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Abstract Temperature is the principal driver of global atmospheric formaldehyde (HCHO) and its primary
oxidation precursor biogenic volatile organic compounds (BVOCs). We revisit such a temperature (T‐)
dependency globally, leveraging TROPOMI HCHO column data. We find substantial variations in the T‐
dependency of biogenic HCHO across plant functional types (PFTs), with the highest over Broadleaf Evergreen
Tropical Trees (doubling every 6.0 K ± 4.1 K) and lowest over Arctic C3 Grass (doubling every
30.8 K± 9.6 K). The GEOS‐Chem model interprets HCHO columns' T‐dependency at the PFT level (r= 0.87),
with a 16% discrepancy on average. The discrepancy can be explained by BVOC emissions T‐dependency for
Broadleaf Evergreen Tropical Trees and Warm C4 Grass and can be attributed to the insensitivity of HCHO
columns to BVOC emissions for other PFTs. Our findings underscore a potentially magnified variation of
BVOC emissions by GEOS‐Chem and MEGAN therein, particularly in regions experiencing greater
temperature variations.

Plain Language Summary We use remote sensing data from an up‐to‐date monitor to examine the
temperature (T‐) dependency of biogenic formaldehyde (HCHO), a proxy of a series of volatile organic gases
released by plants, in a global manner. We find that the effect of temperature on HCHO varies significantly
between different types of plants, with tropical evergreen trees showing the most sensitivity to temperature and
Arctic grasses showing the least. The GEOS‐Chem, a state‐of‐the‐art chemical transport model, interprets such
temperature sensitivity among plants with nonnegligible discrepancies. The sensitivity of volatile organic gases
released by plants to temperature explains the sensitivity of HCHO to temperature for some plants, such as
tropical evergreen trees and warm‐season grasses.

1. Introduction
Biogenic volatile organic compounds (BVOCs) account for 90% of the total VOC emissions (Guenther
et al., 1995), significantly affecting atmospheric chemistry and air quality via the secondary production of
tropospheric ozone (Hofzumahaus et al., 2009; Pacifico et al., 2012) and organic aerosols (Janssen et al., 2013;
Kroll et al., 2006). Isoprene is the most abundant BVOC species (Arneth et al., 2008; Guenther et al., 2012;
Sindelarova et al., 2014) with emissions highly dependent on temperature, as reported in North and South
America, North Europe, and Africa (Alves et al., 2018; Bourtsoukidis et al., 2024; Harley et al., 2003, 2004;
Langford et al., 2017; Rhew et al., 2017; Stoy et al., 2021). Previous studies have documented satellite HCHO
columns as a proxy of BVOC emissions and demonstrated that regional HCHO columns depend on temperature
variations (Duncan et al., 2009; Kaiser et al., 2018; Palmer et al., 2006; Zhu et al., 2014). Here, we examine the
global distribution of such a temperature (T‐) dependency in biogenic‐dominated regions for the first time using
high‐resolution observations from the TROPOspheric Monitoring Instrument (TROPOMI) (Veefkind
et al., 2012). We interpret such T‐dependency using MEGAN implemented in GEOS‐Chem model.
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BVOC emissions are sensitive to temperature accompanied by other environmental factors, including plant
function types (PFTs) (Arneth et al., 2011; Bonan et al., 2002; Bourtsoukidis et al., 2024; Misztal et al., 2011,
2016), photosynthesis (Litvak et al., 1996; Van Meeningen et al., 2017; Wang et al., 2022), soil moisture
(Naimark et al., 2021; Zheng et al., 2017), and CO2 concentrations (Garcia et al., 2019; Heald et al., 2009; Tai
et al., 2013). Although isoprene emission flux has been measured among plant species and environmental con-
ditions globally ranging from 0.1 to 93 mg C m− 2 day− 1 (Cao et al., 2021), site measurements lack represen-
tativeness of the region. Different choices of model parameters as well as the limited understanding of those
environmental factors can give results with a factor of four errors for one region (Wu et al., 2020). Therefore,
accurately quantifying BVOC emissions globally is highly challenging.

As a highly yielded product from BVOC oxidations, HCHO has an atmospheric lifetime of a few hours, making it
a proxy of local and global BVOC emissions (Barkley et al., 2013; Curci et al., 2010; Millet et al., 2006, 2008;
Palmer et al., 2003, 2006; Shim et al., 2005; Wolfe et al., 2016; Zhu et al., 2014; Zhu, & Mickley et al., 2017).
Temperature is the most influential driver of satellite HCHO column variations (Abbot et al., 2003; Duncan
et al., 2009; Guenther et al., 2006; Naimark et al., 2021; Palmer et al., 2006; Steiner et al., 2010; Zhu et al., 2014;
Zhu, & Mickley et al., 2017), likely related to the rate‐limiting process of BVOC (especially isoprene) synthase
enzymatic reaction in plants (Monson et al., 1992; Rasulov et al., 2010; Sharkey et al., 2007). HCHO columns
have been reported to be exponentially dependent on temperature in regions with abundant BVOC emissions
(Ryan, & Rhodes et al., 2020; Ryan, & Silver et al., 2020; Zhu et al., 2014). This study explores such dependency
globally using a 5‐year monthly TROPOMI HCHO columns over the biogenic‐dominated areas and interprets the
dependency with the state‐of‐the‐art MEGAN module v2.1 (Guenther et al., 2012) implemented in the GEOS‐
Chem model (v12.9.3) (Bey et al., 2001).

2. TROPOMI HCHO Columns
HCHO is detectable from space as a vertical column density (VCD), retrieved from the backscattered ultraviolet
radiance from 325 to 360 nm (Chance et al., 2000). TROPOMI, on board the Copernicus Sentinel‐5 Precursor
satellite (S5P) launched in October 2017, is a nadir viewing shortwave spectrometer instrument using passive
remote sensing techniques to attain its objectives at 13:30 daily local time. Among the available products,
TROPOMI provides retrievals at a finer spatial resolution of 7.0 × 3.5 km2 (upgraded to 5.5 × 3.5 km2 since
August 2019) and signal‐to‐noise ratio (De Smedt et al., 2018, 2021), with the algorithm inherited and updated
from its predecessors, including the Global Ozone Monitoring Experiment (GOME) (De Smedt et al., 2008),
SCanning Imaging Absorption spectroMeter for Atmospheric ChartograpHY (SCIAMACHY) (De Smedt
et al., 2008; Wittrock et al., 2006), Ozone Monitoring Instrument (OMI) (De Smedt et al., 2015), GOME‐2A (De
Smedt et al., 2012), and GOME‐2B (De Smedt et al., 2015).

Validation exercises with ground‐based Multi‐AXis Differential Optical Absorption Spectroscopy (MAX‐
DOAS) (Chan et al., 2020; De Smedt et al., 2021; Ryan et al., 2023) and Fourier‐Transform InfraRed (FTIR)
(Vigouroux et al., 2020) instruments show high temporal (r = 0.71 to 0.88) and spatial (r = 0.85 to 0.91) cor-
relations, confirming the validity of TROPOMI HCHO product. Therefore, TROPOMI HCHO product has been
widely used in constraining both biogenic and anthropogenic VOC emissions (Jin et al., 2023; Zhao et al., 2022;
Zuo et al., 2023) and the implication for ozone levels (Goldberg et al., 2022; Li et al., 2021).

We select June 2018–May 2023 TROPOMI level 2 overpassing daily pixels with (a) quality assurance values
greater than 0.5, (b) cloud fraction less than 0.3, (c) solar zenith angle less than 60°, and (d) snow‐ice‐free flag.We
re‐grid and oversample the resulted pixels onto the 0.5°× 0.5° (∼50× 50 km2) monthly grids, considering a trade‐
off between ensuring sufficient pixels and reasonable computing speed, built on our Oversampling method (Pu
et al., 2022; Sun et al., 2021; Zhu et al., 2014; Zhu, & Jacob et al., 2017; Zhu, & Mickley et al., 2017; Zuo
et al., 2023). The re‐gridding method allows a precise allocation of pixels by area weight, and the oversampling
method allows strict filtering criteria and increases the spatial signal‐to‐noise ratio by sacrificing temporal res-
olution. Further analysis is limited to grids where biogenic emissions are the main driver of HCHO columns (79%
of the total continental grids), as determined from GEOS‐Chem sensitivity simulations to the sources from
biogenic, anthropogenic, and biomass burning (Text S1 and Figure S1 in Supporting Information S1).
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3. Global Temperature Dependency of TROPOMI HCHO Columns
We assign each oversampled HCHO column grid with a MERRA‐2 surface temperature (T2M) according to its
location and time. Here, we use air temperature as an indicator of leaf temperature, as they are positively and
linearly correlated (Blonder & Michaletz, 2018; Fauset et al., 2018; Still et al., 2022). To quantify the T‐
dependency of HCHO columns, we apply the ordinary least squares regression to fit the exponential relation-
ship between HCHO columns and temperature in each grid.

Ω = exp(α + βT + ε) (1)

where Ω (molecules cm− 2) denotes a vector of monthly HCHO columns. T (K) is a vector of T2M with a baseline
of 285 K. We discard the records with T2M lower than 285 K from the fitting, considering enzyme activity in
BVOC productions is suppressed at low temperatures (Lehning et al., 1999), and isoprene emissions increase
markedly at around 12°C (Goldstein et al., 1998). β, in the unit of ln (molecules cm− 2) K− 1, quantifies the T‐
dependency of HCHO columns. α is the baseline after the logarithm, and ε is the fitting residuals. We focus
on biogenic‐dominated grids (Figure S1 in Supporting Information S1) with significant β (p‐value <0.05) and
temperature explaining the majority of HCHO variations (R2 > 0.5) (Figure S2 in Supporting Information S1).
Low T‐dependency regions, such as barren and background areas, are filtered out from further analysis by a
criterion of 0.02, the value over the Sahara Desert. Around 75% and 79% of the standardized residual from fitting
grids over the research regions are considered normal and independent, respectively, indicating that the T‐
dependency fitting captures the main patterns and sources of variation. We admit that radiation flux (Zhang
et al., 2019) and leaf phenology (Surl et al., 2018) also jointly influence the HCHO variation with temperature in
specific regions, such as Mid Amazon and North India.

As shown in Figure 1, the T‐dependency of TROPOMI HCHO columns (βTROPOMI) has a more pronounced
response over land. This highlights the dominant contribution of isoprene from terrestrial plants (Arnold
et al., 2009; Guenther et al., 2006, 2012; Palmer & Shaw, 2005), especially in Southeast US (McKinney
et al., 2011; Pressley et al., 2005; Stoy et al., 2021) and Amazon (Alves et al., 2023; Wei et al., 2018). βTROPOMI
decreases along the latitudes, with the maximum in the Amazon, tropical rainforests along the equator in Africa,
and Southeast Asia, consistent with reported in situ isoprene emission hot spots (Jaars et al., 2016; Langford
et al., 2022; Misztal et al., 2011). Such T‐dependency appears to be a seasonal variation: summertime and rainy

Figure 1. Global temperature (T‐) dependency of TROPOMI HCHO columns. βTROPOMI (unit: ln (10
15 molecules cm− 2)

K− 1) is the TROPOMI HCHO T‐dependency, fitted with ΩTROPOMI = exp (αTROPOMI + βTROPOMI T+ ε) at each 0.5° × 0.5°
grid, where ΩTROPOMI is a vector of monthly oversampled TROPOMI HCHO columns and T is a vector of the monthly mean
2‐m temperature (>285 K) correspond to ΩTROPOM. αTROPOMI is the fitting baseline and ε is the fitting residual. Only
showing are biogenic‐dominated grids (Figure S1 in Supporting Information S1) with significant βTROPOMI (p‐value <0.05)
and high determination coefficients (R2 > 0.5, Figure S2 in Supporting Information S1). Low T‐dependency regions (<0.02),
such as the barren Sahara, are in gray and excluded from further analysis.
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seasons have a notably higher T‐dependency compared to wintertime and dry seasons (Figure S3 in Supporting
Information S1).

We further examine mean βTROPOMI across PFTs on land (Figure S4 in Supporting Information S1), by starting
with the Broadleaf Evergreen Tropical Tree (PFT 4) dominated regions, such as Amazon, the equator of Africa,
and Southeast Asia, where isoprene and monoterpene emissions contribute to 88% and 83% of the global total
(Sindelarova et al., 2014), respectively. We see from Figure 2 that βTROPOMI is the highest (0.12 ± 0.07) for PFT
4, translating to that HCHO columns would double every 6.0 K ± 4.1 K. This aligns with isoprene emissions
variations measured in Amazon (Jardine et al., 2014, 2016; Pétron et al., 2001). βTROPOMI is the lowest for the
Broadleaf Deciduous Boreal Tree (doubling every 27.6 K ± 4.8 K). As summarized in Table S1 of Supporting
Information S1, the doubling temperature ranges from 9.2 to 30.8 K for other PFTs, enveloping values from
previous observation‐based studies (Duncan et al., 2009; Pressley et al., 2005). The standard deviation is notable
for some PFTs, such as Broadleaf Evergreen Trees (PFT 4 and 5) and Grasses (PFT 13 and 14), indicating a large
variation in T‐dependency within those PFT groups. Nevertheless, most of the T‐dependency PFTs pairs are
significantly different (Tukey pairwise post hoc test) except for 4 Broadleaf Deciduous species (PFT 7, 8, 10, and
12), acknowledging that the joint influence of latitudinal distribution on PFTs and T‐dependency is non‐
negligible, especially in the lower latitudes (Figure S5 in Supporting Information S1).

Figure 1 also shows significant T‐dependencies over the ocean, including off the coast around the Caribbean, the
Gulf of Guinea, the ocean near Southeast India, the ocean near Western Australia, and coastal areas of the
southeast US. We examine potential drivers of this by first correlating TROPOMI HCHO columns with the
Greenhouse Gases Observing Satellite‐2 (GOSAT‐2) methane columns (Yokota et al., 2009) (Figure S6 in
Supporting Information S1). Over those regions with significant T‐dependency, the correlation is either insig-
nificant or negative, indicating other drivers rather than methane oxidation. Such T‐dependencies may be traced
to seasonal changes of wind direction influencing the terrestrial outflow of long‐lived VOCs (Gopikrishnan &
Kuttippurath, 2021; Wittrock et al., 2006) and localized VOCs emitted by phytoplankton activities (Conte
et al., 2020; Halsey et al., 2023), admitting high uncertainties in oceanic emissions (Arnold et al., 2009; Booge
et al., 2016, 2018; Myriokefalitakis et al., 2010).

Figure 2. Temperature (T‐) dependency of TROPOMI (βTROPOMI, blue), GEOS‐Chem (βGEOS‐Chem, red), and perturbed
GEOS‐Chem (β′GEOS‐Chem, pink) HCHO columns across plant functional types (PFTs). The error bar is the standard
deviation of the β for grids with the same PFT, demonstrating the variations in T‐dependency within the PFT. GEOS‐Chem
results are corrected with TROPOMI averaging kernels (Text S2 in Supporting Information S1). The perturbed GEOS‐Chem
incorporates βTROPOMI into the temperature activity factor (γ′T ; Equation 2). Percentages quantify changes from βGEOS‐Chem
to β′GEOS‐Chem, relative to βTROPOMI. PFTs are labeled in order: 1 Needleleaf Evergreen Temperate Tree, 2 Needleleaf
Evergreen Boreal Tree, 4 Broadleaf Evergreen Tropical Tree, 5 Broadleaf Evergreen Temperate Tree, 6 Broadleaf Deciduous
Tropical Tree, 7 Broadleaf Deciduous Temperate Tree, 8 Broadleaf Deciduous Boreal Tree, 10 Broadleaf Deciduous Temperate
Shrub, 12 Arctic C3 Grass, 13 Cool C3 Grass, 14 Warm C4 Grass, and 15 Crop.
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4. Interpreting βTROPOMI With MEGAN Implemented in GEOS‐Chem
To interpret how βTROPOMI varies spatially and across PFTs, we use the GEOS‐Chem model (Text S1 in Sup-
porting Information S1) that links HCHO columns with BVOC emissions driven by an array of environmental
factors through the MEGAN module. GEOS‐Chem HCHO vertical profiles are sampled locally at TROPOMI
over‐passing time (13:00–14:00) and then corrected with TROPOMI averaging kernels (Text S2 in Supporting
Information S1). As shown in Figure S7 of Supporting Information S1, GEOS‐Chem HCHO columns, in general,
are linearly related to TROPOMI HCHO columns, supporting the interpretation of TROPOMI HCHO columns
with GEOS‐Chem, acknowledging that an overall overestimation and underestimation exist (Figure S7 in Sup-
porting Information S1, panel c and d, respectively), which is not reflected by the T‐dependency analysis.

We see from Figure 3 that the T‐dependency of GEOS‐Chem HCHO columns (βGEOS‐Chem) consistently shows
latitudinal variations and hot spots as reflected by βTROPOMI (Figure 1), but with an overestimation than TRO-
POMI. Such overestimation is reflected in the overestimation of HCHO column variations (Figure S7 in Sup-
porting Information S1, panel b). GEOS‐Chem also overestimates the T‐dependency in the Indian Ocean, off the
coast of Western Australia, and around the Caribbean up to two times. This leads to the hypothesis that the ocean
sources of HCHOmay undermine the HCHOT‐dependency offshore brought by seasonal winds (Gopikrishnan &
Kuttippurath, 2021) since GEOS‐Chem includes no ocean contribution. Additionally, βGEOS‐Chem coincides
highly (r = 0.87) with βTROPOMI on the PFT level (Figure 2). On average, βGEOS‐Chem is 16.0% higher than
βTROPOMI, with discrepancy ranging from 6.1% (PFT 14, Warm C4 Grass) to 62.8% (PFT 8, Broadleaf Deciduous
Boreal Tree).

To evaluate how BVOC emissions contribute to such discrepancy between βGEOS‐Chem and βTROPOMI, we refer to
the calculation of the temperature activity factor (γT) in the MEGAN module implemented in the GEOS‐Chem
model and perturb it using information from TROPOMI as follows:

γ′T = γT ×∑
15

i=1
χi exp (∆βi (T − Ts)) (2)

where χi is the fractional area from PFT i coverage within the grid, Δβi = βTROPOMI, i − βGEOS‐Chem, i corrects the
discrepancy between βTROPOMI and βGEOS‐Chem for PFT i (Table S2 in Supporting Information S1), T and Ts is the
respective air temperature and standard temperature as described in the MEGAN model (Chen et al., 2023;

Figure 3. Global temperature (T‐) dependency of GEOS‐Chem HCHO columns. βGEOS‐Chem (unit: ln (10
15 molecules cm− 2)

K− 1) is defined as ΩGEOS‐Chem = exp (αGEOS‐Chem + βGEOS‐Chem T + ε) (Text S2 in Supporting Information S1). ΩGEOS‐Chem
is the monthly GEOS‐Chem HCHO column, corrected with the TROPOMI averaging kernels. αGEOS‐Chem is the baseline,
and T denotes the 2‐m temperature (>285 K). Only showing are biogenic‐dominated grids with significant βGEOS‐Chem (p‐
value <0.05) and high dependency (R2 > 0.5). Low T‐dependency regions (<0.02; gray) are excluded from further analysis,
consistent with βTROPOMI in Figure 2.
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Guenther et al., 1993; Zeng et al., 2023) and set to be 303 K in GEOS‐Chem. T‐dependencies of HCHO columns
from the perturbed GEOS‐Chem simulation as denoted as β′GEOS‐Chem.

We see from Figure 2 that β′GEOS‐Chem shows varying degrees of improvement compared with the default
βGEOS‐Chem, with PFT 4 (Broadleaf Evergreen Tropical Tree) and PFT 14 (Warm C4 Grass) being the most
efficient (72.9% and 90.8%, respectively). This indicates that BVOC emissions T‐dependencies contribute
mainly to HCHO columns T‐dependencies at the lower and middle latitudes, where BVOC emissions are
abundant. Our simulation shows that isoprene emission flux from PFT 4 under high temperatures, such as
315 K, is overestimated by at least 11% (∼1.2 × 10− 9 kg m− 2 s− 1) by the default GEOS‐Chem. The result is
consistent with the reported mismatch between MEGAN estimation and satellite‐derived isoprene emissions
(Barkley et al., 2012, 2013), recognizing that the degree of overestimation may vary depending on the versions
of MEGAN and the landcover therein, and the meteorological information used in GEOS‐Chem.

The remaining discrepancy between βGEOS‐Chem and βTROPOMI for other PFTs is likely due to the insensitivity of
GEOS‐Chem HCHO columns to BVOC emissions. To verify this, we replace the default isoprene emissions with
the measured fluxes (Seco et al., 2022) in a boreal region (PFT 11, Broadleaf Deciduous Boreal Shrub). The
sensitivity simulation shows that ∼80% of the isoprene emission variation only leads to ∼6.0% of the HCHO
columns variation (Figure S8 in Supporting Information S1), indicating a weak response of HCHO columns to
BVOC emissions. This reminds us that challenges exist when applying satellite HCHO columns as the proxy of
BVOC emissions in regions with those PFTs, acknowledging other factors, such as Leaf Area Index (LAI),
Aerosol Optical Depth (AOD), nitrogen oxides (NOx) level, and season transition, also complicate the rela-
tionship between HCHO columns and BVOC emissions (Alves et al., 2018; Barkley et al., 2012, 2013; Marais
et al., 2012; Strada et al., 2023).

The perturbation improves T‐dependency in general but has both reductions and amplifications in the discrepancy
of HCHO columns simulation. The discrepancy of HCHO columns mean value reduces in regions where GEOS‐
Chem has an overall overestimation compared with TROPOMI (mainly Southeast US and tropical regions), while
amplifying in underestimation regions (mainly India and Australia) (Figure S9 in Supporting Information S1). On
the PFT level, the perturbation improves the total HCHO columns by 1.8% for the Broadleaf Evergreen Tropical
Tree, while exacerbating the discrepancy in the rest of the PFTs (0.47%–4.5%).

5. Conclusions
We have used TROPOMI satellite observations to investigate the temperature (T‐) dependency of HCHO col-
umns over the globe. The T‐dependence of HCHO columns exhibits notable variations across Plant Functional
Types (PFTs), with the highest dependency observed in the Broadleaf Evergreen Tropical Tree category. The
GEOS‐Chemmodel primarily interprets the T‐dependency of HCHO columns at the PFT level, although there is a
16% discrepancy on average. We perturbed the temperature activity factor in MEGAN by introducing TROPOMI
HCHO T‐dependency information. The main drivers of such a discrepancy are the T‐dependency of BVOC
emissions for Broadleaf Evergreen Tropical Tree and Warm C4 Grass, and the insensitivity of HCHO columns to
BVOC emissions for other PFTs.

We recommend a PFT‐specific correction for temperature activity factor over tropical regions in the MEGAN
model implemented in the GEOS‐Chem, since BVOC T‐dependency there interprets most of the HCHO T‐
dependency, and, although minor, has an improvement on HCHO columns simulation. The updates provide a
correction accorded with satellite observation and improve the estimation of BVOC emission and HCHO col-
umns, especially at high temperatures. We find that GEOS‐Chem has an 11% (∼1.2 × 10− 9 kg m− 2 s− 1) of the
isoprene emission overestimation compared with satellite observation for Broadleaf Evergreen Tropical Tree area
at 315 K. The correction needs further investigation, such as additional model runs, including source attribution of
HCHO T‐dependency, since the improvement in this study is limited for those PFTs other than tropical regions.

Data Availability Statement
We gratefully acknowledge TROPOMI HCHO product (Copernicus Sentinel‐5P, 2020), MERRA‐2 T2M product
(Global Modeling and Assimilation Office, 2015) implemented in GEOS‐Chem with the description access at
http://wiki.seas.harvard.edu/geos‐chem/index.php/MERRA‐2_implementation_details, GOSAT methane
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product (Japan Aerospace Exploration Agency, 2018). Oversampling code, data analysis scripts, and GEOS‐
Chem configuration files are available at the Zenodo repository (Li et al., 2024).
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