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Abstract. In the field of spatial aeronomy, atmospheric profile datasets
often contain partial data. Probabilistic models, particularly Gaussian
processes (GPs), offer promising solutions for filling these data gaps. How-
ever, traditional GP algorithms encounter challenges when handling multi-
ple sequences simultaneously, both in terms of performance and computa-
tional complexity. Recently, an algorithm named MAGMA was introduced
to address these issues. This paper evaluates MAGMA’s performance us-
ing the SOIR Venus atmosphere dataset, marking the first application of
MAGMA to atmospheric profiles. Results indicate that MAGMA repre-
sents a significant advancement towards the efficient application of GPs
for extrapolating atmospheric profiles.

1 Introduction

From May 2006 to November 2014, the Venus Express orbiter collected mea-
surements of the Venusian atmosphere. One of the instruments on the satellite
was SOIR (Solar Occultation in the InfraRed). By scanning the light rays com-
ing from the Sun after they went through Venus’ atmosphere, SOIR inferred
various atmospheric properties such as the temperature and the abundance of a
set of chemical species. Spanning multiple altitudes in the mesosphere and the
thermosphere above the cloud layer, these observations constitute atmospheric
profiles in the SOIR dataset [1].

Across all profiles, altitudes where measurements were taken range from
60km to 160km. However, due to inherent limitations in the measurement pro-
cess, i.e., solar occultations, precise measurements could only be obtained within
narrower altitude ranges. Most profiles in SOIR cover altitudes of merely 10 to
50 consecutive kilometres. The limited amount of usable data in each profile
raises the question of what would have been observed at missing altitudes.

One could want to extrapolate the profiles to expand the available data, find-
ing likely values for altitudes that could not be measured. A machine learning
algorithm can use the whole dataset to discern a general shape of atmospheric
profiles. This shape can then be tailored to individual profiles to infer values out-
side of their observed altitude range. However, such algorithms must be designed
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carefully, as their decision-making process and outputs should be understand-
able by experts to assert their plausibility. Probabilistic models, particularly
Gaussian processes (GPs), are promising candidates for this task as they can
offer both explainability and a measure of uncertainty in their predictions.

The MAGMA algorithm proposed by Leroy et al. [2] constitutes a recent
advance in the field of GPs. It leverages data across multiple sequences to
predict missing values more accurately, even far from known observations. This
paper explores the benefits of using MAGMA rather than a traditional GP to
extrapolate incomplete atmospheric profiles.

2 Related Works

GPs have applications across various domains, including Earth observation data
analysis [3, 4], astronomy [5] and spatial aeronomy [6, 7, 8]. However, prior
studies mostly focus on either time series modelling or parameter estimation for
a single sequence of observations. In the setting of SOIR, the dataset contains
multiple profiles that must be analysed together. This motivates the use of a
specific extension of GPs called “multi-task GPs”. In the context of SOIR, a
task corresponds to an atmospheric profile. The literature in multi-task GPs
is extensive [9, 10, 11]. However, most of these algorithms either require to
specify the covariance between tasks explicitly or struggle to keep relatively
tight confidence intervals and scale to larger datasets.

The MAGMA algorithm [2] is a variant of multi-task GPs tailored for datasets
where tasks share a common set of inputs (e.g., altitude of observations). When
an observation is missing within a specific task, the prediction relies not only
on observations of this task close to the missing observation (similar to a con-
ventional GP), but also on the mean value observed at that input across all
tasks where it is present. This has the effect of narrowing confidence intervals
when going further from observed data in a specific task. Moreover, MAGMA
offers an implementation1 with reasonable computational complexity, enabling
applications to larger datasets. Despite its potential, MAGMA has not yet been
applied to atmospheric profile analysis or extrapolation. The following sections
explore the possible gains MAGMA can bring to the field of spatial aeronomy.

3 Atmospheric Profiles Data

The SOIR dataset contains 2616 profiles of CO2 and temperature, each observed
at the terminator of Venus at specific coordinates and time. A profile comprises
multiple measurements with their corresponding 1-σ error estimation, obtained
at varying altitudes. The altitude range for measurements varies across profiles.

As this study focuses on asserting the usability of one specific algorithm,
only temperature observations, without their estimated error, are utilised. Pro-
files containing fewer than 10 observations are discarded, as they complicate the

1R package available at https://github.com/ArthurLeroy/MagmaClustR
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Fig. 1: Comparison of three profiles of the SOIR dataset, before and after being
normalised and mapped to a discrete logarithmic pressure scale.

hyperparameter optimisation process of GPs, significantly hurting the perfor-
mances of all models during experimentation.

As normalisation is known to enhance the performances of GPs, all tem-
perature measurements in the dataset are standardised. In aeronomy, it is also
common to use the logarithm of the pressure as a height indicator rather than
the altitude. This raises a problem because pressure is measured on a continuous
scale, but MAGMA requires discrete, common entries for each task in order to
keep its computations feasible. To address this issue, we compute the logarithm
of each pressure measurement and map it to its closest bin on a discrete scale.
Preliminary experiments showed that a scale of 250 discrete bins gives good re-
sults. Figure 1 illustrates the difference between raw profiles from the dataset
and their preprocessed versions.

4 Experiments

To assess the performance of MAGMA on the SOIR dataset, we design a simple,
single-task GP with a zero mean prior and a standard Radial Basis Function
(RBF) kernel to serve as a baseline. The kernel’s hyperparameters, namely its
length scale and variance, must be optimised in accordance with the working of
MAGMA. MAGMA offers two ways of optimising hyperparameters: one where
hyperparameters are shared across all tasks, and the other where each task has
its own set of hyperparameter values. We call these setups “Common HP” and
“Distinct HP”, respectively. Both setups are applied during the experiments. To
ensure a fair comparison, the baseline GP is trained under similar conditions. In
the Common HP setup, the hyperparameters are optimised through stochastic
descent using all profiles in the dataset. In Distinct HP, the GP hyperparameters
are optimised individually for each profile.

We divide profiles from the SOIR dataset randomly into training and test-
ing sets, with the test set comprising 10% of the profiles. Within each test
profile, observations are further divided into given test observations and unseen
test observations. During model evaluation, the given test observations serve
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Given test obs. Unseen test obs.
MSE CIC95 MSE CIC95

Baseline GP
Distinct HP 0.0019 96.59% 0.3772 81.61%
Common HP 0.0367 100% 0.4781 100%

MAGMA
Distinct HP 0.0016 98.62% 0.2804 78.73%
Common HP 0.0013 98.47% 0.2378 94.67%

Table 1: Comparison of MAGMA and the baseline GP. The performances on
unseen observations are the most relevant, as the model fits the given observa-
tions to make predictions.

as starting points for the model. The model can then make predictions for the
whole scale of pressure bins, including unseen altitudes. In turn, the unseen
test observations are compared to the model’s predictions to evaluate its perfor-
mances. Within each test profile, 33% of observations are designated as unseen
test observations. Three variations of the test set are generated, depending on
the location of unseen observations: at lower altitudes, at higher altitudes or in
the middle of the profile.

The evaluation metrics used to assess the performance of each model are
the Mean Squared Error (MSE) and the CI95 coverage (CIC95), as in Leroy
et al. [2]. The CIC95 is the ratio of observations actually located inside the
estimated 95% confidence interval, which should ideally be close to 95%. While
MSE assesses the precision of the model’s mean predictions, CIC95 evaluates
the plausibility of its predicted confidence intervals.

5 Results and Discussion

Results presented in Table 1 indicate that MAGMA significantly outperforms
the baseline on unseen test observations. They also show that while the MSE of
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Fig. 2: Predictions from the baseline and MAGMA, both in Distinct and Com-
mon HP settings. The given and unseen test observations are represented in
orange and white, respectively.
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Fig. 3: Average performances of MAGMA and the baseline GP for the different
locations of the unseen test observations.

the baseline is better when optimising specific hyperparameters for each profile,
the performance of MAGMA is improved when using the same hyperparameters
across the whole dataset. The influence of the hyperparameters setup can also be
seen in Figure 2. It appears that the baseline trained in the Common HP setting
overestimates its confidence intervals, explaining its 100% CIC95 value. As
profiles vary in shape, using common hyperparameters tends to give the GP large
variance, overly broadening the confidence intervals for each profile. Conversely,
the Distinct HP setting makes both the GP and MAGMA overfit on the given
test observations, deteriorating their predictions on unseen test observations. In
the Common HP setting, MAGMA provides the most precise predictions while
keeping 94.67% of unseen points in the predicted 95% confidence interval overall.

The results presented in Figure 3 also indicate that observations located
lower in the atmosphere are more challenging to predict for both models, while
observations removed in the middle of a profile are the easiest to estimate. One
possible reason is that the pressure scale places observations at low altitudes
further from one another. Given that the performances of both models deterio-
rate as they move further from known observations, this larger span of values is
harder to predict accurately.

6 Conclusion

GPs are promising models for atmospheric profile extrapolation. The first step
towards their practical application is to explore how they can leverage data
from multiple profiles to improve their prediction accuracy. This paper exam-
ined the possibility of applying the MAGMA algorithm for this task. We com-
pare MAGMA to a single GP baseline trained across profiles. Ultimately, we
demonstrate that MAGMA outperforms the baseline, offering more precise and
credible predictions by leveraging information from the whole dataset for each
prediction.
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These findings represent preliminary results, making a first step towards a
concrete application of GPs to spatial aeronomy. Future enhancements for our
models include incorporating additional features as covariates, adopting more
advanced preprocessing techniques, considering error measurements in a het-
eroskedastic model and refining the kernel to make it more specific to the task
at hand. Another potential next step would be to use MagmaClustR [12], a
variant of the MAGMA algorithm that may reduce prediction uncertainty by
performing clustering on profiles. These enhancements could establish GPs as
highly effective models for spatial atmosphere analysis.
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