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Abstract Nitrogen oxides (NOx=NO+NO2) are of great concern due to their impact on human health and
the environment. In recent years, machine learning (ML) techniques have been widely used for surface NO2
estimation with rapid developments in computational power and big data. However, the uncertainties inherent to
such retrievals are rarely studied. In this study, a novel ML framework has been developed, enhanced with
uncertainty quantification techniques, to estimate surface NO2 and provide corresponding data‐induced
uncertainty. We apply the Boosting Ensemble Conformal Quantile Estimator (BEnCQE) model to infer surface
NO2 concentrations over Western Europe at the daily scale and 1 km spatial resolution from May 2018 to
December 2021. High NO2 mainly appears in urban areas, industrial areas, and roads. The space‐based cross‐
validation shows that our model achieves accurate point estimates (r = 0.8, R2 = 0.64, root mean square
error = 8.08 μg/m3) and reliable prediction intervals (coverage probability, PI‐50%: 51.0%, PI‐90%: 90.5%).
Also, the model result agrees with the Copernicus Atmosphere Monitoring Service (CAMS) model. The
quantile regression in our model enables us to understand the importance of predictors for different NO2 level
estimations. Additionally, the uncertainty information reveals the extra potential exceedance of the World
Health Organization (WHO) 2021 limit in some locations, which is undetectable by only point estimates.
Meanwhile, the uncertainty quantification allows assessment of the model's robustness outside existing in‐situ
station measurements. It reveals challenges of NO2 estimation over urban and mountainous areas where NO2 is
highly variable and heterogeneously distributed.

Plain Language Summary Inferring surface NO2 concentrations is an effective way to monitor and
mitigate NOx pollution which is of great concern due to its impact on human health and the environment.
Machine learning (ML) techniques have been widely used for surface NO2 estimation with rapid developments
in computational power and big data. However, such estimations can be uncertain due to inherent errors in the
data, and this uncertainty is rarely studied. We develop a novel ML framework to estimate surface NO2
concentrations and provide corresponding uncertainty information. We infer surface NO2 levels over Western
Europe at the daily scale and 1 km spatial resolution from May 2018 to December 2021. Our model's
performance is reliable as verified by in‐situ station measurements and an independent physics‐based model.
We observe NO2 hotspots over urban areas, industrial areas, and major roads. The uncertainty quantification
(UQ) techniques allow us to analyze the influence of different input data on estimating different NO2 levels. The
UQ also helps to identify potential NO2 exceedances of the WHO 2021 limit, which have not been observed in
previous research. Additionally, we assess the model's robustness outside of in‐situ stations and witness the
challenge of NO2 estimation over urban and mountainous areas.

1. Introduction
Nitrogen oxides (NOx = NO + NO2) have received considerable attention due to their adverse effects on human
health and air quality. Epidemiological studies have shown that NOx can lead to allergic reactions, respiratory
symptoms, and asthma (Achakulwisut et al., 2019; F. Zhu et al., 2019). In addition, NOx plays a key role in
atmospheric chemistry and affects the environment. For example, high concentrations of NOx can contribute to
acid rain, surface ozone, and PM2.5 (Grennfelt et al., 2020; Hodan & Barnard, 2004; Ren et al., 2022). Also, it then
can contribute to the deposition of nitrogen which leads to other environmental issues such as eutrophication and
biodiversity loss (Stevens et al., 2018). Surface NOx pollution is primarily caused by anthropogenic activities at
the ground level (e.g., transport, energy production, industrial, residential, biomass burning, and agricultural
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activities), with relatively small contributions from natural sources (e.g., soil and wildfires) (Crippa et al., 2018;
Oikawa et al., 2015; Song et al., 2021). NO2 is recognized as a robust indicator of NOx, and therefore assessing
surface NO2 concentrations and understanding its spatiotemporal pattern is an effective way of monitoring NOx
pollution and supporting the development of mitigation strategies.

NO2 is routinely monitored from air quality measurement stations operated by environmental agencies (Guerreiro
et al., 2014; Kong et al., 2021), providing accurate and long‐term records of (near‐)surface concentrations.
However, the stations' spatial distribution is sparse and uneven, resulting in limited coverage. Spaceborne ob-
servations (Douros et al., 2023; Lamsal et al., 2021; van Geffen et al., 2020; Veefkind et al., 2012) provide daily
global coverage of NO2 observations at relatively coarse resolution (up to 5 × 5 km

2). As satellite sounders
measure integrated columns, rather than surface concentrations, extra methods and assumptions are required to
infer surface NO2 concentrations from such measurements (Cooper et al., 2022; Lamsal et al., 2008). Chemical
transport models (CTMs) can incorporate knowledge of physical and chemical processes to estimate surface NO2
concentrations, and the estimation can be constrained by assimilating real observations (Inness et al., 2019;
Kumar et al., 2012; Poraicu et al., 2023; Vira & Sofiev, 2015). However, CTM models are typically affected by
uncertainties from mechanisms (e.g., simplification of some processes) and data (e.g., uncertainty in the emission
data). Also, they require considerable computational resources, leading to a compromise between resolution and
efficiency. As an alternative, statistical and machine learning (ML) models offer a data‐driven approach that
directly connects influential factors with surface NO2 levels, enabling high‐resolution mapping of the latter.
Nonetheless, the traditional statistical models typically struggle to adequately address complex nonlinear or
higher‐order interactive relationships (Fan et al., 2019).

ML techniques offer a promising option to address the challenges mentioned above, especially in light of the rapid
development of computational power and the increased availability of Earth system data (Reichstein et al., 2019).
At present, different studies have demonstrated the predictive power of ML on surface NO2 concentration at high
spatiotemporal resolution (e.g., 100 m and hourly (Kim et al., 2021), 1 km and daily (Ghahremanloo et al., 2023;
Wei et al., 2022)). Most studies employ supervised learning with in‐situ data to train ML models of the rela-
tionship between surface NO2 and multiple predictors, before upscaling the site‐level surface NO2 concentrations
to larger spatial areas where measurements are not available. The predictors encompass different variables from
observations, modeled data (e.g., meteorology), and inventories. While the ML model does not explicitly encode
the underlying chemical and physical processes, it is capable of establishing a complex mapping relationship from
these predictor variables to the surface NO2 concentrations. Although that relationship does not strictly adhere to
the underlying physics, the construction of a robust model still necessitates a comprehensive understanding of the
chemical and physical properties of NO2 by the model builder. This knowledge enables the identification of
optimal predictors and the enhancement of model generalization performance. For instance, given that NO2 is
highly reactive, solar radiation is typically employed as an indicator for photochemistry (Balamurugan
et al., 2023; Di et al., 2020), which is also considered in this study. Plus, other studies use surface ozone as a
predictor for surface NO2 prediction (L. Li & Wu, 2021) or link surface ozone prediction to surface NO2 pre-
diction in the multi‐task ML model (Yang et al., 2023). It is essential to note that the success of ML models does
not imply the replacement of more established methodologies, which often generate predictors for ML models
and provide full coverage data.

Currently, the popular ML algorithms for surface NO2 estimation can be divided into three classes. These are the
tree‐based model, the neural‐network‐based model, and the ensemble models of the former two. The tree‐based
models mainly use random forest (de Hoogh et al., 2019; M. Li et al., 2022; Pan et al., 2021; Qin et al., 2020),
extremely randomized trees and deep forest (Wei et al., 2022), and gradient boosting decision trees (Balamurugan
et al., 2023; Chi et al., 2022; Kang et al., 2021; Kim et al., 2021; Liu & Chen, 2022; Wang et al., 2021). The
neural‐network‐based models either use the normal neural networks (Chan et al., 2021) or the deep learning
models (Ghahremanloo et al., 2021, 2023; L. Li & Wu, 2021; Scheibenreif et al., 2022; Zhang et al., 2022).
Ensemble models (Di et al., 2020; He et al., 2022) assemble different types of ML models mentioned above to
make the predictions. No matter what approach is chosen to infer surface NO2 concentrations, errors are inevi-
table. In ML models, these are related to inherent randomness and errors in the data applied, out‐of‐regime errors
due to data limitations, and errors in the model itself (Haynes et al., 2023; Kiureghian & Ditlevsen, 2009). To
properly exploit NO2 estimates, it is essential from a user's perspective to indicate the expected uncertainty
associated with each prediction. As part of the model training, ML models typically go through cross‐validation
(CV) to assess their predictive skills. While this informs on the statistical performance of the model, it is not a
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substitute for a single prediction uncertainty estimate. Some studies used the ensemble model or Monte Carlo
dropout method (Di et al., 2020; L. Li &Wu, 2021; Scheibenreif et al., 2022), but the derived uncertainty mainly
relates to the out‐of‐regime and model errors (Haynes et al., 2023) where the uncertainty information is derived
from the variance between predictions from sub‐models. Currently, research on Uncertainty Quantification (UQ)
is still lacking, particularly regarding errors related to the input data (e.g., variability and representativeness). Note
that these data‐induced uncertainties are generally independent of the specific model that is used, but are often
expected to dominate the error budget, especially for the purely data‐driven ML models.

This study develops an ML framework enhanced with UQ techniques to estimate surface NO2, using a quantile
regression strategy to address uncertainties arising from the data. We select the eXtreme Gradient Boosting
(XGBoost, v2.0.0) model (Chen & Guestrin, 2016), which is a powerful and efficient gradient boosting decision
tree model, as the core ML model of this framework, though other models are also applicable. Instead of only
making point estimates (i.e., giving an expected surface NO2 concentration) by minimizing the mean squared
error (MSE) loss function (or cost function), we quantify the uncertainty by minimizing the quantile loss function
(i.e., constructing quantile regression models (Koenker & Bassett, 1978)) during MLmodel training. This method
can directly provide boundary values of prediction intervals (PIs) of the target variable, and it does not need
assumptions on the distribution of the target variable, thereby flexibly adapting to a wide range of data distri-
butions (e.g., non‐normal, skewed distributions) (Haynes et al., 2023; Koenker, 2005; Takeuchi et al., 2006). To
ensure the effectiveness of PI, we follow Romano et al. (2019) to incorporate conformal prediction to make the PI
have a reliable coverage probability for true values. Meanwhile, to mitigate the randomness inherent in model
predictions, we leverage the ensemble prediction strategy to improve result stability. Overall, this proposed UQ‐
enabled ML framework is composed of XGBoost, quantile regression, conformal prediction, and ensemble
prediction, which we name BEnCQE (Boosting Ensemble Conformal Quantile Estimator).

The BEnCQE model is employed to infer surface NO2 concentrations over Western Europe since this region is
characterized by a dense population, extensive urbanization, and a thriving industry, which requires reliable air
quality management. In this work, we infer the daily mean of surface NO2 concentrations and the associated
uncertainty fromMay 2018 to December 2021 at 1 km resolution. To ensure the effectiveness of the data applied,
we use SHapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017) to interpret how our model utilizes
various predictors. Additionally, we compare our NO2 estimates with independent data from the Copernicus
Atmosphere Monitoring Service (CAMS) European air quality reanalysis, using it as an external validation for
our model's accuracy and reliability.

We intend to address the following questions: (a) How can we estimate surface NO2 levels at high spatiotemporal
resolution overWestern Europe, and specifically quantify and integrate the uncertainties arising from the data into
these estimations? (b) How does incorporating UQ enhance our understanding of the dynamics of surface NO2 in
Western Europe, which is likely overlooked in previous modeling approaches? (c) How can insights gained from
UQ guide future developments in the model, and what implications does this have for practical applications in air
quality monitoring and regulation?

The remainder of this paper is organized as follows. The study region and different data sets are introduced in
Section 2. The BEnCQEmodel setup and associated methodology are discussed in Section 3. The main results are
presented in Section 4 and discussed in Section 5. The conclusions and outlook are stated in Section 6.

2. Study Area and Data Set
This study focuses on part of Western Europe from 5°W to 9°E and 42°N to 54°N, including the Netherlands,
Belgium, Luxembourg, France, and Western Germany (Figure 1). Western Europe is a critical region for surface
NO2 research as it features high levels of urbanization and industrialization and notable air pollution challenges.
The domain includes important megacities such as Paris, Brussels, Amsterdam, and Cologne. It also encompasses
coastal cities like Rotterdam and Antwerp whose ports are among the largest petrochemical clusters in the world
(Van den Berghe et al., 2023), and strongly industrialized areas such as the Ruhr and the Alsace‐Lorraine. In
addition to NO2 hotspots, the domain includes large rural areas and diverse topography (e.g., low‐lying flat areas,
plains, plateaus, river valleys, and mountains), leading to a highly heterogeneous NO2 distribution.

To effectively infer surface NO2 concentrations over Western Europe, we use measured surface NO2 concen-
trations from European Environmental Agency (EEA) air quality stations (orange dots in Figure 1) as the target
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and multiple source data sets as predictors to construct the ML model. All data sets are reprojected on a 1 km
resolution grid with bilinear interpolation or averaging approach and converted to the daily scale. The target
variable and the predictors are paired within the same grid. Detailed information on the used predictors is pro-
vided in Table 1. In this study, selected predictors are comprised of satellite observations, meteorological factors,
emissions, land information, spatially lagged (SL) data, and time information. We analyze the predictors'
importance (see Section 3.3) and keep only those predictors in the model with importance greater than 1% (Text
S1 in Supporting Information S1). The diversity of the data sets ensures that our model captures the variance in
surface NO2 as much as possible. After data preparation, we have 871,007 samples in total, collected from
different stations over the study period (i.e., from May 2018 to December 2021), with each sample (daily and
1 km) consisting of one target value and 29 predictor values. More information about the data sets is provided in
the following sections.

2.1. Surface NO2 Measurements

Surface NO2 measurements from the official air quality networks are taken as the target for the model. The data
set is acquired betweenMay 2018 and December 2021 from the EEA air quality database (European Environment
Agency, 2022). A total of 737 stations within the study area (Figure 1) are reprojected on 1 km resolution grids,
and data are averaged for the grid cells containing multiple stations. Consequently, 727 grids contain NO2
measurements categorized into industrial (95), background (452), and traffic (180, 3 of the grids contain both
traffic and background stations but are taken as traffic grids) groups based on the EEA classification (European
Environment Agency, 2023a). Data set values are 24‐hr averages calculated from hourly measurements from
local time 00:00 to 23:59.

2.2. NO2 TVCDs and Ancillary Data

Tropospheric vertical column densities (TVCDs) of NO2 are retrieved from satellite observations and are of great
relevance for ML‐based surface NO2 prediction (Kang et al., 2021; Kim et al., 2021; Wei et al., 2022). In this
work, we use three types of NO2 TVCDs:

1. Daily TROPOspheric Monitoring Instrument (TROPOMI) NO2 TVCDs based on CAMS a‐priori profiles
(7 × 3.5 km2, 5.5 × 3.5 km2 since August 2019, PAL + OFFL v2.3.1). The daily TROPOMI NO2 TVCDs
provide information on the dynamics of NO2 columns. This data is obtained from Douros et al. (2023) which
differs from the operational TROPOMI NO2 product (van Geffen et al., 2020), where the original TM5‐MP

Figure 1. Topography and EEA station distribution over the study area. The study area is the non‐masked region of Western
Europe, covering the Netherlands, Belgium, Luxembourg, France, and Western Germany. Geographically, the area extends
from 5°W to 9°E and from 42°N to 54°N. The orange dots represent the locations of the EEA air quality stations within the
domain.
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(100 km) a‐priori profile is replaced by the regional CAMS (10 km) profile for the European domain. This
product significantly improves the satellite sensitivity to NO2 hotspots (Tack et al., 2021). In this study, we did
not filter the daily TROPOMI NO2 TVCDs by quality assurance (QA) to avoid severe data loss (around 50%
loss when QA > 0.75 is applied, as shown in Figure S4c in Supporting Information S1), and avoid subsequent
gap‐filling work. Meanwhile, we use the cloud fraction as ancillary data to indicate the data quality. The
impact of this data processing on model estimation performance and uncertainty is discussed in Section 5.1.
Initially, the QA flag and TROPOMI precision data were included as predictors, but analysis showed that these
did not meaningfully impact the results (Figure S2 in Supporting Information S1) and so these have been
excluded in the final model.

2. Long‐term oversampled TROPOMI NO2 TVCDs (1 km). This is obtained by oversampling the operational
daily TROPOMI NO2 TVCDs (TM5‐MP profile, PAL + OFFL v2.3.1) Level 2 pixels with QA greater than
0.75 over 1 km scale grids fromMay 2018 to December 2021. This aims at providing an observed average NO2
pattern and supplement information on the NO2 emissions. It is more straightforward to implement over-
sampling of the official operational product than oversampling the CAMS profile‐equipped TROMOPI data,
given that the latter requires substantial pre‐processing even though its profile has a higher resolution.

3. Simulated daily NO2 TVCDs from regional CAMS (10 km). This data is used to provide the model with noise‐
free NO2 columns.

2.3. Meteorology

Meteorological predictors are derived from the European Centre for Medium‐RangeWeather Forecast (ECMWF)
ERA5 (Hersbach et al., 2020, 25 km) and ERA5‐land ((Muñoz‐Sabater et al., 2021), 9 km) reanalysis data sets.
These include wind (u‐component, v‐component at 10 m elevation), surface temperature, dewpoint temperature,
total precipitation, surface net solar radiation, evaporation amount, and boundary layer height (BLH). All
meteorological variable data sets are 24‐hr averages representing the daily average meteorology. This is done in
order to assist the model in capturing the daily average NO₂ level. Total precipitation, surface net solar radiation,
and evaporation are accumulated variables, while the others are instantaneous variables.

2.4. Emission Data Set

The anthropogenic NO2 emission inventory is obtained from the EEA National Gridded Data of Emissions by
Source Category (European Environment Agency, 2023b, 10 km), which represents the period of 2019 and
aggregates various emission sectors such as power plants, industry, road transport, and livestock. In addition, we
use the 1km‐scale road density data set (meters of road per grid unit) through rasterizing road vectors from the
Global Roads Inventory Project (GRIP) global road database of different road types (i.e., highways, primary
roads, secondary roads, tertiary roads, and local roads) (Meijer et al., 2018). Also, we use the population density
from the JRC‐GEOSTAT 2018 gridded population (Silva et al., 2021, 1 km) and the night lights (500 m) from the
annual global Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime lights data set (Elvidge et al., 2021),
as other indicators of anthropogenic activity. Although NO2 can also be emitted from wildfires (Wan et al., 2023),
the wildfire data from the CAMS Global Fire Assimilation System offers almost no contribution to the model
estimates (Figure S2 in Supporting Information S1) and is therefore excluded.

2.5. Land Information

To introduce land information in our model, we use the elevation data from Multi‐Error‐Removed Improved‐
Terrain digital elevation models (MERIT DEM) (Yamazaki et al., 2017, 90 m) and land cover data from
CORINE (Coordination of Information on the Environment) Land Cover (CLC) 2018 inventory (European
Environment Agency, 2020, 100 m). The land cover is reaggregated from 44 classes into five main classes:
anthropogenic surfaces, agricultural areas, forest and semi‐natural areas, wetlands, and water bodies. While we
initially used the leaf area index of low and high vegetation types from ERA5‐land to represent the land vegetation
cover, the data showed little importance to the model (Figure S2 in Supporting Information S1), and so this data
was not retained in the end.
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2.6. Spatially Lagged NO2 Concentrations

We follow Schneider et al. (2020) to generate four variables from in‐situ surface NO2 measurements to introduce
SL NO2 averaged concentrations. The stations are categorized by EEA classification (European Environment
Agency, 2023a) into BKGIND (background‐industrial) to represent general NO2 levels and TRA (traffic) to
represent high NO2 levels. For each grid with measurement, we average the measurements over the study period.
We then use the inverse‐distance weighted leave‐one‐out (IDW‐LOO) approach with two different weights to
calculate the regional NO2 level (weight = 1, inverse distance, more weight to distant stations) and local NO2
level (weight= 2, inverse squared distance, more weight to near stations) for every grid in the study region. Thus,
four new variables are spatially‐lagged‐BKGIND‐regional, spatially‐lagged‐BKGIND‐local, spatially‐lagged‐
TRA‐regional, and spatially‐lagged‐TRA‐local. The respective distributions are shown in Figure S3 in Sup-
porting Information S1. These variables can assist the model in capturing the heterogeneity across in‐situ stations
and leverage the spatial autocorrelation to capture the NO2 distribution from real measurements (Di et al., 2020;
Schneider et al., 2020). We have applied a data mask strategy to generate the different SL data for CV training and
testing, which avoids the target leakage during model evaluation.

2.7. Time Information

Day of week and day of year are used to indicate the weekly and seasonal cycle of surface NO2.

3. Methodology
In this study, we develop a novel BEnCQE (Boosting Ensemble Conformal Quantile Estimator) model (Figure 2)
to infer surface NO2 concentrations and associated uncertainties. The BEnCQE model is an ensemble of 10
Boosting Conformal Quantile Estimators (BCQE) (blue dotted frame in Figure 2), where each BCQE consists of
five XGBoost models (orange rectangles) with different objectives (green circles). The number selection of the
ensemble is explained in Section 3.1. The XGBoost model with the MSE loss function provides the point estimate
(i.e., expected NO2 value) and other XGBoost models with different quantile objectives (i.e., 0.05, 0.25, 0.75, and
0.95) provide the corresponding PI‐50% (q = 0.25, 0.75), and PI‐90% (q = 0.05, 0.95). In addition, the four

Figure 2. Schematic structure of BEnCQE for surface NO2 estimation. Each member model (i.e., BCQE) of the BEnCQE
model consists of five XGBoost models with different objectives (i.e., point estimate and quantiles). The XGBoost model
with the MSE loss function gives an expected NO2 value, and other XGBoost models with different quantile objectives (i.e.,
q = 0.05, 0.25, 0.75, and 0.95) provide quantile estimates. These quantile outputs are then conformalized to provide PI‐50%
(by quantiles of 0.25 and 0.75) and PI‐90% (by quantiles of 0.05 and 0.95). The BEnCQEmodel assembles 10 BCQEmodels,
and the final output for each objective is the average of the outputs from all the sub‐models.
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quantile estimates are refined with conformal prediction (blue rectangles) to enhance the PI's coverage guarantee
of the true values. The output of this ensemble model for each objective is the average of the outputs of all
members for that objective (gray rectangles). Further details are given in the following sections.

3.1. Boosting Ensemble Conformal Quantile Estimator

The BCQE model consists of five ML models with different objectives. In this study, we used XGBoost, a
gradient boosting decision tree model that incrementally combines weak decision tree learners to minimize the
loss function and improve the overall model performance (Chen & Guestrin, 2016), as the core model in the
estimator. XGBoost has a powerful predictive ability and has been widely used in air components estimation,
including surface NO2 estimation (Balamurugan et al., 2023; Chi et al., 2022; Kim et al., 2021). In the BCQE
model, the XGBoost model trained with the MSE loss function provides the point estimate (i.e., expected value)
of the surface NO2 concentration. Likewise, the XGBoost models trained with different quantile loss functions
behave as quantile regression models and estimate the quantiles of surface NO2. The idea of the quantile
regression, proposed by Koenker and Bassett (1978), is to provide a quantile value for the target variable, below
which the actual value is expected to lie within a certain probability. For example, given input data and a quantile
objective of 0.95, the quantile regression model outputs a value below which there is a 95% probability that the
actual value will fall. The basic idea of quantile loss functions in ML model training is that the ML model is
penalized more for overestimation and less for underestimation when the quantile objective is less than 0.5, and
vice versa. To capture the uncertainty of surface NO2 estimation, we trained four types of XGBoost models with
different quantile objectives (i.e., 0.05, 0.25, 0.75, and 0.95) to generate PI‐50% (q = 0.25 and q = 0.75) and PI‐
90% (q= 0.05 and q= 0.95), delineating the intervals within which the true value might reasonably be expected to
fall (Haynes et al., 2023; Koenker, 2005; Koenker & Bassett, 1978; Takeuchi et al., 2006). This method can
quantify the spread probability of surface NO2. Quantile points of 0.25 and 0.75 are widely used to form the
interquartile range which measures the spread of the data with a skewed distribution, while the quantile points of
0.05 and 0.95 provide a conservative estimate of the possible values range. This method does not need as-
sumptions on the distribution of the target variable, thereby flexibly adapting to a wide range of data distributions
(e.g., non‐normal and skewed distributions).

To guarantee the coverage probability of the generated PIs, we followed Romano et al. (2019) to incorporate
conformal prediction to refine the boundaries of PIs. The underlying principle of conformal prediction is that new
inputs, which are less similar to the training data, should lead to less certain estimates. The conformal prediction
yields conformal scores during the model training process to represent the dissimilarity between the training and
new data set and uses this score to adjust the PI boundary (Figure 2, blue rectangles). The details and equations for
constructing the PIs are described in Appendix A. In this way, we can obtain both the point estimate and the
effective PIs.

To mitigate the disturbance of model randomness on model estimates, we applied an ensemble prediction strategy
where multiple BCQEmodel outputs are averaged for each model objective (gray rectangles in Figure 2), as in the
work of Jensen et al. (2022). We decided to assemble 10 BCQE models (blue dotted frame in Figure 2) based on
model output robustness and computational efficiency (Text S2 and Table S1 in Supporting Information S1). For
this purpose, we randomly divided the training data set into training and validation data sets, based on station sites,
(i.e., 70% stations for training and 30% stations for validation) for each BCQE model training. Therefore, each
model learns from different aspects of the total training data set and generates different structures. In this way, the
BEnCQEmodel provides a reliable point estimate and associated uncertainty, with a reduced impact of the model
randomness.

Theoretically, quantile regression can be trained for any choice of quantile points, and a cumulative density
function can then be obtained through the interpolation of a set of consecutive estimated quantile points. Due to
the considerable resource demand of the ensemble approach, and the limitations of computational power, we
decided not to expand the scale of the BEnCQE model to encompass many quantile points. Consequently, only
four quantile points and one point estimate were included.

3.2. Model Training, Optimization, and Evaluation

For this study, we first trained, optimized, and evaluated the model on the space‐based 10‐fold CV (cross‐vali-
dation) data set before training the final model on the total data set. The CV data set was generated by dividing the
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total data set randomly into 10 groups based on stations (detail is described in Text S3 in Supporting Informa-
tion S1). Nine groups were used for training and optimization, leaving out one group for testing, which was used
to examine the spatial generalization of the ML model. After preparing the CV data set, we optimized the
XGBoost hyperparameters using the Optuna framework (Akiba et al., 2019) for the point estimate and each
quantile objective, respectively. The optimization process was conducted based on the training part of the CV data
set which was further divided into a training and validation data set. Every set of randomly generated hyper-
parameters was first used for model training and then evaluated on the validation data set. The optimization
process was replicated over 10 different CV training data sets and the score (root mean square error (RMSE) for
point estimates and quantile loss for quantile objectives) for the hyperparameter set was the average of 10
validation results. The optimization was iterated 100 times, and we chose the hyperparameter sets with the best
scores for point estimate and different quantile objectives, respectively. Once the hyperparameters were deter-
mined, we used them to train and test 10 BEnCQE models over the CV data sets and calculated the final CV
evaluation score from the CV test results. Hereafter, we trained the final BEnCQE model with the same
hyperparameters. The optimal hyperparameter searching process was accelerated by the NVIDIA A30 GPU, with
the search process for one objective taking approximately 7 hr. Such acceleration also helps model training for CV
evaluation and final model generation, where one BEnCQE model training takes around 20 min.

The performance (i.e., spatial generalization) of the BEnCQE model was evaluated in terms of the accuracy of
point estimates and the coverage probability of PIs. The point estimates performance was evaluated by aggre-
gating all CV test results and calculating the Pearson correlation coefficient (r), the coefficient of determination
(R2), and RMSE. The coverage probabilities of PI‐50% and PI‐90% are compared with their design confidence
level, respectively, to verify their effectiveness. The final coverage is the average of observed coverages over 10
CV results. The observed coverage probability of PI should closely match the designed confidence level. If the
observed coverage probability is lower than the designed level, it indicates that the model underestimates un-
certainty, and if it is higher, the model overestimates uncertainty. This assessment provides an understanding of
the reliability of the model performance and its capability to encapsulate the true value within its PIs. The
evaluation result is shown in Section 4.1.

3.3. Predictor's Importance

The predictor's importance is calculated by the SHAP (SHapley Additive exPlanations) which is an advanced and
popular ML model explanatory technology (Lundberg & Lee, 2017). We applied the SHAP to analyze the final
BEnCQE model based on the entire training data set and derived the absolute SHAP value for each predictor in
each member model of the BEnCQE. For each objective (i.e., point estimate and quantiles), we determined the
importance of the predictor as the relative proportion of the predictor's mean absolute SHAP value in each
member model, and then took the average across the corresponding member models as the final importance value.
The result of the SHAP analysis is provided in Section 5.1, and it reveals the global contribution of each predictor
to the model estimate.

3.4. Uncertainty Quantification

The PIs in the BEnCQE model can serve as a tool to quantify the uncertainty associated with individual instance
estimates. As a conservative range, the PI‐90% represents a “very likely” possibility of having the true NO2 value,
and thus we calculated the absolute uncertainty and the relative uncertainty based on the PI‐90%. The absolute
uncertainty is the full‐length of the PI‐90% (Equation 1) and the relative uncertainty is the ratio of the absolute
uncertainty to the point estimate (Equation 2). Given the lack of knowledge regarding the distribution of surface
NO2 concentrations, it is recommended to utilize the full‐length of the prediction interval rather than the half‐
length. This is because the latter is typically employed for data exhibiting a symmetric distribution (e.g.,
normal distribution and t‐distribution).

Note that high NO2 predictions usually come with high absolute uncertainty, whereas low NO2 values almost
invariably have a high relative uncertainty (see Section 4.4). Here we introduce an adjusted uncertainty to remove
these dependencies. The adjusted uncertainty is calculated by removing the dependence of the absolute uncer-
tainty on the NO2 magnitude where the dependence variable (slope “a” in Equation 3) is obtained by linearly
fitting the absolute uncertainty and point estimate over the whole study area and period (not only the training data
set). As such, the adjusted uncertainty is independent of the NO2 magnitude and can be used as a metric for
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gauging the uncertainty level. Recognizing that the selection of a prediction interval to quantify uncertainty is
dependent on the task requirement and PI‐90% offers a conservative uncertainty result, we also provide the
uncertainty calculated based on PI‐50% in the supplement (Figure S11 in Supporting Information S1) as a
reference.

absolute uncertainty(i) = Length of (PI − 90%) (1)

relative uncertainty(i) =
absolute uncertainty(i)
point estimate(i)

× 100% (2)

adjusted uncertainty(i) = absolute uncertainty(i) − a × point estimate(i) (3)

Figure 3. Ten‐fold space‐based CV test results. Panel (a) shows the CV results of the BEnCQE model point estimates for
total, background and industrial, and traffic stations. The point estimates performance is evaluated by aggregating all CV test
results and calculating r, R2, and root mean square error. The fitting line of the scatter points is calculated by orthogonal linear
regression. Panel (b) shows the distribution of CV test R2 for each station, and panel (c) shows the monthly CV test R2 for
total stations. Panel (d) illustrates the CV results of PIs' coverage probability compared with the designed coverage for total,
background and industrial, and traffic stations. The statistics for each fold of the CV are shown in Table S3 in Supporting
Information S1.
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4. Results
4.1. Station‐Based Model Evaluation

We used the 10‐fold space‐based CV to examine the performance of the point estimates and PIs of the BEnCQE
model for a set of in‐situ stations that were not included in the model training. Figure 3 shows that an overall good
model performance is achieved for the point estimates when all stations are considered (r= 0.80 ± 0.02, the error
term denotes the standard deviation of 10‐fold CV results, R2 = 0.64 ± 0.03, RMSE = 8.08 ± 0.42 μg/m3). These
statistics are comparable with those reported in other studies on Germany (R2 = 0.68, Balamurugan et al., 2023)
and the Alpine domain (R2 = 0.59, Kim et al., 2021). The model accurately captures the NO2 concentration over
industrial and background stations (r = 0.87 ± 0.02, R2 = 0.69 ± 0.03, RMSE = 5.85 ± 0.33 μg/m3). While the
model has a limited capacity to capture the NO2 magnitude of traffic stations (R

2 = 0.32 ± 0.15,
RMSE= 12.65± 1.70 μg/m3), it still learns a good correlation (r= 0.73± 0.05). The statistics for each fold of the
CV are shown in Table S3 in Supporting Information S1. The discrepancy can be attributed to the mismatched
spatial representativeness of in‐situ traffic station measurements to target grids. Traffic stations are typically
positioned near major roads (European Environment Agency, 2023a) and predominantly capture local NO2 levels
(Maiheu & Janssen, 2019), which are highly influenced by local factors such as proximate vehicular emissions,
road layout, and traffic behavior (Y. Zhu et al., 2020), making it difficult to capture the measured NO2 from 1 km
scale predictors. The R2 distribution over each station and the monthly R2 variation (Figures 3b and 3c)
demonstrate that our model point estimate shows the best accuracy for the northern part of the study area, urban
areas, and winter months, indicating a good predictive performance for the relatively high NO2 levels (NO2
distribution is shown in Section 4.2), except for the traffic situation. This implies an improved estimation when
the NO2 concentration dynamic is high.

In terms of PI's coverage probability, Figure 3d illustrates that the BEnCQE model successfully constructs valid
PIs for all test samples that approximate the design confidence level (PI‐50%: 51.0%, PI‐90%: 90.5%). It is
noteworthy that the conformal prediction successfully calibrates the boundaries of the PIs, as the original PI
without conformal prediction does not fulfill the confidence level (PI‐50%: 40.9%, PI‐90%: 85.9%, not shown).
However, we find that the model struggles to satisfy the desired coverage for traffic stations (PI‐50%: 34.7%, PI‐
90%: 83.1%) and consequently provides a relatively conservative coverage for industrial and background stations
(PI‐50%: 56.2%, PI‐90%: 92.8%) to compensate. Although estimating traffic NO₂ is challenging, quantile
regression enhances the model's perception of such scenarios by focusing on the data distribution tails. Table S2 in
Supporting Information S1 reveals that traffic NO₂ concentrations predominantly fall within the range between
75th and 95th quantiles (41.5% of measurements). Given that this part of the measurements is typically under-
estimated by the point estimates (Figure 3a), the 75th–95th quantile range can be recognized as an important
reference for estimating traffic NO2. Additionally, Figure S6 in Supporting Information S1 displays the time
series of CV test results from some stations, providing a glimpse of how quantile ranges encapsulate the real
measurements for different types of stations. Employing the quantile regression method to estimate the extreme
cases of NO2 deserves further investigation, given that similar applications have been already conducted in other
disciplines, such as studies of floods and droughts (Abbas et al., 2019), and extreme temperatures (Gao &
Franzke, 2017).

As an alternative training approach, we also tuned and trained the model with the period‐based CV to examine the
temporal generalization of the ML model, where the data‐splitting strategy was similar to the space‐based CV but
based on dates. The period‐based CV results are shown in Figure S7 in Supporting Information S1, where the
point estimates accuracy for total stations (r = 0.91 ± 0.02, R2 = 0.83 ± 0.06, RMSE = 5.65 ± 1.02 μg/m3), for
background and industrial stations (r = 0.9 ± 0.02, R2 = 0.8 ± 0.05, RMSE = 4.66 ± 0.90 μg/m3), and for traffic
stations (r = 0.86 ± 0.03, R2 = 0.73 ± 0.11, RMSE = 7.94 ± 1.60 μg/m3) are all higher than that of space‐based
CV. Meanwhile, the PIs have effective coverage for all stations (PI‐50%: 47.5%, PI‐90%: 87.0%), better coverage
for background and industrial stations (PI‐50%: 49.6%, PI‐90%: 88.0%), and still insufficient coverage for traffic
stations (PI‐50%: 41.1%, PI‐90%: 83.9%).

The results demonstrate that the BEnCQE model exhibits robust performance in estimating the NO2 con-
centration for the stations over unknown periods. One of the model's applications is to detect the missing NO2
variation at a given location. It is, however, essential to distinguish between the model developed using space‐
based CV and the model developed using period‐based CV, as the choice of data‐splitting strategy signifi-
cantly impacts the model's nature and generalizability throughout the training, optimization, and evaluation
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processes. Both the training data and the data in the application area should be independent and identically
distributed (IID). In the case of unevenly distributed stations, space‐based CV is designed to make the training
data satisfy the requirements of IID for unknown application areas. It is challenging for the period‐based CV
or the randomly sample‐based CV to meet such IID requirements. The autocorrelation within the training
samples may lead to an overly optimistic assessment of the model's ability to map the surface NO2 distri-
bution over the unknown area (Meyer & Pebesma, 2022). Consequently, we continue to utilize the BEnCQE
model constructed with the space‐based CV strategy, as this CV strategy attempts to approximate the dis-
tributions of both the training and test sets to that of the unknown area.

4.2. Estimated Surface NO2 in Western Europe

Figure 4a displays the mean distribution of surface NO2 (7.14 ± 4.41 μg/m3, from May 2018 to December
2021, where the error term denotes the standard deviation of the spatial mean) in Western Europe, as inferred
by the BEnCQE model (daily distribution samples are provided in Figure S5 in Supporting Information S1). It
shows that the largest NO2 concentrations are mainly located in urban and industrial areas. The NO2 signals
on major roads are also visible. Notable high NO2 regions include the western Netherlands (Figure 4b,
19.05 ± 3.77 μg/m3), northern Belgium (Figure 4c, 17.20 ± 4.10 μg/m3), and the Rhine‐Ruhr region in
western Germany (Figure 4g, 17.64 ± 4.70 μg/m3). The region shown in panel (f) still has overall higher NO2
levels (Figure 4f, 10.73 ± 1.80 μg/m3) than the south, despite being distant from major NO2 hotspots. A
similar difference is also shown in the average TROPOMI NO2 column distributions. The relatively higher
NO2 in this region can be attributed to the transport of NO2 from nearby high NO2 regions by the frequent
southwest wind (Figure S10 in Supporting Information S1). For the entire domain, Paris is the largest NO2

Figure 4. Spatial distribution of estimated surface NO2 concentrations over Western Europe averaged from May 2018 to
December 2021. Panel (a) shows the NO2 distribution over the study area covering the Netherlands, Belgium, Luxembourg,
France, and Western Germany (from 5°W to 9°E and from 42°N to 54°N). Panels (b)–(i) show NO2 distributions for specific
regions of interest and panels (j–m) show the NO2 distributions for different seasons. The surface NO2 level is estimated by
the BEnCQE model point estimate. Masked areas are out of the research scope.
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hotspot (Figure 4d, 25.46 ± 4.83 μg/m3). In the South, high NO2 levels are found also in the southern Rhine
(Figure 4h, 11.77 ± 5.38 μg/m3), Lyon (Figure 4i, 24.88 ± 5.42 μg/m3), and Grenoble (Figure 4i,
12.15 ± 6.75 μg/m3). These areas have strong NO2 emissions which are trapped by natural barriers (valleys).
More remote areas have low surface NO2 levels (e.g., Figure 4e, the Massif Central, 3.46 ± 1.35 μg/m

3) with
the highest NO2 concentrations found near major roads.

Figures 4j–4m show the seasonal variation of surface NO2. The NO2 levels are moderate in spring (Figure 4j,
6.52 ± 3.98 μg/m3, March, April, and May) and low in summer (Figure 4k, 5.63 ± 3.57 μg/m3, June, July,
and August). The NO2 levels are higher in autumn (Figure 4l, 7.72 ± 4.87 μg/m3, September, October, and
November), reaching a peak in winter (Figure 4m, 8.92 ± 5.45 μg/m3, December, January, and February).
The increase in NO2 during the cooler seasons can be attributed to a longer NO2 lifetime (less photolysis),
weaker dispersion under unfavorable weather conditions, and more anthropogenic emissions related to energy
production (Y. Shen et al., 2021).

4.3. Intercomparison With CAMS Model Data

To assess the physical plausibility of the estimated surface NO2 patterns, we also compared the patterns from the
BEnCQE point estimates with those from the physics‐based CAMS (Copernicus Atmosphere Monitoring Ser-
vice) European air quality reanalyses data set, which is based on an ensemble of eight to ten air quality data
assimilation systems across Europe (Meleux et al., 2023). The CAMSNO2 data is the ensemble median to ensure,
on average, better performance than individual model products (Peuch et al., 2022). The comparison was operated
at the spatial resolution of the CAMS EU product (10 km), in a grid‐to‐grid manner, fromMay 2018 to December
2020 (data for the year 2021 are not available at the last access time: 15 June 2023). We averaged the BEnCQE
outputs to match the same spatial resolution, and the CAMS hourly data were aggregated to daily means.

Figures 5a and 5b show that the BEnCQE model and CAMS generate very similar NO2 distributions, but the
BEnCQE results reveal more spatial structures and are less smooth than the CAMS results. This difference can
largely be attributed to the different resolutions of the input data sets and the impact of transport mechanisms in
the CAMS model. Figure 5c depicts the difference between the two. The mean difference is mostly small over
Western Europe (differences between − 2 and 2 μg/m3 for 89.5% of the grids), while our model gives higher
estimates over NO2 hotspot areas and mountainous regions. This might be due to the difference in observation
data used for model optimization, as the CAMS data assimilation is mainly conducted over background fields
(Inness et al., 2019). Meanwhile, the 10 km resolution increases the CAMS uncertainty for local hotspots and
makes CAMS underestimate NO2 levels for urban monitor stations (Meleux et al., 2023). The concentrations
estimated by the BEnCQE model are lower than CAMS over much of northern and eastern France. Figure 5d
presents the Pearson correlation between the two data sets, which is above 0.8 in the northern half of the domain. It
is lower (0.5–0.75) in the southern rural area and drops to about 0.3 in the southern mountainous regions. In the
area with lower correlation, the surface NO2 might be impacted by soil emissions (Oikawa et al., 2015) and
affected by the complex terrain in the mountains. Although we used land type and elevation data sets, these
influences might not be well accounted for in the model due to a lack of measurements. Figure S15 in Supporting
Information S1 shows that the Pearson correlation increases when the TROPOMI data is filtered using the QA
flag (QA > 0.75), especially for the southern rural area (0.6–0.8) and mountainous regions (about 0.5), although
the mean difference remains almost the same. This indicates that the BEnCQE model, when using higher quality
TROPOMI observations, behaves more consistently with the physical model.

Figures 5e–5l show the temporal variations of the BEnCQE results and the CAMS results for the regions of
interest in Figure 4, demonstrating the strong agreement between both data sets in magnitude. Despite the
lower correlation over the mountainous region, Figure 5h (the Massif Central in France) shows that the two
model results are close in absolute values for the whole time series. Furthermore, although the BEnCQE's
point estimates sometimes deviate from CAMS, the corresponding PI‐50% still encapsulates the CAMS re-
sults. Additionally, this robust agreement persists even during anomalous conditions. As illustrated in Figure
S14 in Supporting Information S1 for early 2020, the BEnCQE estimates are consistent with the CAMS
results. This period includes exceptionally high temperatures (February) and the COVID‐19 lockdown (March
and April), during which surface NO2 levels were found to be significantly reduced compared to the same
months in 2019 (Barré et al., 2021; Guevara et al., 2021). Both the BEnCQE model and the CAMS model
successfully capture this abrupt change in NO2. While we have not found direct evidence of how CAMS
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Figure 5.
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adapts to such unprecedented scenarios, the data assimilation of EEA ground measurements (Meleux
et al., 2023) is speculated to enable CAMS regional reanalysis data to reflect actual situations. Also, the
performance of CAMS for the year 2020 has been validated to be as stable as in previous years with routine
evaluation processes (Meleux et al., 2023).

4.4. Uncertainty of Surface NO2 Estimates

Here, we analyze the BEnCQE NO2 estimates uncertainty which mainly arises from the data. In this work, we
calculate the absolute, relative, and adjusted uncertainty for each estimate (Section 3.4). The corresponding
distributions are shown in Figure 6. Generally, the absolute uncertainty (Figure 6a) follows the distribution of
estimated NO2 concentrations, with the largest uncertainties over regions with high NO2. Conversely, the relative
uncertainty (Figure 6b) is largest for background regions (rural and mountainous areas) and lower for urban areas,
industrial areas, and roads. To eliminate the dependence of these uncertainties on the NO2 values, we calculate the
adjusted uncertainty using Equation 3 (slope a = 0.75), which represents the residual absolute uncertainty after
removing the mean NO2 magnitude‐dependent part of the absolute uncertainty. This type of uncertainty provides
a consistent and balanced uncertainty measure across different NO2 levels and is more reflective of the model's
estimation capability rather than the inherent variability of the NO2 values. The corresponding distribution is
shown in Figure 6c.

The largest adjusted uncertainties (ranging from 15 to 20 μg/m3) are found over NO2 hotspot areas and the Alpine
mountains. This indicates the challenge of robust estimation in such areas, where surface NO2 is highly variable
and spatially heterogeneous. Figures 6d–6g depict the seasonal variation of the adjusted uncertainty. High un-
certainty is mainly present in NO2 hotspot areas in spring and summer, and over mountainous areas in autumn and
winter. We speculate that this is due to the conflict between the spatial and the temporal patterns of surface NO2
that the model learned from the static and dynamic data respectively, as the uncertainty of the model is largest
over high NO2 areas in the low NO2 season, and vice versa (low NO2 areas in high NO2 seasons). Given that the
spatial patterns are strongly affected by the static emission data, making the emission data dynamic may help to
reduce the model uncertainty.

Such an uncertainty analysis provides a nuanced perspective on the reliability of ML model estimates of surface
NO2. Note that the PI selection for quantifying uncertainty should be task‐dependent because it will influence the
judgments of model reliability. This study chooses a wide PI (i.e., PI‐90%), resulting in a larger uncertainty value,
which may be too conservative for NO2 product usage. A comparison of the uncertainty calculated based on PI‐
50% (Figure S11 in Supporting Information S1) with that calculated based on PI‐90% reveals that both types of
uncertainty present similar distribution patterns of absolute and relative uncertainty. However, the adjusted un-
certainty of PI‐50% in the north does not exhibit a similar high relative value as seen with PI‐90%.

5. Discussion
5.1. Importance of Predictors in Point and Quantiles Estimates

We used SHAP to calculate the importance of predictors (Section 3.3) to our final model, which has both point
estimate and quantile estimates objectives. The SHAP values were calculated across the entire training data set,
encompassing data from all stations over the study period. Quantile estimates such as Q‐0.05, Q‐0.25, Q‐0.75, and
Q‐0.95, correspond to the 5th, 25th, 75th, and 95th quantiles of the estimated NO2 concentration distribution,
respectively, ranging from low to high concentrations. Therefore, the model objectives correspond to different
NO2 levels, and such an analysis not only elucidates the contribution of the predictors to the NO2 point estimate
but also provides crucial insights into how predictors influence the model estimates for different NO2 levels.
Figure S1 in Supporting Information S1 shows the importance percentage of each predictor, and we find that the

Figure 5. Comparison of surface NO2 concentrations estimated by the BEnCQE and CAMS European air quality reanalysis data set. The comparison is conducted at the
spatial resolution of CAMS (10 km), with the BEnCQE results reprojected from a 1 km scale to this resolution. Panels (a) and (b) show the surface NO2 concentration
distributions estimated by the BEnCQE (10 km) and CAMS (10 km), respectively, which are averaged from May 2018 to December 2020 (not the entire study period).
Their mean difference (BEnCQE results minus CAMS results) is shown in panel (c). Panel (d) displays the distributions of Pearson correlation between two estimates,
which are calculated for each grid during the period. Panels (e–l) present the comparison of the time series of regional NO2 estimates, with a moving average window of
5 days, between the BEnCQE model and CAMS for regions shown in Figure 4 in Supporting Information S1, and the shaded area represents the regional average of the
BEnCQE PI‐50%.
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distributions are similar across different objectives. The daily TVCD data from TROPOMI and CAMS are very
important, though their importance diminishes at the higher NO2 quantile estimate. The BLH acts as the most

important predictor for almost all objectives, in agreement with previous
studies (Balamurugan et al., 2023; Kim et al., 2021). Additionally, the night
light, population, and road networks contribute significantly, emphasizing the
influence of anthropogenic activities on surface NO2 variations, which aligns
with findings by Balamurugan et al. (2023), Di et al. (2020), and Kim
et al. (2021). The day of week is another important predictor, reflecting the
strong weekly cycle of NO2 (Stavrakou et al., 2020).

Figure 7 provides an integrated overview of these results, grouping the pre-
dictors into different classes (see Table 1 and Figure S1 in Supporting In-
formation S1). In general, the model estimation is dominated by emissions
(29.5%), meteorology (26.3%), and TVCD (20.4%), while the SL data
(12.4%) and time (9.4%) also play influential roles. Land information has the
smallest contribution (2.0%), which differs from previous research (Bala-
murugan et al., 2023; Kim et al., 2021; Zhang et al., 2022), possibly due to
different study areas. As quantiles increase, the importance of emissions and
SL data increases noticeably. The contribution of meteorology declines
moderately, while the influence of TVCD diminishes the most. As shown in
Table S2 in Supporting Information S1, the measured NO2 concentration for
background and industrial stations is primarily within the range between the
5th quantile and the point estimate, while the traffic station measured NO2
values mainly fall in the range between the point estimate and the 95th
quantile. Considering that different types of stations have different repre-
sentative areas and traffic stations usually measure the locally high concen-
tration of NO2, this suggests that TVCD and meteorology assist the model in
capturing general and broadly distributed NO2 levels, while emissions and SL

Figure 6. Spatial distribution of the uncertainty of the BEnCQE point estimates. Panel (a) shows the mean absolute
uncertainty distribution for the entire study period, where the uncertainty is defined as the length of PI‐90% (Equation 1).
Panel (b) shows the average distribution of relative uncertainty which is the ratio of absolute uncertainty to point estimate
(Equation 2). Panel (c) depicts the mean distribution of adjusted uncertainty which is calculated by removing the influence of
point estimate magnitude from absolute uncertainty (Equation 3, slope a = 0.75). Panels (d)–(g) present the mean
distribution of adjusted uncertainty for different seasons.

Figure 7. Importance of predictor groups for the BEnCQE estimates. The
importance of the predictor is calculated using SHAP, an ML model
explanation technique. SHAP is used to explain the BEnCQE model based
on the entire training data set, and the absolute SHAP value is derived for
each predictor in each member model of the BEnCQE. For each objective
(i.e., point estimate and quantiles), we calculate the importance of the
predictor as the relative proportion of the predictor's mean absolute SHAP
value in each member model, and then take the average across the
corresponding member models as the final importance value. The
importance of predictor groups aggregates the importance of associate
predictors. Details of the grouping and the importance of each predictor are
shown in Table 1 and Figure S1 in Supporting Information S1.
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data improve the model's perception of high and heterogeneously distributed NO2 levels. This could be attributed
to the fact that high NO2 levels typically result from local emissions (Di et al., 2020). Moreover, the resolution is
also a key factor in estimating high NO2 levels, since coarse resolution reduces data sensitivity to NO2 hotspots, as
demonstrated by the relatively lower importance of the emission inventory (Figure S1 in Supporting Informa-
tion S1) which has a resolution of 10 km.

One should note that the daily TROPOMI NO2 TVCD (Figure S1 in Supporting Information S1, 7.9%) does not
appear to have a dominant contribution to the point estimates, which differs from some previous works (Kim
et al., 2021; Wei et al., 2022). This discrepancy can be attributed to three reasons. First, we did not filter the daily
TROPOMI pixels by QA values in order to avoid substantial missing data. Nevertheless, this operation preserves
the noise in the TROPOMI data and reduces the correlation between TROPOMI data and the surface NO2
concentration, as illustrated in Figures S4a–S4b in Supporting Information S1. Nonetheless, our additional
experiment indicates that using only QA75 data, defined as the data set of which the daily TROPOMI NO2 TVCD
has the QA value greater than 0.75, to train the model does not improve the model point estimates accuracy or
reduce absolute uncertainty (Figures S8 and S9 in Supporting Information S1). Although the importance of both
the daily TROPOMI NO2 TVCD and the CAMS‐simulated TVCD rises (Figure S12 in Supporting Informa-
tion S1), the model performance stays unchanged. This might be due to the reduced number of training samples
and the saturated explanatory power of NO2 TVCD data to the surface NO2 dynamic. Additionally, the relatively
coarse spatial resolution reduces the sensitivity of TROPOMI TVCD to the surface NO2, particularly in traffic‐
related NO2 hotspots.

Second, the importance of the daily TROPOMI TVCD to the ML model has been partially displaced by the less
noisy CAMS‐simulated TVCD. To examine the impact of TROPOMI noise on the model, we conducted another
model training experiment using QA75 data with noise. During the training process, random normal Gaussian
noise was added to the daily TROPOMI NO2 TVCD. As illustrated in Figures S8 and S9 in Supporting Infor-
mation S1, the BEnCQE models trained on respective QA75 data and QA75 data with noise achieve similar
accuracy and uncertainty. This is attributed to the fact that the model transfers its dependence from the daily
TROPOMI TVCD to the CAMS‐simulated TVCD, as evidenced in the comparison between Figures S12 and S13
in Supporting Information S1. This also demonstrates the robustness of the BEnCQE model to the noise in the
daily TROPOMI data.

Third, the NO2 transport behaves differently in columns and near the surface, as the transport in the latter is more
damped. Despite this, the TROPOMI NO2 TVCD is indispensable because it can directly observe the NO2
variation, especially for unexpected changes. In our experiment analyzing predictors' changes during the COVID
period (Text S4 in Supporting Information S1), most of the other predictors remain normal or static while the
TROPOMINO2 TVCD and night light change significantly, in line with previous research (Levelt et al., 2022; Xu
et al., 2021). Therefore, we speculate that these two predictors can assist the model in recognizing the sudden
change in NO2 levels.

5.2. Observed Potential NO2 Exceedance

The 2021 World Health Organization Air Quality Guidelines (WHO AQGs) set a daily NO2 limit of 25 μg/m
3.

The guidelines aim to assist in making a clean air policy and mitigating the health effects of air pollution
(Hoffmann et al., 2021). Most ML‐based NO2 studies assess NO2 exceedance by determining only whether point
estimates exceed the WHO limit. However, this approach may underestimate NO2 exceedances by ignoring the
inherent uncertainty of the data. Here, we evaluate the frequency of NO2 exceedances of theWHO limit during the
study period using both the BEnCQE point estimates and the PI‐50% range to identify potential NO2 exceedances
that have not been detected in previous ML‐based surface NO2 studies. Figure 8a illustrates that the BEnCQE
point estimate indicates an overall low frequency of NO2 exceedances in Western Europe, except for the hotspot
areas (e.g., major cities and industrial areas) where the population density is high.

Coupled with the uncertainty, we define the potential NO2 exceedance as when the point estimate is below the
WHO limit, but the expected range of NO2 concentration (i.e., PI‐50%) crosses over this limit. As shown in
Figure 8b, the potential exceedance is frequent (ranging from 10% to 30%) and expands beyond the known NO2
hotspots to other regions, such as smaller cities, suburban areas, and roads within mountainous regions. In certain
regions, potential exceedance is more frequent than the determined exceedance by approximately 2% (red areas in
Figure S16 in Supporting Information S1). These regions would be inadequately considered if the policy‐making
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process is solely based on point estimates. Figures 8c–8f show the seasonal variation of potential exceedances.
The potential exceedance concentrates in the NO2 hotspot areas during the spring and summer, while it distributes
more widely during autumn and winter. This suggests that we should be cautious of a possible underestimation of
NO2 exceedance in the hotspot area during the warm seasons, even though such periods usually have lower NO2
levels. In addition, we also need to be mindful of the NO2 exceedance in other non‐hotspot areas during the cool
seasons. Although ML is becoming popular for surface NO2 estimation, the pure data‐driven ML model usually
tends to be conservative for high NO2 estimates, as shown by the scatter of the BEnCQE point estimate in
Figure 3. This may be due to factors such as imbalanced training samples and the nature of the loss functions,
which lead the model to concentrate on the overall accuracy for all predictions and sacrifice the accuracy for a
small group of high NO2 samples. Therefore, incorporating uncertainty information is crucial to avoid over-
looking potential NO2 pollution, which benefits air quality risk management.

5.3. Implication of Uncertainty Quantification for Model Improvement

One prevailing thought in the field of surface NO2 estimation using ML models has been that station distribution
and density are primary determinants of the robustness of prediction performance (Kim et al., 2021; L. Li &
Wu, 2021; Wei et al., 2022). This belief presumes that a higher density of monitoring stations will capture more of
the NO2 variability, thereby strengthening the ability of the MLmodel to make accurate predictions. In this study,
we aim to examine this assumption by exploring whether station density is a sufficient and reliable indicator of the
predictive robustness of the ML model.

To conduct the analysis, we coupled the spatial patterns of both the adjusted uncertainty and the EEA in‐situ
station density. Figure 9a shows the normalized station density distribution computed using a 2D Gaussian
convolution with a kernel size of 100 km. We adopted an 80% quantile threshold to distinguish between low and

Figure 8. Spatial distribution of determined surface NO2 exceedance frequency and potential exceedance frequency. The
NO2 exceedance is defined as the daily surface NO2 concentration greater than 25 μg/m

3 (WHO guidelines). Panel (a) shows
the distribution of the determined NO2 exceedance frequency over the study period calculated based on the BEnCQE point
estimates. Panel (b) shows the distribution of the potential NO2 exceedance where the point estimate is below 25 μg/m

3 but
the expected range (PI‐50%) crosses the threshold. Panels (c)–(f) show the distribution of the frequency of potential NO2
exceedances over four seasons.
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high station density and adjusted uncertainty. Consequently, we categorized four distinct scenarios as depicted in
Figure 9b: (a) low‐density‐low‐uncertainty (LDLU), (b) high‐density‐low‐uncertainty (HDLU), (c) low‐density‐
high‐uncertainty (LDHU), and (d) high‐density‐high‐uncertainty (HDHU). The distributions of the four scenarios
are shown in Figure 9c. LDLU shows up in most rural areas, and HDLU mainly surrounds urban and industrial
areas. LDHU tends to be concentrated in mountainous areas, whereas HDHU predominantly appears in NO2
hotspots and parts of mountainous areas. In general, LDLU and HDLU, which cover most of the study region, can
be recognized as the “safe” zones. However, caution is still needed for LDLU areas due to the lack of mea-
surements, where part of the NO2 distribution is possibly unknown to the model. The distribution of LDHU
suggests a need to increase the sampling density in the mountainous region to promote the model to learn more
reliable relationships between predictors and surface NO2 in this area. Crucially, the appearance of HDHUmeans
that the uncertainty persists in such areas even with relatively dense sampling, especially in the urban area. This
directs us to review the predictors used in our model, as key predictors might be missing to accurately explain the
high variability of surface NO2 in the city. For instance, the traffic volume is essential for analyzing local NO2
hotspots in urban areas (Y. Zhu et al., 2020), but this variable was not included in our predictors due to the
difficulty of acquiring such data. The absence of such a key variable can confuse the model when different types
of stations, such as background and traffic stations, are located close to one another and share similar predictors
but record different NO2 levels. The cause underlying the HDHU scenario is complex, emphasizing the need for a
more nuanced investigation.

6. Conclusions
This work proposes a UQ‐enabled ML framework and presents the BEnCQE model for inferring surface NO2
concentrations (daily and at a 1 km resolution) while also providing information on the uncertainty of each es-
timate. We analyze the uncertainty primarily arising from the inherent randomness and errors in the data. Our
BEnCQE model provides a reliable and plausible estimate of surface NO2 over Western Europe, including ac-
curate point estimates (r = 0.80 ± 0.02, R2 = 0.64 ± 0.03, RMSE = 8.08 ± 0.42 μg/m3), reliable PIs coverage
probabilities (PI‐50%: 51.0%, PI‐90%: 90.5%), and good agreement with CAMS results (r = 0.8 in the northern
half of the domain, 0.5 < r < 0.75 in the southern rural area, and r = 0.3 in the southern mountainous regions but
absolute values are close).

However, the model estimation over the traffic scenario needs to be further investigated, as the current low‐
performance statistics are not only related to the model prediction capacity but also to the representativeness
of the traffic stations for 1 km grids. In addition, the coarse resolution and the afternoon overpass (13:30 local

Figure 9. Intersections of adjusted uncertainty and the EEA in‐situ station density. Panel (a) shows the normalized station
density distribution which is computed using a 2D Gaussian convolution with a kernel size of 100 km. Panel (b) shows four
interaction scenarios where low and high station densities intersect with low and high adjusted uncertainties. An 80%
quantile threshold is used to differentiate between low and high scenarios. Panel (c) shows the distribution of the four
intersection scenarios.
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time) of the TROPOMI satellite observation restrict the model's capacity to capture the traffic NO2 dynamic. The
upcoming Sentinel‐4 (hourly temporal resolution (European Space Agency, 2017)) and Sentinel‐5 (morning
overpass at 9:30 local time (European Space Agency, 2020)) missions might enrich the observational data and
strengthen the model's ability to capture the high‐dynamic NO2.

Apart from regression using the conventional loss function (i.e., MSE), the application of quantile regression not
only allows for quantifying uncertainty but also helps in understanding the model behavior at different NO2
levels. The importance distribution of the predictors suggests that emission data (29.5%), meteorology (26.3%),
and satellite observations (20.4%) dominate the estimation of surface NO2, while the influence of SL data (12.4%)
and time (9.4%) comes second, and land information (2.0%) is marginal. Among them, the importance of emission
data, especially at high resolution, and SL data increases for the estimation of high NO2 levels. The uncertainty
information can contribute to air quality policymaking by revealing potential NO2 exceedances that are unde-
tectable when relying solely on point estimates. The BEnCQE model demonstrates its resilience to noise in the
input data, as evidenced by the comparison between different models trained on full data, QA75 data, and QA75
data with noise, respectively. Nonetheless, it hinders us from quantifying the uncertainty introduced by simple
perturbations to the predictors, which requires the development of specific methods.

Furthermore, the uncertainty information allows us to examine the robustness of the model outside of in‐situ
stations. Since the absolute and relative uncertainties are largely related to the magnitude of NO2, we have
proposed the adjusted uncertainty, which removes the influence of NO2 magnitude, for an objective uncertainty
analysis. It is observed that the largest adjusted uncertainty (ranging from 15 to 20 μg/m3) occurs in mountainous
areas and NO2 hotspots. In these regions, in situ stations are sparsely distributed in the mountains, whereas they
are densely clustered in urban areas. This phenomenon highlights the challenge of achieving robust estimation in
areas where NO2 is highly variable and spatially heterogeneous. For such areas, achieving a robust estimate is not
only a matter of sampling frequency but also a matter of the representativeness of the predictors and the station‐
measured data. For instance, estimating the dynamics of local high NO2 concentrations in the city can be uncertain
if some key predictors (e.g., traffic volume) are missing or if measured NO2 concentrations cannot represent the
NO2 levels of target grids. Also, the seasonal variation of the adjusted uncertainty suggests that the uncertainty is
related to the conflict between the spatial and temporal patterns of surface NO2 that the model has learned. Given
that spatial patterns are strongly affected by static emission data, making the emission data dynamic may help to
reduce the model uncertainty.

Such uncertainty analysis presents a significant perspective for improving the robustness of the purely data‐driven
ML model, as it emphasizes the essentiality of the explanatory power and representativeness of the data (i.e.,
predictors and measurements) for real surface NO2 variations. Apart from introducing more informative data to
improve the model's perception of different NO2 levels, another possible solution is to introduce physical and
chemical constraints to reduce the model's reliance on data (C. Shen et al., 2023). Although we have taken the
XGBoost model as the core ML model of the BEnCQE for its proven efficiency and robustness in many previous
works (Balamurugan et al., 2023; Chi et al., 2022; Kang et al., 2021; Kim et al., 2021; Liu & Chen, 2022), we
acknowledge that other models such as tree‐based (e.g., random forest and light gradient‐boosting machine) or
neural‐network‐based (e.g., convolutional neural network) models could also be suitable. Future work will
involve a comparative analysis of these models within the BEnCQE framework and explore potential en-
hancements. Finally, we hope that our study will encourage the systematic incorporation of UQ in future ML
approaches to atmospheric components.

Appendix A
The quantile regression is proposed by Koenker and Bassett (1978) and achieved by estimating the conditional
quantile function, as shown in Equation A1:

qα(x) = inf {y∈R : Fy( y|X = x)≥ α} (A1)

This represents the value at which at least α proportion of the conditional distribution of the target variable Y given
predictors (X = x) lies below, defining the α‐th conditional quantile of Y. Usually a pair of CQFs is used for a PI
construction, and the α is seen as a mis‐coverage rate and so the PI coverage probability is (1 − α). The equation
for the PI is defined as Cα(x), shown in Equation A2:
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Cα(x) = [qαlow(x), qαhigh(x)] (A2)

where the αlow is α/2 and αhigh is 1 − α/2.

Establishing a ML model for quantile regression objective can be achieved by training the model through
optimizing quantile loss which is shown in Equation A3:

Lossα,i =
⎧⎨

⎩

(1 − α) (qα (xi) − yi), qα (xi)≥ yi
α( yi − qα (xi)), qα (xi)< yi

(A3)

where qα(xi) is the α‐th quantile estimate in the ith sample given the true target (yi) and predictors (xi). For low
quantile regressions (α < 0.5), the ML model would be penalized more for overestimation and less for under-
estimation, and vice versa for high quantile regressions. Such an approach has been demonstrated to be effective
by previous research (Jensen et al., 2022; Romano et al., 2019; Vasseur & Aznarte, 2021). In this study, we want
to obtain PI of 50% (α = 0.5, αlow = 0.25, αhigh = 0.75) and 90% (α = 0.1, αlow = 0.05, αhigh = 0.95). Thus, we
build different XGBoost models with different quantile objectives (i.e., q = 0.05, 0.25, 0.75, and 0.95) for the
corresponding PI.

To guarantee the coverage probability of the generated PIs, we follow Romano et al. (2019) to incorporate
conformal prediction to refine the boundaries of PIs. The conformal prediction strategy calculates the conformity
scores, which are residuals computed on the calibration data set I2 (i.e., validation data set), when the model is
trained on training data set I1 (Angelopoulos & Bates, 2021). For the lower and higher bounds of a PI, the
conformity scores are represented as Eαlow and Eαhigh, as shown in Equation A4:

Eαlow = {qαlow(xi) − yi : i∈ I2}; Eαhigh = {yi − qαhigh(xi) : i∈ I2} (A4)

We conduct asymmetrical conformalization (Romano et al., 2019) to refine the PI (Equation 2) by controlling its
left and right tails independently to enhance the overall coverage guarantee. The equation is shown in
Equation A5:

Cα (xn) = [qαlow(xn) − Qαcp(Eαlow,I2), qαhigh(xn) + Qαcp(Eαhigh,I2)] (A5)

where the lower bound subtracts the αcp‐th empirical quantile of Eαlow and the higher bound adds the αcp‐th
empirical quantile of Eαhigh, and αcp equals αhigh. In this way, we obtain a reliable PI for each estimate.

Data Availability Statement
The operational TROPOMI NO2 product is accessible via the Copernicus Data Space Ecosystem (https://data-
space.copernicus.eu/). The modified TROPOMI NO2 product for Europe with regional CAMS a‐priori profiles is
available at https://www.temis.nl/airpollution/no2_cams.php. The meteorological data is provided by the fifth‐
generation ECMWF atmospheric reanalysis of the global climate product (ERA5 and ERA5‐land), which can
be accessed via https://cds.climate.copernicus.eu/. The GRIP global roads database can be downloaded from
https://www.globio.info/download‐grip‐dataset. The VIIRS night light data can be accessed from https://eogdata.
mines.edu/products/vnl/. The population data set is provided by https://ec.europa.eu/eurostat/web/gisco/geodata/
population‐distribution/geostat. The EEA emission inventory is retrieved from https://cdr.eionet.europa.eu/. The
CORINE land cover data set is downloaded from https://land.copernicus.eu/en/products/corine‐land‐cover/
clc2018. The MERIT DEM data is accessible via https://hydro.iis.u‐tokyo.ac.jp/~yamadai/MERIT_DEM/. The
EEA air quality database can be downloaded from https://discomap.eea.europa.eu/map/fme/AirQualityExport.
htm. The CAMS European air quality reanalyses data set is accessible via https://ads.atmosphere.copernicus.eu/.
The study data included can be accessed from Zenodo data archive (Sun et al., 2024, https://doi.org/10.5281/
zenodo.10425430). The BEnCQE core model (i.e., XGBoost v2.0.0) can be accessed from https://xgboost.read-
thedocs.io/en/stable/.
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