tropospheric ethane based on
thermal infrared radiance observations from the CrIS satellite sensor
onboard Suomi-NPP. Spectral detection of ethane is first demon-
strated using plume observations downwind of the January 2020
Australian wildfires. Other ethane enhancements seen from CrIS cor-
respond with known fossil fuel extraction activities, and we show
examples from four major production regions: the Permian basin (in
Texas and New Mexico); the Hassi Messaoud oil field (in Algeria); the
Burun oil field (in Turkmenistan); and the Ordos basin (in Northern
China). The CrIS ethane HRIs are sensitive enough to reveal sub-basin
variability that reflects the distribution of oil/gas extraction and pro-
cessing facilities.

We then employ an artificial neural network to convert the CrIS
ethane enhancements to atmospheric ethane column amounts,
while accounting for the ancillary variables that affect the spectro-
scopy. Our ethane retrieval can reproduce 88% of the variance in the
training set with low bias and an RMSE of 4.1 × 1015 molecules cm–2,
while comparison with ground-based column observations from the
NDACC network reveals a significant correlation (R2 = 0.48–0.66)
and a mean CrIS/NDACC ratio of 0.61–0.65. We focus subsequent
analysis on what the CrIS HRI observations reveal to be the most
pronounced ethane hotspot on the globe: the Permian basin in
Western Texas and Southern New Mexico. By combining our
ROCRv2 ethane retrieval with GEOS-Chem using a mass-balance
inversion technique, we obtain ethane emission estimates that
increase with Permian fossil fuel production rates. Our analysis
suggests that the Permian alone represents at least 4–7% of the total
global fossil fuel-related ethane source; considering the CrIS:NDACC
comparison results, this estimate may be conservative3,14. The ana-
lysis in this paper represents a first step in using the CrIS observa-
tions to better understand global ethane emissions from fossil and
non-fossil sources.

This Suomi-NPP CrIS dataset spans 12 years (2012–2023) of daily
global ethane column observations, opening opportunities for
understanding the underlying emission magnitudes, variability, and
trends around the world. Suomi-NPP CrIS ceased LWIR operation in
August 2023, but successor CrIS instruments are currently onboard
the Joint Polar Satellite System JPSS-1/NOAA-20 and JPSS-2/NOAA-
21 satellites and slated for launch onboard JPSS-3 and JPSS-4—offering
data continuity well into the 2030 s. This long-term record is a key
community resource for advancing understanding of ozone, reactive
nitrogen budgets, and fossil fuel emissions worldwide.

Methods
Instrumentation
CrIS is a Fourier transform spectrometer onboard the Suomi-NPP
(launched 2011), JPSS-1/NOAA-20 (2017), and JPSS-2/NOAA-21 (2022)
satellites, which are all in sun-synchronous low-Earth orbits with
~01:30/13:30 equator crossing times. Additional CrIS instruments are
planned for the JPSS-3 and -4missions. CrISmeasures in three spectral
bands covering the LWIR (650–1095 cm−1), midwave IR
(1210–1750 cm–1), and shortwave IR (2155–2550 cm–1). We employ here
daytime-overpass LWIR data from Suomi-NPP, which is available from
02/2012 to 08/2023 at 0.625 cm–1 spectral resolution. The CrIS field of
regard consists of a 3 × 3 pixel array each with 14-km nadir footprint
diameter; the 2200 km cross-track scan width provides twice-daily
global coverage. Single-pixel results fromCrIS are averaged here to the
MERRA-2 grid70 prior to analysis using a drop-in-the-box method with
no temporal or spatial co-adding.

CrIS spectral residual processing
We use CrIS spectral residuals processed with the MUlti-SpEctra,
MUltiSpEcies, Multi-SEnsors (MUSES) algorithm from the TRopo-
spheric Ozone and its Precursors from Earth System Sounding (TRO-
PESS) project. The MUSES algorithm leverages over 20 years of
heritage from the Aura TES optimal estimation algorithm. The strategy
for the residuals differs from the standard TROPESS CrIS strategy as
the latter aims to estimate the best values for all relevant absorbers,
whereas our goal is to remove non-target absorber signals. Following
the standard initial guess refinement for clouds and surface
temperature71, the residual strategy used here therefore diverges from
the standard TROPESS processing. A joint retrieval for H2O, CO2, O3,
NH3, peroxyacetyl nitrate (PAN), HDO, N2O, CH4, cloud properties,
surface temperature, and atmospheric temperature is performed. The
radiative transfer also accounts for fixed climatological values for SO2,
HNO3, OCS, HCN, SF6, HCOOH, C2H4, CH3OH, CFC-11, CFC-12, and
CCl4. All spectroscopic parameters come from the AER line file
(aer_v_3.8.1: https://github.com/AER-RC/AER_Line_File). These para-
meters were either obtained from the HITRAN database30,72,73 (this is
the case for ethane) or were custom-derived at AER (for certain spec-
tral ranges affected byH2O, CO2, O3 andO2). The windows span 650 to
1750 cm−1 with gaps imposed where radiances do not fit well (e.g. due
to spectroscopy). Following the joint step, cloud properties, surface
properties, and atmospheric temperature are fixed, and PAN is
retrieved between 780 and 790 cm–1 (with a gap between 783.125 and
786.250 cm–1 to window around water interference). Next, ozone and
ammonia are updated with windows between 923.125 and 1317.5 cm–1.
Finally, the spectral residual is calculated from 650 to 1095 cm–1 and
from 1215 to 1750 cm–1, accounting for H2O, HDO, CO2, O3, N2O, CH4,
SO2, NH3, HNO3, OCS, HCN, SF6, HCOOH, C2H4, CH3OH, PAN, CFC-11,
CFC-12, and CCl4 in the first window andH2O, HDO, CO2, O3, N2O, CH4,
SO2, NH3, HNO3, HCN, HCOOH, C2H4, CH3OH, and PAN in the second.

Modeling the Permian Basin with GEOS-Chem
We use version 14.1 Classic (https://doi.org/10.5281/zenodo.7600579)
of the GEOS-Chem CTM for our simulations of the Permian basin.
Simulations are for 2019 and employ MERRA-2 meteorology, Commu-
nity EmissionsData Systemglobal emissions74, andUS ethane emissions
fromtheTzompa-Sosa et al. inventory3,which is scaled fromthe2011US
National Emissions Inventory75 based on observational comparisons.
Model runs apply ethane emission scale factors (1, 2, 5, 6, 7, 8, 10, 11)
over the Delaware and Midland basins (31°–34° N, 101°–105° W). A
6-month spinup is used to initialize year-long, scenario-specific global
runs at 2 × 2.5° resolution that then provide boundary conditions for
matching nested simulations over the Permian (0.5° ×0.625°; 29°–34°
N, 100°–106°W). Model columns are sampled daily from 12:00 to 15:00
LT to match the CrIS overpass. A scenario-specific P90 value for each
column amount is then calculated from the model output and used for
the CrIS-model comparisons.

Surface-based ethane column observations
We use 2013–2021 data from 13 sites (12 NDACC stations plus one
candidate NDACC station at Xianghe, China) between 50°S - 60°N
(Supplementary Fig. 4) and restrict the comparison to observations
within ±2 h of the local satellite overpass time. Observation pairs with
skin temperatures below 270K are omitted to avoid retrieval artifacts
associatedwith snowor ice cover.We compare theNDACC columns to
(1) the mean CrIS value for a 3 × 3 matrix of 0.5° × 0.625° grid cells
centered on the site in question (to reduce noise), and (2) to the CrIS
value for the individual underlying grid cell (to minimize any signal
suppression for near-source stations). Six of the sites used here (Alt-
zomoni, Maido, Mauna Loa, Rikubetsu, Izaña, and Zugspitze) are
located at altitudes considerably higher than the average altitude over
the corresponding CrIS pixels. We therefore apply a scaling correction
to the CrIS values for these sites to account for this altitude difference
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based on the shape of the modeled GEOS-Chem profile for each date
and location.

Supplementary Fig. 6 plots the mean column averaging kernels
for the employed NDACC datasets, showing sensitivity through the
tropospheric column that increases with altitude. Also plotted in
Supplementary Fig. 6 is the HRI/column ratio for the corresponding
CrIS observations plotted as a function of the P90 value employed in
the retrieval, reflecting the measurement sensitivity to the vertical
location of ethane in the atmosphere. Simulations from GEOS-Chem
suggest that the range of ambient ethaneprofiles encountered at these
sites correspond to atmospheric P90 values of ~200-400 hPa (shaded
regions in Supplementary Fig. 6B). Supplementary Fig. 7 shows the
number of NDACC observations by site and year used in Fig. 4 and in
Supplementary Figs. 5 and 6.

Data availability
The data required to replicate the figures in this work have beenmade
publicly available as a capsule via the CodeOcean platform76 at https://
doi.org/10.24433/CO.4014696.v1. CrIS ethane columns, P90 values,
HRI values, and processed NDACC and US EIA data used here are
posted onCodeOcean. NDACCdata is also publicly available at https://
ndacc.larc.nasa.gov/. US EIA oil and gas production data is available
publicly at https://www.eia.gov/. Additional data was taken from
assorted other published papers3,46,47,50,65,66 and is also included in the
CodeOcean repository linked above.

Code availability
The R code and libraries required to replicate the figures in this work
have been made publicly available as a capsule via the CodeOcean
platform76 at https://doi.org/10.24433/CO.4014696.v1. The code can
be examined and run interactively at that platform. GEOS-Chemmodel
code is publicly available via https://geoschem.github.io/.
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