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ABSTRACT

Hooray! The ESA EnVision mission is adopted.
Onboard the spacecraft, there will be a suite of three spectrometers, VenSpec. One of these is called VenSpec-H
where the H stands for high spectral resolution. Its scientific objectives consist in measuring variations of minor
species’ abundances in the atmosphere of Venus. H2O, SO2, CO and OCS will be measured to characterize
the potentially ongoing volcanic activity. These observations will allow us to understand both the importance
of volatiles in volcanic activity on Venus and their effect on cloud maintenance and dynamics. VenSpec-H will
measure these molecules in nadir viewing geometry, in infrared transparency windows of Venus’ nightside to
probe the troposphere and in infrared spectral ranges on the dayside to measure the mesosphere. In this paper,
the scientific requirements enabling our scientific objectives will be demonstrated. An intercomparison exercise
was first led to reproduce modelled and observational reference spectra. The molecular vertical profiles, the
aerosols’ model and the CO2 continuum contribution were validated for the different spectral windows. This
enabled us to determine the spectral bands, their bandwidth and the resolving power necessary for our purposes.
Along the way, we identified possible improvements and science avenues. Some of them impact the instrument
design, such as the need for polarimetric measurements. Others are related to remaining uncertainties in the
model and laboratory measurements that will complement the investigation.

Keywords: EnVision, VenSpec-H, radiative transfer theory, Venus, molecular species, volcanic activity, instru-
mental requirements

1. INTRODUCTION

Despite their similar size and bulk composition, Venus and Earth have followed different geological evolution
paths. In three years of radar mapping (1990 to 1993), Magellan showed that Venus has abundant volcanic
and tectonic features but was unable to detect ongoing geological activity. Thousands of volcanoes from 1.5
to 280 km in diameter were imaged without detecting any new lava flows in the landscape [1]. Fifteen years
later, Venus Express was launched with a payload focusing on atmospheric science. The mission (2006-2014) was
a success and provided hints of active volcanism. More specifically, three instruments onboard Venus Express
brought insights to this investigation. Firstly the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS)
detected local anomalies in the emissivity maps [2]. The infrared radiation coming from three volcanic regions
was different to that from the surrounding terrain and interpreted as coming from relatively fresh lava flows

Corresponding author: Séverine Robert: severine.robert@aeronomie.be

1Infrared Remote Sensing and Instrumentation XXXII, edited by Marija Strojnik,
Jörn Helbert, Proc. of SPIE Vol. 13144, 131440W · © 2024 SPIE

0277-786X · doi: 10.1117/12.3027948

Proc. of SPIE Vol. 13144  131440W-1



that had not yet experienced significant surface weathering. Although these flows were found to be less than 2.5
million years old, the study could not establish whether there is still active volcanism on the planet. Secondly,
the ”Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus” (SPICAV) UV channel was
used to measure the abundances of SO2 above the cloud level [3]. Complementing the series of measurements
done by UVIS onboard Pioneer Venus during the 1970s and 1980s [4–6], the SPICAV-UV measurements showed
a sharp rise in the sulphur dioxide content of the upper atmosphere in 2006–2007, followed by a gradual fall over
the following five years [7]. As suggested by Marcq et al. (2020), these episodic sulphur dioxide injections to the
cloud tops may be caused either by periods of increased buoyancy of volcanic plumes, or, in the absence of active
volcanism, by long-period oscillations of the general atmospheric circulation. Finally, the most striking evidence
for active volcanism on Venus came from the Venus Monitoring Camera (VMC) in 2014. VMC spotted localised
changes in the surface brightness between images taken only a few days apart in 2008 and 2009. These infrared
”flashes” over the edges of the rift zone Ganis Chasma are thought to be caused either by hot gases and/or
lava released from volcanic eruptions [8]. Since Venus Express, more investigations have been carried out and
recently, Sulcanese et al., (2024) identified evidences of ongoing volcanic activities using the Magellan dataset [9].

To determine whether Venus is geologically active, a comprehensive payload is necessary: the surface and
subsurface need to characterized but information about the atmosphere is crucial. This is why EnVision will
also carry a complete spectroscopy suite called VenSpec [10] including an infrared mapper, VenSpec-M [11], an
ultraviolet spectrometer, VenSpec-U [12] and an infrared spectrometer, VenSpec-H [13].

2. SCIENTIFIC OBJECTIVES AND REQUIREMENTS

The science objectives of the VenSpec suite are to search for temporal variations in surface temperatures and
tropospheric concentrations of volcanically emitted gases, indicative of volcanic eruptions; to study surface-
atmosphere interactions and weathering by mapping surface emissivity and tropospheric gas abundances; and to
map the variability of trace species, cloud and aerosol properties and to distinguish intrinsic from extrinsic (e.g.
volcanic emissions) variabilities in the mesosphere. Observations will provide insight on the spatial distribution
of trace gas which is essential to understand the main chemical cycles on Venus. A typical spatial resolution of
100 km is sufficient to resolve most of the features.

Observing Venus’ troposphere in the infrared is challenging. On the dayside of the planet, the reflected sun-
light on the cloud deck prevents measuring below the clouds. The nightside of the planet must then be targeted.
Straylight from the dayside and high density of CO2 rendering the atmosphere opaque limit the number of useful
spectral ranges. Molecular species are probed in specific spectral windows called transparency windows centered
at 1.0, 1.1, 1.2, 1.3, 1.7 and 2.3 µm [14]. They have been used extensively since the 1990s to retrieve SO2, OCS,
CO, H2O and HCl [15–21] in the lower layers of the atmosphere but so far only vertical profiles of the H2O could
be determined.

The dayside measurements provide information about the mesosphere. In synergy with VenSpec-U the pos-
sible exchange occurring between the layers below and above the clouds will be investigated, especially in case
of the detection of a plume. In preparation for the mission, potential impacts of a volcanic plume have been
discussed [22] and modeling efforts are ongoing [23,24].

Based on our knowledge so far, the science requirements for the mission were decided upon and those related
to VenSpec-H are summarized in Fig. 1.
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Figure 1. EnVision Science observation requirements summary extracted from the Red Book [25]. ”In the left-hand
column, the EnVision requirements number is noted, together with a reference to the sections describing further the
requirement flow-down and how the science objectives are met applying the intended observation strategy and mission
payloads.” The requirement R2-C-20 (2) is associated to VenSpec-U [12,26,27].

Simultaneous observations of different species at a high spectral resolution will be the asset of our VenSpec-
H experiment. Few investigations reported measurements of different molecular species in the same spectra.
Nevertheless anti-correlation was highlighted between SO2 and H2O [28] or OCS and CO [20]. The new in-
strumentation will enable us to derive a map of these four molecular species altogether. This will be done by
measuring a wide spectral range in the 2.3 µm window at high spectral resolution. As will be discussed, the
bandwidth is limited though by the spectral resolution that needs to be as high as possible to be able to dif-
ferentiate the ro-vibrational lines for each molecule. This requirement will be translated into an increase of the
resolving power by a factor of 4-5 compared to VIRTIS-H/Venus Express (R=2000). A higher spectral resolution
has already proven being decisive in highlighting variation of SO2 in the 2.46 micron band[29]. Using radiative
transfer tools and our expertise with the NOMAD-LNO instrument onboard ExoMars Trace Gas Orbiter [30],
we describe the instrumental requirements of this new experiment capable of measuring trace gases at high
resolution both in the troposphere and in the mesosphere of the Venus atmosphere.

3. MODELING THE VENUS ATMOSPHERE

3.1 RADIATIVE TRANSFER CODE

In order to define the instrumental requirements of a new experiment, such as the Signal-to-Noise ratio (SNR),
the resolving power (RP) and the spectral ranges, our radiative transfer code ASIMUT-ALVL was used exten-
sively. ASIMUT is a modular program for radiative transfer calculations in planetary atmospheres [31]. One
of the main particularities of the software is the possibility to retrieve columns and/or profiles of atmospheric
constituents simultaneously from different spectra, which may have been recorded by different instruments or
obtained under different geometries. This allows the possibility to perform combined retrieval, e.g. of a ground
based measurement and a satellite-based one probing the same air mass, or from spectra recorded by different
instruments on the same platform [32]. This Radiative Transfer code derives the Jacobians analytically and
includes the Optimal Estimation Method (OEM) [33], using diagonal or full covariance matrices.

Initially developed for the Earth atmosphere, its applicability has been extended to extraterrestrial atmo-
spheres, such as those of Mars [34–36] and Venus [37]. ASIMUT has been coupled to SPHER/TMATRIX [38,39]
and LIDORT [40] codes to include the complete treatment of the scattering effects into the radiative transfer
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calculations [41].

ASIMUT-ALVL can be used as a forward modeling tool and also as a retrieval module. It allows to fit
simultaneously or sequentially different parts of one or more spectra, to fit the surface temperature, to fit col-
umn/vertical profiles for molecular species and for aerosols and to fully characterize the outputs (averaging
kernels, errors, degrees of freedom, etc.).

3.2 MOLECULAR DATA

When simulating the Venus atmosphere in the infrared spectral ranges, eight molecular species are needed: CO2,
H2O, HDO, CO, SO2, HCl, HF and OCS. Each of them have their own absorption spectrum. Fig. 2 shows the
line intensities directly downloaded from HITRAN Online (https://hitran.org). It shows how interesting the
2.3-2.5 micron spectral range is. The CO band is visible at one end and the SO2 one at the other. HF lines are
more spaced to one another, due to the rotational constant of the molecule. In terms of intensity, the SO2 band
is weak compared to the rest.

Figure 2. Line intensities of CO in blue, SO2 in orange with a multiplicative factor of 103, OCS in green and HF in red
with a multiplicative factor of 10−3. The values have been downloaded from HITRAN Online on 24/07/2024 [42–74].
Water lines are not shown for better readability but they do absorb in that spectral range.

The line parameters were extracted from the HITRAN Online database [42] using HAPI [75]. The broaden-
ing line parameters have not been modified accounting for the CO2 buffer atmosphere. This was a deliberate
choice as in the frame of this investigation, our model still needed to be validated. Line parameters associated
to a CO2-atmosphere are available in the literature [76–79] and will be taken into account in further works [80].
HITEMP2010 [81] and HITRAN Online for H2O were both considered for this investigation. The spectroscopic
databases and their different versions are regularly the topic of validation papers [82–84] as none is perfect. We
decided to use the most recent one at standard temperature for traceability reasons, firstly and also because the
conclusion reached with this linelist should still hold with a more complete linelist, more consistent for the high
temperature of the Venus atmosphere.

The vertical profiles of the different molecules are shown in Fig. 3.
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Figure 3. Molecular species profiles used in this work [85–92].

The high pressure of the Venus’ troposphere leads to collisional effects on molecular spectra [93]. No the-
oretical model is perfect yet and ad hoc solutions are used. Especially, two important effects of pressure were
mitigated in our radiative transfer model. Firstly, to account for the far wings, each of the absorption lines is
calculated on a 125 cm−1 spectral interval. A Voigt profile was used for all molecules except for CO2 which
requires a sublorentzian profile [94]. Secondly, the CO2 continuum was prescribed using the empirical values
based on the VIRTIS /Venus Express spectra [94–96]. This parameterization has proved efficient in previous
investigations [21,94,97].

3.3 ATMOSPHERIC DATA

ASIMUT-ALVL was used to calculate synthetic spectra, using a line-by-line approach. Simulations of the day side
and the night side of the Venus atmosphere were performed in the infrared spectral region spanning wavelengths
from 1 to 2.6 microns. Eight molecular species were included, CO2, H2O, HDO, CO, SO2, HCl, HF and OCS,
as well as the aerosols and the CO2 continuum contribution. The concentration profiles of the molecular species
are based on the literature [85–88, 92, 98] and further refined into a common reference scenario defined at the
mission level. Rayleigh scattering was also taken into account.

The temperature and pressure profiles were obtained from the literature [86,90], as shown in Fig. 4.
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Figure 4. Pressure (on the left) in log scale and temperature (on the right) profiles in function of altitude, used in this
work [86,90].

The description of the cloud layer was based on former studies, namely [95, 99]. Because the particles are
liquid and approximately spherical, and because the wavelength of the light is of the same order as the radius of
the particles, a Mie code is appropriate for the calculation of their scattering properties. The particle number
densities of four cloud modes were distributed from 0 to 100 km according to Fig. 12 in [95]. The modes
themselves are described in Table 1 We assumed a lognormal distribution of sizes and the refractive indices were
taken from [100].

Mode mean radius [µm] σ [–]
1 0.3 1.56
2 1.0 1.29

2p 1.4 1.23
3 3.65 1.28

Table 1. Mean radius and variance of the different modes of the Venus’ aerosols.

4. INSTRUMENTAL REQUIREMENTS

Based on the quantities described in section 3, spectral simulations were performed. The radiance of the nightside
comes from the thermal emission of the surface and atmosphere while on the dayside, where we considered a
solar zenith angle of 30◦, there is an additional solar reflectance contribution. We used our tool to determine:

• the limits of the spectral ranges and the resolving power ;

• the Signal to Noise ratio.

4.1 BANDWIDTH AND RESOLVING POWER

The baseline of our instrument is based on SOIR/Venus Express [37, 101] and NOMAD-LNO/ExoMars Trace
Gas Orbiter [102, 103]. To retain much heritage from these successful instruments, the optical concept of our
VenSpec-H spectrometer is based on an echelle grating coupled to a high-performance, actively-cooled detector
[13]. The characteristics of the echelle grating that define the free spectral range and the instrument line profile,
and of the detector, i.e. its size in pixels, need to be taken into account when defining the scientific requirements.
Bandwidth and spectral resolution must be balanced out. The resolving power of a grating spectrometer with
well corrected optics is independent of the wavelength. It defines the smallest difference in wavelength of two
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spectral lines that can be distinguished from one another. The bandwidth is the wavelength range seen by the
detector. They are defined by the following Eq. (1):

Rmax =
npix × 10000

λ×BW
(1)

where Rmax is the maximum resolving power, npix is the number of pixels in the spectral direction and BW is
the bandwidth.

As an example, let’s imagine a detector of 500 pixels wide, in the spectral direction. To achieve a resolving
power of 7000 in the 2.5 micron band, Eq.1 indicates that the bandwidth cannot be larger than 285.7 cm−1.
Besides, the minimum value of bandwidth assumes that the pixel pitch is the limiting factor and that the Full
Width at Half Maximum of the instrumental line profile, i.e. the image of the slit for monochromatic illumina-
tion, is not wider than one pixel. If a slit is used with an equivalent width of more than one pixel, the maximum
bandwidth is divided by the slit width in pixels. In other words, the higher the resolving power the narrower the
bandwidth for a fixed number of pixels.

A trade-off must be found here. On one hand, measuring simultaneously CO and SO2, so far apart in wave-
length, as shown in Fig. 2 imposes a bandwidth of several hundreds of wavenumbers. On the other hand, a high
resolving power is required to distinguish the spectral features of H2O in the 1.17 micron band, as shown in Fig.
5. This led to strong constraints on the optical design [13,104].

Figure 5. Simulated radiance of the Venus atmosphere at different resolving powers: 14000 in black, 7000 in red and 2000
in blue. To distinguish between the different spectral lines, a resolving power of at least 7000 is required.

The physical characteristics of the grating may deviate from the ideal band centers when deriving them only
based on spectroscopy. One band center may be selected very precisely. The other wavelength ranges probed
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will flow down from this first choice. Considering the scientific objectives of the mission and of the instrument,
the cold overtone vibrational band 3ν3 (003-000) of SO2, centered at 2.45 µm, is considered as the primary target
and the optical design was optimized accordingly.

4.2 SIGNAL-TO-NOISE RATIO

To determine the required Signal-to-Noise ratio (SNR), radiances were simulated at two resolving powers (RP=
7000 and RP= 8500) and noise was added before performing the retrievals with ASIMUT-ALVL. The science
objective of 10% accuracy on each molecule was the target (except in the spectral band probing the near-surface
contents), see Fig. 1.

The error budget on the retrieved abundances was estimated considering the following contributions:

• Random error: retrieval error directly from the fit

• Systematic errors: cross-sections (3%), raytracing (1%) and source term (night:1.2% - day:3.6%)

The considered systematic errors are originating from unavoidable uncertainties in the radiative transfer
model. The uncertainties on the cross sections are linked to the choice of spectroscopy (HITEMP, HITRAN,
with or without CO2-broadening, ...). All line parameters are not available yet for Venus’ conditions. Besides
the error on intensities for instance for H2O varies from HITRAN error level 8 to 3, i.e., from less than 1% to
above 20% relative error. The other molecules errors are mostly around 5 to 10% on their line intensities. In our
error budget, we assumed a 3% error on the calculated cross-sections based on these HITRAN parameters. The
raytracing error is defined based on what impact could a pointing error have in the optical path length. The
source term errors on the nightside were calculated based on the impact on the Planck function when varying the
surface temperature by 1K. For the dayside a factor 3 was added to this error to take into account the complexity
of the incoming radiation.

The error budget in % was plotted against the SNR values, as shown in Fig. 6. The SNR value to meet the
required accuracy was obtained by interpolation as shown by the dotted lines in Fig. 6. This was done for each
molecule in each band.

Figure 6. Error budget of Band#1 on the nightside for H2O. As expected, the accuracy depends on the achievable SNR.

5. CONCLUSIONS

In this investigation, the molecular vertical profiles, the aerosols’ model and the CO2 continuum contribution were
validated for the different spectral windows. This enabled us to determine the spectral bands, their bandwidth
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and the resolving power necessary for our purposes. These values were confirmed as acceptable by performing
retrievals for each spectral band. Diagnostics tools, such as the residuals of the fit and the degree of freedom
for each species were analysed. The science requirements are driven by the lowest resolving power enabling the
detection and the retrieval of the abundance of the different molecular species. The resolving power vs bandwidth
trade-off has been investigated bearing in mind instrumental capabilities to reach a sensible solution, allowing
us to resolve rovibrational lines with a high spectral resolution and cover an as wide as possible spectral range
to measure simultaneously different molecular trace gases.

Table 2 summarizes the results obtained in this investigation.

Nightside
Band limits Band limits bandwidth Required SNR Molecular Altitude range

(nm) (cm−1) (cm−1) species (km)
Band#1 1160–1180 8474–8621 147 48 H2O, HDO 0 – 15 km
Band#2a 2340–2420 4132–4274 142 126 CO, H2O, 30 – 45km

HDO, OCS, HF
Band#2b 2423–2507 3989–4127 138 126 SO2, H2O, 30 – 45km

HDO, OCS, HF
Band#3 1704–1747 5724–5868 144 70 H2O, HCl 20 – 30km

Dayside
Band limits Band limits bandwidth Required SNR Molecular Altitude range

(nm) (cm−1) (cm−1) species (km)
Band#2a 2340–2420 4132–4274 142 100 CO, H2O, 55–80km

HDO, OCS, HF
Band#2b 2423–2507 3989–4127 138 100 SO2, H2O, 55–80km

HDO, OCS, HF
Band#4 1367–1394 7174–7315 141 100 H2O, HDO 55 – 80 km

Table 2. Spectral bands, as defined after this investigation. The required Resolving Power is 7000.

In the near future, we will strengthen our model by comparing it to previous datasets from VIRTIS /Venus
Express [96, 105]. Possible improvements are related to remaining uncertainties in the model such as for the
CO2 continuum treatment. A campaign of laboratory measurements that will complement the investigation
has started [80] and will continue. New science avenues impacted the design, such as the need for polarimetric
measurements [106].
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