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1. Introduction

When working with atmospheric data, researchers often face partial datasets. This is the case of the
SOIR instrument on board Venus Express [1], which measured the temperature of the Venus
mesosphere, inferred via solar occultations. Due to inherent limitations in the measurement process,
temperature measurements are missing at varying altitudes in the profiles. While altitudes of
measurements across the whole dataset can span from 60 km to 160 km, most of the profiles only
contain a range of 10 to 50 consecutive measurements. Figure 1 shows examples of such profiles.
To fill this data gap, machine learning, and specifically probabilistic models are promising
candidates.
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Fig. 1: Three temperature profiles from SOIR, with varying ranges of altitude.

 

2. Gaussian Processes and MAGMA

Gaussian processes (GPs) are probabilistic models mainly used for predictions based on empirical
observations. The capacity of GPs to estimate the uncertainty in their predictions makes them
particularly appropriate for extrapolating atmospheric data. Since traditional GPs only try to fit a
single function, adaptations should be implemented for the case of the SOIR dataset, which contains
numerous profiles. Using one GP for each profile would not allow models to leverage information
across the whole dataset to make better predictions. This motivates the use of so-called multi-task
GPs, where “task” refers to an atmospheric profile in our context. The literature in the field of multi-
task GPs is extensive [2, 3, 4], but most models either struggle with large datasets or have
difficulties learning the covariance between the tasks. The MAGMA algorithm [5] is a recent
advancement in the field of multi-task GPs that solves the above-mentioned issues. To complete a
gap at a specific altitude in a profile, MAGMA uses both the profile values that are close to the gap
and the mean value measured at that altitude in all other profiles. This results in better confidence
intervals, even far from known observations. Previous to this work, MAGMA had never been applied
to atmospheric datasets.

 

3. Profile Extrapolation



To assess the performances of MAGMA, we compare this algorithm with a traditional GP working on
each profile individually. First, each profile is preprocessed to standardise each temperature value
and use a logarithmic pressure scale as a height indicator rather than altitude. As MAGMA needs
profiles to share common inputs, each pressure measurement is mapped to its closest bin on a 250
discrete bin scale. We then divide the dataset into train and test sets. Each test profile is further
divided into test observations and validation observations. During experiments, test observations
are given to the models as a starting point. The models can then make predictions, providing an
estimated mean value and a confidence interval for each missing pressure bin. The validation
observations are compared with their corresponding predictions to evaluate the performances of
each model. Experimental results show that MAGMA has significantly better performances than a
traditional GP, as seen in Figure 2. It provides estimations that are closer to the actual
measurement and confidence intervals that are more precise, as shown in Figure 3.

 

Fig. 2: Average performances of MAGMA and the baseline model on two distinct metrics. Mean
Squared Error (MSE) measures the distance between predictions and true values (to be minimised).
CIC95 is the ratio of validation observations actually sitting in the predicted 95% confidence interval
(should be close to 95%).

 



Fig. 3: Predictions from the baseline and MAGMA, for different training settings. The test
observations and validation observations are represented in orange and white, respectively. The
grey-shaded area corresponds to the 95% confidence interval.

 

 

 
 

4. Conclusion

We apply MAGMA, a novel probabilistic learning algorithm, to the SOIR dataset, enhancing
predictions for missing observations. This contribution is a first step toward a practical application of
GPs to planetary aeronomy datasets. Future research will explore possible enhancements to the data
preprocessing and model architectures to complete the SOIR dataset with more precise and credible
estimations.
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