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A B S T R A C T

Over the last two decades, important efforts have been undertaken by the most prominent space agencies to
explore and analyze the interior, ground and atmosphere of Mars. A series of remote sensing instruments have
been deployed and operated to characterize the atmospheric composition and dynamics. Several techniques have
been used including solar occultation spectroscopy recording the sun spectrum attenuated through the atmo-
sphere. We present three different methods dedicated to the analysis of occultation observations in the ultraviolet
(UV) wavelength range covering the Hartley band of ozone. These methods are designed to account for several
absorbing gases as well as aerosols responsible for extinction along the observing line-of-sight passing through
the atmosphere. The aerosols are described using a local extinction parameter at a reference wavelength and a so-
called Angström α-parameter to express the wavelength dependency of extinction with a power law.

In a first method, inverse Abel transform of the total extinction parameter (or optical thickness) of the at-
mosphere is conducted at each wavelength using a least-squares fitting technique, followed by a second least
squares estimate of the local atmospheric properties at all fitting altitudes, separately.

A second method is derived in which all the atmospheric gas concentrations and aerosol extinction coefficient
at reference wavelength vary with altitude in a piecewise linear manner. The α parameter is however assumed to
be a piecewise linear function of ln(r), allowing for numerical and analytic developments. For the sake of
inversion of the observation, the gas densities and aerosol reference extinction parameters are expressed as a
function of the α parameters using a linear least-squares fitting expression, so that the α parameters can be
estimated using a non-linear least-squares fitting method.

A third method is derived in which the gas species are approximated using piecewise exponential branches.
Tests are conducted to evaluate the efficiency of all methods against retrieval of a prescribed atmospheric profile.

It is found that the first two methods can readily retrieve the atmospheric properties, the second one allowing
for more consistent uncertainty estimates. The third method is found to be computationally expensive with a
difficult-to-reach fitting convergence. Preliminary tests are conducted using TGO-NOMAD-UVIS observations in
the O3 Hartley band wavelength range. It is found that the CO2 extinction is too weak to allow retrieval of the
CO2 density profile from observations at those wavelengths, while the O3 density and dust properties can be
successfully retrieved.

1. Introduction

Over the past decades, several space missions have been developed
to explore the terrestrial planets of our solar system. The NASA Pioneer
Venus [Colin and Hall, 1977; Colin and Hunten, 1977] mission is a key
milestone in the exploration of Venus, later followed by the ESA Venus

Express mission [Svedhem et al., 2007]. Mars has gained stronger
attention owing to its resemblance to planet Earth, and to the expecta-
tion of finding out traces left by a water cycle and hopefully by ancient
life forms. The ESA ExoMars mission [Vago et al., 2015] is part of an
ambitious exploration project dedicated to the red planet, with other
missions having recently been launched by other space agencies, such as
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the NASA MAVEN [Jakosky et al., 2015] and ISRO MOM (Mangalayaan)
[Kumar and Chauhan, 2014] missions. The U.A.E. SA EMM (“Hope”)
mission [Amiri et al., 2022] is another example of the successful inter-
national efforts made by the mankind to explore and understand our
sister-planet.

The vast, comprehensive set of scientific projects towards Mars does
not only focus on the planet’s surface and subsurface geology. It also
includes important efforts dedicated to the understanding of the planet
atmosphere. In this context, the ExoMars mission included the Trace Gas
Orbiter (TGO), carrying a suite of instruments specifically dedicated to
the analysis of the atmosphere composition, photochemistry and dy-
namics. In particular, the Nadir and Occultation for MArs Discovery
(NOMAD) [Neefs et al., 2015; Vandaele et al., 2015; Patel et al., 2017],
developed and operated by the Belgian Institute for Space Aeronomy, is
a three-channel spectrometer suite covering the electromagnetic spec-
trum from the infrared wavelength range (from 4.3 μm down to 2.2 μm)
till the visible and ultraviolet domain (from 0.65 down to ~0.2 μm).

One of the several science targets of TGO-NOMAD is the measure-
ment of the ozone (O3) density profile in the ultraviolet (UV) 200–300
nm wavelength range, in which O3 has been known for long to have a
strong absorption band: the Hartley band system [Hartley, 1881]. Solar
occultation profiles are regularly recorded by the instrument near the
terminator, in order to allow for the retrieval of the gas density profile.
The Mars atmosphere has carbon dioxide (CO2) as vastly dominant
specie. Although CO2 is known to only weakly absorb light in the Hartley
band UV range, its overwhelmingly large density leads to nevertheless
consider and test it as a potential absorber, at least in some altitude
ranges. Besides atmospheric gases, the Mars atmosphere is known to be
variably loaded with aerosols, i.e. dusts, with extreme loading occurring
during dust storms developing either locally (often in the “winter”
hemisphere) or globally, then (non-uniformly) loading the whole at-
mosphere with dusts.

Dusts present in the atmosphere can produce extinction of sunlight,
therefore often making a significant contribution to absorbance during
solar occultation observations. Mattänen et al. [2013] examined occul-
tation data from the Mars Express SPICAV instrument and analyzed the
vertical distribution of the dust properties. They considered the (dif-
ferential) extinction parameter of dusts (κ0) at a reference wavelength of
λ0 = 250 nm and made the common assumption that the wavelength
dependency of the extinction parameter varies as a power of wavelength
λ [O’Neill and Royer, 1993; Angström, 1929], an assumption that pre-
viously prove reliable in the Earth’s atmosphere over reasonably
restricted wavelength ranges, the power being called the α or Angström
parameter:

κλ = κ0

(
λ
λ0

)α

(1)

Extinction due to aerosols is then computed using a classical Beer-
Lambert law, the optical thickness due to dusts, τdλ , resulting from the
line-of-sight integration of the extinction coefficient. If dust were the
only cause of sun light extinction, this would read:

τdλ =

∫ ∞

s0
κλ(s) ds

I(λ) = I0(λ)exp
(
− τdλ

)
(2)

where I0(λ) is the unabsorbed intensity of the solar flux reaching the
planet, and I(λ) is the intensity of sun light reaching the observer staring
at the sun through the atmosphere. Parameter s0 in the integral of eq. (2)
can be set to 0 when measuring the distance from the observer along the
line-of-sight (l.o.s.). But this distance can also be conveniently measured
from the point of the l.o.s. which is the closest to the planet center, i.e.
from the so-called tangent point, as illustrated in Fig. 1. Parameter s0 is

then a negative number, and tangent (planetocentric) altitude can be
denoted r0, the tangent altitude z0 being defined by subtracting a
reference planet radius from r0. When the observer (i.e. an instrument
onboard an orbiting satellite) is located far outside of the atmosphere,
the l.o.s. integral can be carried out from -∞ to +∞ and s0 is set to -∞.

When other absorbing gases, such as O3 and CO2 for example, need to
be accounted for, the optical thickness at a given wavelength is the sum
of the individual optical thicknesses of the different contributors to the
absorption:

τλ = τdλ +
∑nsp

i=1
τiλ

I(λ) = I0(λ) exp( − τλ)

(3)

where nsp is the number of gas species to be accounted for, and τiλ is the
corresponding optical thickness obtained from the gas number density ni
and total extinction cross section (including absorption and scattering)
σi(λ):

τiλ =
∫ ∞

s0
ni(s) σi(λ) ds (4)

Ideally, one should account for a possible dependency of the cross
section with temperature, and therefore with radial distance r and l.o.s.
distance s. In the temperature range prevailing in the atmosphere of
Mars, this dependency can be expected to remain moderate [Malicet
et al., 1995], and reasonable constant values will be adopted here,
allowing to factor the cross section out of the integral for the sake of data
analysis purposes, as will be discussed below.

A spherical symmetry assumption can often be safely made when
computing l.o.s. integration of most quantities characterizing a plane-
tary atmosphere. Indeed, the atmosphere of rocky planets can be
regarded as a thin layer, with a radial extent much smaller than the
planet radius, especially considering that the gas density and pressure
mostly varies exponentially with altitude, so that significant contribu-
tions to the l.o.s. integral essentially come from a layer a few scale
heights thick above the tangent point. Piccialli et al. [2021] showed, e.
g., that even near the terminator, horizontal gradients only marginally
influence solar light attenuation, along slant lines of sights, except at

Fig. 1. Line-of-sight integration geometry. Variable s measures location along
the line-of-sight (l.o.s.), from the tangent point located at distance r0 from the
planet center, where the radial direction is perpendicular to the l.o.s.. It is
counted positively in the direction of a chosen reference unit vector e→s. For a
given value of r0, angle β can also be used to specify the location along the l.o.s.,
and therefore the value of radial distance r and the orientation of the radial unit
vector e→r.

B. Hubert et al. Icarus 429 (2025) 116401 

2 



high latitudes where it can make a ~ 20 % difference. Spherical
assumption allows a simplification of the l.o.s. integrals of eqs. (2) and
(4), reducing them to the so-called Abel transform of the integrant after

the substitution s =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2 − r20
√

, ds = r̅̅̅̅̅̅̅̅̅
r2 − r20

√ dr separately for positive and

negative values of s and assuming the observer is at sufficiently large
altitude (so that integral over s can be considered from -∞ to + ∞). For
any quantity f(r) for which a spherical symmetry assumption can be
made, the l.o.s. integration of f(r), denoted F(r0), only depends on the
tangent radius r0 and can be written

F(r0) =
∫ ∞

− ∞
f(s) ds = 2

∫ ∞

r0

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√ f(r) dr (5)

where the second integral is the Abel transform of f(r). When spaceborne
instruments provide measurement of F(r0) over a range of r0 values and a
spherical symmetry is assumed, retrieving f(r) requires evaluating the
inverse Abel transform of F(r0) [Bracewell, 1999].

Many authors have described inverse Abel transform methods in
many different contexts [e.g. Quémerais et al., 2006, Forget et al.,
2009]. This study inherits a large part of its developments from Hubert
et al. [2016] and [Hubert et al., 2022], and references therein. We only
summarize here the essential ideas and results necessary for the current
study. The reader is invited to consult those references for further
details.

Analytic inverse Abel transform can be considered when F(r0) is
known with an infinite accuracy:

f(r) =
− 1
π

∫ ∞

r
dr0

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r20 − r2

√
dF(r0)
dr0

(6)

The integral of eq. (6) requires knowing the derivative of F(r0) over a
large range of r0 values. When F(r0) is provided by observation, accu-
rately computing its derivative is problematic, since local variations can
easily be dominated by the noise, which necessarily degrades the
measured signal. Numerical inversion methods therefore need to be
used, which mostly rely on least squares fitting techniques.

In order to produce a least-squares fitting method, one needs to
discretize the problem and represent function f(r) using a sum of suitably
chosen analytic basis functions. (Other non-linear representations may
also be considered, though.) One can, for example, use a piecewise-
linear representation of f(r) built as a sum of triangular functions
defined over finite, bounded intervals:

tk(r) =
r − rk− 1

rk − rk− 1
χ]rk− 1 ,rk [(r) +

(

1 −
r − rk

rk+1 − rk

)

χ]rk ,rk+1 [
(r)

=
r − rk− 1

rk − rk− 1
χ]rk− 1 ,rk [(r) +

rk+1 − r
rk+1 − rk

χ]rk ,rk+1 [
(r)

f(r) =
∑n

k=1
ak tk(r)

(7)

where function χΩ(r) takes value 1 when r ∈ Ω, 0 otherwise. Index k
varies between 1 and n, and enumerates the set of triangles centered on
radial distance rk, parameters ak are used to linearly combine the tk
terms and produce a piecewise linear representation of f(r). According to
this series development, f(rk) = ak. The first (last) term of tk is ignored
when k = 1 (k = n, respectively). As the Abel transform is a linear
operator, the Abel transform of f(r), F(r0) is obtained directly from the
Abel transform of the tk(r), denoted Tk(r0):

Tk(r0) =
∫ ∞

r0

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√ tk(r) dr

F(r0) =
∑n

k=1
ak Tk(r0)

(8)

The Tk(r0) are easily obtained defining the following set of indefinite
integrals In(r,r0) and the recurrence that relates them [Hubert et al.,
2016]:

In =
∫

dr
r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√ rn

(n+ 1)In + n r20 In− 2 = rn
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2 − r20
√

I− 1 = arcosh
(
r
r0

)

= ln

(
r
r0

+

̅̅̅̅̅̅̅̅̅̅̅̅̅

r2

r20
− 1

√ )

I0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2 − r20
√

(9)

In the particular case of the triangular elements of Eq. (8), only the n
= 0 and n = 1 cases will be used, but there is no formal restriction to the
computation of indefinite integrals involving higher degree polynomials
if necessary. Each In is defined up to an additive constant that we can
take to be 0 as we are only interested in using them for the computation
of definite integrals. When observation provides F(r0) at a set of tangent
radius values r0,j, retrieving f(r) expressed as a piecewise-linear function
amounts to estimating the ak using a least squares-fit method, as
explained, e.g., in Hubert et al. [2016, 2022]. This least-squares fit
inversion however relies on the solution of a linear system, which is
often somewhat ill-conditioned. This problem is generally overcome
using Tikhonov regularization, i.e. by adding to the classical least-
squares fit matrix another matrix. This matrix is used to evaluate a
quantity related to f(r), such as the square of its second derivative for
example, that we expect should remain relatively small. Indeed, noisy
variations of f(r) would produce artificial, unrealistic, large values of its
derivatives. Moreover, adding such a regularization matrix produces a
new matrix whose diagonal elements are different. For a symmetric
matrix, this modifies the set of eigenvalues and generally tends to pro-
duce a matrix that has a determinant sufficiently different from 0 to cure
the ill-conditioning of the original system. This is obtained, though, at
the expense of a modification of the concept of optimum: the fitted
function is not only expected to represent the data, but also to keep its
second derivative (or another property) as small as possible.

Several authors have already applied inverse Abel transform tech-
niques to both solar and stellar occultation measurements to study the
atmosphere of Mars. Quémerais et al. [2006] proposed an inversion
method based on a regularized onion peeling technique to study stellar
occultations in the far ultraviolet (FUV) spectral range and estimate the
CO2 density profile, as well as Forget et al. [2009]. Montmessin et al.
[2006] rather focused on aerosols. Määttänen et al. [2013] also used an
inversion technique to characterize the aerosol climatology. Piccialli
et al. [2023] compared three inversion techniques applied to retrieve
the ozone density profile of Mars, in the presence of aerosols, including a
sophisticated method based on radiative transfer modelling aimed at
accounting for horizontal gradients near the terminator in the case of
solar occultation. Piccialli et al. [2021] evaluated that horizontal gra-
dients generally play a minor role in solar occultation inversions,
excepted at high latitude where they can make a 20 % difference over
the estimated ozone density. Määttänen et al. [2022] conducted an

B. Hubert et al. Icarus 429 (2025) 116401 

3 



analysis of solar and stellar occultation of the Mars atmosphere to
characterize the ozone profile and distribution. The studies listed above
mostly relied on observations acquired by the ESA ExoMars and Mars
Express missions. Stellar occultation studies were also conducted using
observations from the NASA MAVEN mission by, e.g., Gupta et al.
[2022] who studied the density and temperature profile of the planet. In
the present study, we detail three inversion techniques dedicated to the
analysis of occultation observations of atmospheres containing aerosols
and absorbing gases. The methods we propose share several character-
istics with the method of Quémerais et al. [2006], while taking advan-
tage of new, original analytic developments.

2. Analytic developments

The basic concept of Inverse Abel transform developed in the intro-
duction needs to be modified, in order to analyze occultation observa-
tions of a planetary atmosphere, especially when aerosols need to be
included, in which case, as it will be explained below, the wavelength
dependency of extinction also needs being assessed. In the case of
occultation, the observed quantity is the exponential of -τλ(r0), i.e. an
exponential of some line-of-sight integration of the absorbers properties,
instead of only the line-of-sight integration of the local emission rate
when studying an (unabsorbed) airglow layer. A logarithm has therefore
to be computed at some stage before inverting the Abel transform.
Moreover, observation is obtained at different wavelengths and, in the
case of the aerosols, the α-parameter can depend on altitude. This will
unavoidably result in a non-linear problem. We will first introduce an-
alytic results that can be obtained when making suitably chosen as-
sumptions over the altitude dependency of the dusts properties. Then we
will propose several methods to actually implement the least-squares
based inverse-Abel transform allowing to retrieve the absorbing gas
density and dust property profiles.

2.1. Analytic representation of the dusts optical thickness

The local (differential) extinction parameter for dust at reference
wavelength λ0, κ0, can be represented using the piecewise-linear
expression given by eq. (7). It could be tempting to use the same kind
of piecewise-linear expression for the altitude-dependent α parameter.
But another functional dependency can instead be assumed, considering
that this parameter appears as a power of the wavelength ratio in eq. (1).
A linear dependency with respect to r would unavoidably introduce
exponential functions in the Abel transform expression. Although it is
possible to find stably converging analytic series development for such
integrals [Hubert et al., 2022], these results are not easy to manipulate.
In contrast, building the triangles of eq. (7) using ln(r) instead of r makes
it possible to commute the formal roles of wavelength and radial dis-
tance. Introducing a reference radius r* in order to have dimensionless
quantities as argument of the logarithm function, we define triangular
functions uk(r) as

uk(r) =
ln
( r
r*
)
− ln

(rk− 1

r*
)

ln
(rk
r*
)
− ln

(rk− 1

r*
)χ]rk− 1 ,rk [(r) +

ln
(rk+1

r*
)
− ln

( r
r*
)

ln
(rk+1

r*
)
− ln

(rk
r*
)χ]rk ,rk+1 [

(r)

=

ln
(

r
rk− 1

)

ln
(

rk
rk− 1

)χ]rk− 1 ,rk [(r) +
ln
(

r
rk+1

)

ln
(

rk
rk+1

)χ]rk ,rk+1 [
(r)

α(r) =
∑n

k=1

αk uk(r)

(10)

With these expressions, α(r) varies piecewise-linearly with ln(r).
Given that χΩ(r) is 0 for any r outside of interval Ω, one can then express
the (differential) extinction coefficient of the aerosols as

κk(r, λ) = κ0,k tk(r)
(

λ0

λ

)α(r)

= κ0,k

[
r − rk− 1

rk − rk− 1
χ]rk− 1 ,rk [(r)

(
λ0

λ

)αk− 1 uk− 1(r)+αkuk(r)+αk+1uk+1(r)

+

rk+1 − r
rk+1 − rk

χ]rk ,rk+1 [
(r)
(

λ0

λ

)αk− 1uk− 1(r)+αk uk(r)+αk+1uk+1(r)
]

= κ0,k

[
r − rk− 1

rk − rk− 1
χ]rk− 1 ,rk [(r)

(
λ0

λ

)αk− 1 uk− 1(r)+αkuk(r)

+

rk+1 − r
rj+1 − rk

χ]rk ,rk+1 [
(r)
(

λ0

λ

)ak uk(r)+ak+1uk+1(r)
]

= κ0,k

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

r − rk− 1

rk − rk− 1
χ]rk− 1 ,rk [(r)

(
λ0

λ

)αk− 1

ln

(
rk
r*

)
− ln

(
r
r*

)

ln

(
rk
r*

)
− ln

(
rk− 1
r*

)+αk

ln

(
r
r*

)
− ln

(
rk− 1
r*

)

ln

(
rk
r*

)
− ln

(
rk− 1
r*

)

+

rk+1 − r
rk+1 − rk

χ]rk ,rk+1 [
(r)
(

λ0

λ

)αk

ln

(
rk+1
r*

)
− ln

(
r
r*

)

ln

(
rk+1
r*

)
− ln

(
rk
r*

)+αk+1

ln

(
r
r*

)
− ln

(
rk
r*

)

ln

(
rk+1
r*

)
− ln

(
rk
r*

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11)

Note that the kth triangular element of the extinction coefficient is
evaluated between rk-1 and rk+1. Between rk-1 and rk, the Angström
parameter is given by a linear combination of the triangular elements uk-

1 and uk while between rk and rk+1, it is given by a linear combination of
triangular elements uk and uk+1. As a consequence, there is a formal
coupling between neighboring bins through the Angström parameter,
making appear the αk-1 and αk+1 in the expression of κk. Now, the power
of the wavelength ratio can be transformed into a power of the radial
distance, which, as we will see, allows for particular expressions and
formula in the Abel transform integral. For example,

(
λ0

λ

)αk

ln

(
rk+1
r*

)
− ln

(
r
r*

)

ln

(
rk+1
r*

)
− ln

(
rk
r*

)+αk+1

ln

(
r
r*

)
− ln

(
rk
r*

)

ln

(
rk+1
r*

)
− ln

(
rk
r*

)

=

= exp

⎛

⎜
⎝ln

(
λ0

λ

)
⎛

⎜
⎝αk

ln
(rk+1

r*
)
− ln

( r
r*
)

ln
(rk+1

r*
)
− ln

(rk
r*
)+ αk+1

ln
( r
r*
)
− ln

(rk
r*
)

ln
(rk+1

r*
)
− ln

(rk
r*
)

⎞

⎟
⎠

⎞

⎟
⎠

=
( r
r*
)
ln

(
λ0
λ

)
αk+1 − αk

ln

(
rk+1
r*

)
− ln

(
rk
r*

)
(

λ0

λ

)−

αk+1 ln

(
rk
r*

)
− αk ln

(
rk+1
r*

)

ln

(
rk+1
r*

)
− ln

(
rk
r*

)

(12)

so that the radial dependency, which previously appeared in an expo-
nent of the wavelength, now reduces to a power of r, more suitable for
use in Abel transform integrals. The wavelength-dependent optical
thickness of the dusts along a line-of-sight of tangent radius r0, τdλ(r0) can
now be expressed as follows:
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If we now denote Rk = max(rk,r0) and use the properties of the
characteristic function χΩ(x), we can write the dust optical thickness as

τdλ(r0) = 2
∑n

k=1
κ0,k

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
λ0

λ

)−

αk ln
(
rk− 1
r*

)
− αk− 1 ln

(
rk
r*

)

ln

(
rk
r*

)
− ln

(
rk− 1
r*

)

∫ Rk

Rk− 1

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√
r − rk− 1

rk − rk− 1

( r
r*
)

ln

(
λ0
λ

)

(αk − αk− 1)

ln

(
rk
r*

)
− ln

(
rk− 1
r*

)

dr

+

(
λ0

λ

)−

αk+1 ln

(
rk
r*

)
− αk ln

(
rk+1
r*

)

ln

(
rk+1
r*

)
− ln

(
rk
r*

)

∫ Rk+1

Rk

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√
rk+1 − r
rk+1 − rk

( r
r*
)

ln

(
λ0
λ

)

(αk+1 − αk)

ln

(
rk+1
r*

)
− ln

(
rk
r*

)

dr

⎤

⎥
⎥
⎦

(14)

All integrals appearing in Eq. (14) can be reduced to a difference of
two integrals of the form

Jp =
∫ R

r0

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√ rm
( r
r*
)p
dr (15)

with m being either 1 or 0. We now transform the integral of Equation
(15) applying several consecutive substitutions: x = r/r0 with Jacobian
1/r0 (dx = dr/r0), then y =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 − 1

√
, x =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
y2 + 1

√
with Jacobian y̅̅̅̅̅̅̅̅

y2+1
√

so that

Jp = r0
∫ R

r0

r/r0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
r
r0

)2

− 1

√ rm0

(
r
r0

)m (r0
r*

r
r0

)p

dr

/

r0

=
(r0
r*
)p
rm+1
0

∫ R
r0

1

x
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 − 1

√ xp+mdx

(16)

and finally,

Jp =
(r0
r*
)p
rm+1
0

∫

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
R
r0

)2

− 1

√

0

(
y2 + 1

)p+m
2 dy (17)

We can now further transform the result of Eq. (17) to make appear
Euler’s integral representation of Gauss’s hypergeometric 2F1 function,
which is usually defined from a series development [Abramowitz and
Stegun, 1972, Olver et al., 2010]

2F1(a, b, c, z) =
∑∞

i=1

(a)i (b)i
(c)i

zi

i!

2F1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
tb− 1(1 − t)c− b− 1

(1 − z t)− adt

(18)

where Γ(x) is the usual gamma function, and (a)i denotes the Poch-
hammer symbol defined as (a)i= 1 when i= 0 and (a)i = a (a + 1)…(a +

i-1) when i > 0. We use two substitutions successively applied from Eq.

(17): y =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
R
r0

)2
− 1

√

v, dy =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
R
r0

)2
− 1

√

dv, followed by t = v2, dv =

1
2
̅̅
t

√ dt:

Jp =
(r0
r*
)p
rm+1
0

∫ 1

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
R
r0

)2

− 1

√ (((
R
r0

)2

− 1

)

v2 + 1

)p+m
2

dv

=
1
2

(r0
r*
)p
rm+1
0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
R
r0

)2

− 1

√
∫ 1

0
t−

1
2

(((
R
r0

)2

− 1

)

t + 1

)p+m
2

dt

(19)

We can now directly apply the integral representation of 2F1 given in

τdλ(r0) = 2
∫ ∞

r0

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√ κλ(r) dr

= 2
∑n

k=1

∫ ∞

r0

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r2

0

√ κk(r, λ) dr

= 2
∑n

k=1

∫ ∞

r0
κ0,k

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

r − rk− 1

rk − rk− 1
χ]rk− 1 ,rk [(r)

( r
r*
)

ln

(
λ0
λ

)

(αk − αk− 1)

ln

(
rk
r*

)
− ln

(
rk− 1
r*

)
(

λ0

λ

)−

αk ln
(
rk− 1
r*

)
− αj− 1 ln

(
rk
r*

)

ln

(
rk
r*

)
− ln

(
rk− 1
r*

)

+
rk+1 − r
rk+1 − rk

χ]rk ,rk+1 [
(r)
( r
r*
)

ln

(
λ0
λ

)

(αk+1 − αk)

ln

(
rk+1
r*

)
− ln

(
rk
r*

)
(

λ0

λ

)−

αk+1 ln

(
rk
r*

)
− αk ln

(
rk+1
r*

)

ln

(
rk+1
r*

)
− ln

(
rk
r*

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√ dr

(13)
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Eq. (18) by letting a = − (p + m)/2, b = 1/2, c = 3/2 (so that c-b-1 = 0)

and z = 1 −

(
R
r0

)2

, which is negative. Given that Γ(1/2) =
̅̅̅
π

√
, Γ(1) = 1

and Γ(3/2) =
̅̅̅
π

√
/2, this leads to

Jp =
(r0
r*
)p
rm+1
0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
R
r0

)2

− 1

√

2F1

(

−
p+m

2
,
1
2
,

3
2
, 1 −

(
R
r0

)2
)

(20)

an elegant result that opens possibilities to use properties and identities
characterizing the hypergeometric function, especially considering that,

for practical applications, 1 −

(
R
r0

)2
will be close to 0, or at least will

have a module smaller than 1, the convergence radius of the defining
series development of function 2F1, avoiding the complications of ana-
lytic continuation. We anticipate here over the following paragraphs to
emphasize that we expect that those identities and properties could be
used to solve the problem of inverse Abel transform fitting and retrieval
of the non-linear α parameter, but that it could not be efficiently done
mostly because those identities lead to expressions making appear dif-
ferences of the α parameter values at different altitudes (explicitly, dif-
ferences of the αj), so that iterative non-linear resolution methods lead to
values determined up to an additive constant, which could hardly be
retrieved.

The ranges of altitudes and α parameter values that can be expected
to be relevant for the study of dusts lead to series developments (from
Eq. (18)) that can hardly be summed up accurately. Identities between
hypergeometric functions can however be used to cure that problem, but
we found that directly relying on the integral expressions is finally more
efficient from a numerical and computational standpoint. Indeed, the
integral of Eq. (17) appears quite well suited for an integration using a
Gauss-Legendre method (see, e.g. Press et al., 1992). This method is
known to accurately integrate polynomials. A n-nodes Gauss-Legendre
method does exactly compute integrals of any polynomial of degree
2n-1 or less. The integrant in Eq. (17) is a non-integer power producing a
smooth, non-singular function, so that it can be expected to be efficiently
integrated using a Gauss-Legendre method as well, especially over
restricted integration intervals. Indeed, the sequence of substitutions
leading to that expression got rid of the Jacobian of the Abel transform,
which becomes singular near the tangent point, i.e. in the altitude range
producing the largest contribution to the line-of-sight integration.

The above developments therefore bear two interesting results. First,
they offer an analytic expression suitable for further analytic de-
velopments (if special functions such as 2F1 can be considered analytic
expressions as an exponential or a logarithm would). Second, they
highlight an intermediate result which is particularly suited for nu-
merical treatments. We also emphasize that computing the integral
transforms of Eq. (14) using differences of hypergeometric functions can
lead to a loss of numerical accuracy when the quantities to be subtracted
from each other are nearly equal. If they differ after, say, their fourth
significant digit, the loss of significant digits using 64-bit real number
representation reduces the accuracy to some 12 significant digits instead
of 16. When dealing with ill-conditioned problems such as inversions, it
is safer avoiding such loss.

We can now write the wavelength-dependent optical thickness of
dusts, represented over an altitude grid using the triangular elements
defined in Eq. (13) and defining J d as

J
d
(p,m, r0,R) =

∫ R

r0

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√ rm
( r
r*
)p
dr

= rm+1
0

(r0
r*
)p
[

z
2
F1

(

−
m+ p

2
,
1
2
,

3
2
, − z2

)]

z=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
R
r0

)2

− 1

√
(21)

so that

τdλ(r0) = 2
∑n

k=1

κ0,k

rk − rk− 1

(
λ0

λ

)−

αk ln
(
rk− 1
r*

)
− αk− 1 ln

(
rk
r*

)

ln

(
rk
r*

)
− ln

(
rk− 1
r*

)

[
J

d
(p,1, r0,Rk) − J

d
(p,1, r0,Rk− 1)

− rk− 1
(
J

d
(p,0, r0,Rk) − J

d
(p,0, r0,Rk− 1)

) ]

p=ln

(
λ0
λ

)
αk − αk− 1

ln

(
rk
r*

)
− ln

(
rk− 1
r*

)

+2
∑n

k=1

κ0,k

rk+1 − rk

(
λ0

λ

)−

αk+1 ln

(
rk
r*

)
− αk ln

(
rk+1
r*

)

ln

(
rk+1
r*

)
− ln

(
rk
r*

)

[
J

d
(p,1, r0,Rk+1) − J

d
(p,1, r0,Rk)

+ rk+1
(
J

d
(p,0, r0,Rk+1) − J

d
(p,0, r0,Rk)

) ]

p=ln

(
λ0
λ

)
αk+1 − αk

ln

(
rk+1
r*

)
− ln

(
rk
r*

)

(22)

Quite obviously, the differences between J
d functions that appear in

Eq. (22) can be expressed as integrals over a restricted domain, i.e. be-
tween two nodes of the grid of rk values (with again Rk = max(r0,rk)):

J
d
(p,1, r0,Rk) − J

d
(p,1, r0,Rk− 1) =

∫ Rk

Rk− 1

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√ r
( r
r*
)p
dr

J
d
(p,0, r0,Rk) − J

d
(p,0, r0,Rk− 1) =

∫ Rk

Rk− 1

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√
( r
r*
)p
dr

J
d
(p,1, r0,Rk+1) − J

d
(p,1, r0,Rk) =

∫ Rk+1

Rk

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√ r
( r
r*
)p
dr

J
d
(p,0, r0,Rk+1) − J

d
(p,0, r0,Rk) =

∫ Rk+1

Rk

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√
( r
r*
)p
dr

(23)

These integrals can be transformed using the substitutions used to
obtain Eq. (17) to produce expressions more suitable for numerical
integration with a Gauss-Legendre method:

J
d
(p,1,r0,Rk) − J

d
(p,1,r0,Rk− 1)=

(r0
r*
)p
r20
∫

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Rk
r0

)2

− 1

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Rk− 1
r0

)2

− 1

√
(
y2 +1

)p+1
2 dy

J
d
(p,0,r0,Rk) − J

d
(p,0,r0,Rk− 1)=

(r0
r*
)p
r0
∫

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Rk
r0

)2

− 1

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Rk− 1
r0

)2

− 1

√
(
y2 +1

)p
2 dy

J
d
(p,1,r0,Rk+1) − J

d
(p,1,r0,Rk)=

(r0
r*
)p
r20
∫

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Rk+1
r0

)2

− 1

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Rk
r0

)2

− 1

√
(
y2 +1

)p+1
2 dy

J
d
(p,0,r0,Rk+1) − J

d
(p,0,r0,Rk)=

(r0
r*
)p
r0
∫

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Rk+1
r0

)2

− 1

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Rk
r0

)2

− 1

√
(
y2 +1

)p
2 dy

(24)

For the sake of inversion using least squares fitting technique, the
derivative of τdλ(r0) with respect to all relevant parameters, i.e. with
respect to the κ0,j and αj are needed. Derivative with respect to κ0,j is
straightforward. The αj appear in the expression of parameter p in the
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above integrals, so that the chain rule needs to be applied, and derivative
with respect to parameter p can be commuted within the integration.
Applying the same sequence of variable substitutions as those used to
derive Eq. (17), we finally obtain

∂
∂p
(
J

d
(p,m, r0,R2) − J

d
(p,m, r0,R1)

)
=

ln
(r0
r*
)(

J
d
(p,m, r0,R2) − J

d
(p,m, r0,R1)

)

+
(r0
r*
)p
rm+1
0

∫

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
R2
r0

)2

− 1

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
R1
r0

)2

− 1

√
(
y2 + 1

)p+m
2 ln

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅

y2 + 1
√ )

dy

(25)

where R1 and R2 stand for any of the upper and lower integration bounds
(respectively) appearing in Eq. (23). Evaluating all other derivatives
needed to compute the derivatives of τdλ(r0) is straightforward, though
lengthy and tedious. The integrant in the new integral of Eq. (25) only
differs from the other integrals by a multiplication by a logarithm. This
integrant remains smooth and can again be integrated numerically using
the Gauss-Legendre method.

The developments carried up to now allow us to express the dust
vertical profile using a sum of triangular elements including a complex
wavelength dependence. They also allow evaluating its Abel transform
to express the dusts optical thickness, as well as its derivative with
respect to all the parameters appearing in the triangular elements. After
Eqs. (11) to (13), we define the dust triangular elements over a dis-
cretized radial grid rk, tdk(λ, r), as well as its Abel transform Tdk(λ, r0) as
follows:

tdk(λ, r) = tk(r)
(

λ0

λ

)αk− 1 uk− 1(r)+αkuk(r)

=
r − rk− 1

rk − rk− 1
χ]rk− 1 ,rk [(r)

( r
r*
)

ln

(
λ0
λ

)

(αk − αk− 1)

ln

(
rk
r*

)
− ln

(
rk− 1
r*

)
(

λ0

λ

)−

αkln
(
rk− 1
r*

)
− αk− 1 ln

(
rk
r*

)

ln

(
rk
r*

)
− ln

(
rk− 1
r*

)

+
rk+1 − r
rk+1 − rk

χ]rk ,rk+1 [
(r)
( r
r*
)

ln

(
λ0
λ

)

(αk+1 − αk)

ln

(
rk+1
r*

)
− ln

(
rk
r*

)
(

λ0

λ

)−

αk+1 ln

(
rk
r*

)
− αk ln

(
rk+1
r*

)

ln

(
rk+1
r*

)
− ln

(
rk
r*

)

Td
k(λ, r0) = 2

∫ ∞

r0

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√ tdk(λ, r)

(26)

and the dusts optical thickness is obtained along a slant line of sight with
tangent radius r0:

τdλ(r0) =
∑nd

k=1

κ0,k Td
k(λ, r0) (27)

We can also write the wavelength-dependent optical thickness of the
ambient gas species as well. Let [gi] denote the number density of the ith

gas species, which we represent here using piecewise linear profiles
build using a linear combination of triangle functions, and σi(λ) its
wavelength-dependent extinction cross section, assumed to be negli-
gibly dependent on temperature and therefore on altitude:

[gi](r) =
∑ng

k=1

aiktk(r)

τiλ(r0) =
∑ng

k=1
aik σi(λ) Tk(r0)

(28)

where ng is the number of altitude nodes used to discretize the gas
density profile, which does not necessarily need to be equal to the
number of nodes used to build the piecewise representation of the dusts
profile. Indeed, each specie and dusts may be described over different
discretization grids, although it is not mandatory.

The total extinction optical thickness along a slant line-of-sight with
tangent radius r0 is then the sum of the contributions from all absorbers,
as given by Eq. (3)

τλ(r0) =
∑nsp

i=1

∑ng

k=1
aik σi(λ) Tk(r0)+

∑nd

k=1
κ0,k Td

k(λ, r0) (29)

Parameters aij and κ0,j explicitly appear in a linear manner, while the
non-linear dependency with respect to the αj is hidden in the expression
of Td

j (λ, r0), after Eq. (26).
In practice, observation will provide measurements of the (attenu-

ated) sun intensity over a set of lines-of-sights, i.e. for a set of r0 values,
r0,i, and at a given set of wavelengths λl, l = 1, …,L. Considering that the
unattenuated intensity, Itop,l, is known at all observing wavelengths from
the observation at the largest tangent radius, the observed intensity Ij,l
can be divided by Itop,l and the logarithm of this ratio can be computed,
so that for each observing tangent radius and wavelength, the
observation-derived optical thickness τobsλl

(
r0,j
)

is given by

τobsλl

(
r0,j
)
= − ln

(
Ij,l
Itop,l

)

(30)

The total optical thickness is therefore known in a manner that does
not depend on the absolute calibration of the instrument used to acquire
the data, nor on the units used to express them (as expected, since the
optical thickness is a unit-less quantity). In principle the intensity ratio
should be a positive number. When dealing with real data, very low
intensities can artificially produce negative numbers after background
subtraction, owing to noise contamination. When such a situation arises,
the observed intensity may be replaced by a small positive number,
especially if 0 is in the 2-σ interval bracketing the intensity (σ stands
here for the standard deviation characterizing the noise affecting the
observation). Indeed, in that case the negative value does not signifi-
cantly differ from 0. When an intensity is found to be significantly
negative considering the relevant uncertainty of the measurement, it can
safely be considered that something went wrong, and this negative
measurement should be ignored. Negative intensities should anyway
have a small weight in any least squares fitting treatment, as it will be
developed below. It can also be considered that those negative in-
tensities will arise in the bottom side of observed occultation profiles,
where only a few photons can be expected to be detected. This low in-
tensity then prevents from obtaining meaningful physical parameters in
that altitude range owing to the large uncertainties affecting the data,
and one may even prefer ignoring the very bottom side of the observed
profile, where the observed intensity is too low for accurate parameters
determination: when there is no significant signal, there is not much that
can be done.

2.2. Straightforward, two-steps inversion

One could consider that the optical thickness of Eq. (30) results from
the line-of-sight integration of a differential optical thickness δτλ l(r) to
be related to the relevant fitting parameters, i.e. the aik, κ0,k and αk. In a
first step, the δτλ l(r) is then represented as a piecewise linear function
produced as a linear combination of triangles tk as defined in Eq. (7),
using a grid of radial distances rk and linear coefficients θk,l:
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δτλ l(r) =
∑n

k=1

θk,l tk(r)

τλ l(r0) = 2
∫ ∞

r0

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√ δτλ l(r)

=
∑n

k=1

θk,l Tk(r0)

(31)

so that τλl
(
r0,j
)

is expressed as the Abel transform of δτλ l(r). Determining
δτλ l(rk) then reduces to fitting parameters θk,l, which can be achieved
quite directly using an inverse Abel transform fitting applied to the
τobsλl

(
r0,j
)

(which we can simply re-write τobsl,j ) including regularization,
such as described in Hubert et al. [2016], for example. The inversion
provides the parameters θk,l as well as an estimate of their standard
deviation.

The second step is, at each altitude, to determine all the relevant,
local parameters using a least-squares fitting again, i.e. for any given k,
estimating the aik, κ0,k and αk using the wavelength dependence of the
differential optical thickness. We will then have

θk,l =
∑nsp

i=1
aikσi(λl)+ κ0,k

(
λ0

λl

)αk
(32)

For any given value of αk and knowing θk,l over a set of discrete
wavelength values λl, parameters aik and κ0,k appear linearly in Eq. (32),
so that they can be determined in a straightforward manner using a
(weighted) linear least squares fitting for any prescribed αk. It is then
easy deriving a dichotomic search method (or any more sophisticated
non-linear resolution method) that finds the best αk value. Giving a
weight wk

l to each wavelength bin based on the standard deviation of θk,l,
we can use standard fitting techniques to reduce the right-hand-side of
Eq. (32) to a function of parameter αk only, and express the other, linear
parameters as functions of αk. In this context, for each prescribed αk,
retrieving the other parameters at the kth fitting altitude then amounts to
solving a least squares fit problem reducing to a linear system of equa-
tions, which is conveniently expressed in matrix format as follows. Let us

define θ
→

k =
(

θk,1
̅̅̅̅̅̅
wk

1

√
,…, θk,L

̅̅̅̅̅̅
wk
L

√ )+
and q→k =

(
a1
k ,…, anspk , κ0,k

)
. The

matrixes Uk and Hk of the minimization linear system are defined after
equating the derivatives of the usual χ2

k function with respect to the
linear parameters to zero, and the expression of the system second

member vector, b
→

k, naturally follows:

χ2
k =

∑L

l=1

(
∑nsp

i=1
aikσi(λl) + κ0,k

(
λ0

λl

)αk
− θk,l

)2

wk
l

Uk =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ1(λ1)

̅̅̅̅̅̅

wk
1

√

… σ1(λL)
̅̅̅̅̅̅

wk
L

√

⋮ ⋮

σnsp (λ1)

̅̅̅̅̅̅

wk
1

√

⋯ σnsp (λL)
̅̅̅̅̅̅

wk
L

√

(
λ0

λ1

)αk ̅̅̅̅̅̅

wk
1

√

⋯
(

λ0

λL

)αk ̅̅̅̅̅̅

wk
L

√

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

; b
→

k = U+
k θ
→

k

Hk = Uk U+
k Hk q→k = b

→
k

(33)

Solving the last system of Eq. (33) provides the linear parameters as a
function of the non-linear parameter αk, allowing the search for an
optimal αk value minimizing the χ2

k. It is also possible obtaining the
uncertainties on the fitting parameters, either using standard formulas
or using a bootstrapping method. Under standard assumptions, the
variance-covariance matrix of the set of fitting parameters determined
using least squares fit can be estimated from the inverse of the Hessian
matrix of the χ2 function, estimated near its minimum [Press et al.,

1992]. In the present case with only one fitting parameter (the αk), the
Hessian matrix reduces to the second derivative of the χ2 function. Once
the variance over the αk is known, those of the linear parameters can be
estimated using usual error propagation formulas.

The straightforward method developed above may be used for
obtaining a first guess for all the fitting parameters of the full inversion
problem. Indeed, it does not fully account for possible covariance be-
tween the parameters, especially across different altitudes. A method
that comprehensively fits the parameters at all altitudes and wave-
lengths at once is expected to be less prone to such issue. It is generally
understood that all the parameters of a least squares fitting problem
should be determined simultaneously as their optimal values are not
necessarily independent on each other, especially when noise introduces
uncertainties in the problem.

It can be noticed here that, although the knowledge of the unat-
tenuated intensity (or brightness) may seem critical, it is not really the
case. The analytic inverse Abel transform of Eq. (6) relies on the de-
rivative of the Abel transform function with respect to the tangent
radius. Therefore, the inverse Abel transform is not sensitive to any
constant offset. And indeed, if we write Itop the observed topside in-
tensity and I∞ the actual unattenuated intensity, we successively obtain:

τ(r0) = − ln
(
I(r0)
I∞

)

= − ln
(
I(r0)
Itop

Itop
I∞

)

= − ln
(
I(r0)
Itop

)

− ln
(
Itop
I∞

)

(34)

so that the inverse Abel transform of the observed τ(r0) does not depend
on a misattributed topside intensity. This conclusion must however not
be overplayed: practical inverse Abel transform methods are based on
least squares fitting techniques applied to a discrete set of observations
gathered across a bounded interval of tangent altitudes. This situation
differs from the analytic treatment, so that one cannot exclude some
influence of a slightly inaccurate topside intensity, but this influence
should not be expected to be dramatic either, besides the complexity
incurred by a possible ill-conditioning, which holds for any kind of in-
accuracy.

2.3. Coupled linear-nonlinear method

The complete inverse Abel transform fitting problem can also be
expressed combining all altitudes and wavelengths in a consistent
manner. As a part of the parameters appear in a non-linear manner in the
functions that must be fitted (i.e. the αk appear as exponent of the
wavelength), the whole problem can be considered non-linear. A first
approach can then be considered: treating the whole fitting problem as
non-linear and using a general non-linear least-squares fitting algorithm,
such as the Levenberg-Marquardt method [Press et al., 1992], to esti-
mate all the fitting parameters. On the other hand, one can follow a
reasoning comparable to what was proposed in Section 2.2 and consider
that all the linear parameters have a definite value determined using a
linear least-squares fitting method, as soon as the value of all the non-
linear parameters (i.e. the αk) are fixed. The linear parameters then
appear as functions of the αk, and the non-linear least squares fitting
method only needs being applied to the non-linear parameters, i.e. the
αk.

As it is often the case with inversion problems, the inverse Abel
transform fitting can be ill-conditioned. Technically, this means that the
result of the inversion is over-sensitive to any disturbance, due to the
matrix of the problem (especially concerning the linear parameters)
having a small determinant or, in a more general mathematical context,
because the problem eigenvalues range over many orders of magnitude.
Under those conditions, at least one of them can be considered null when
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compared with the largest one, from a numerical standpoint. Conse-
quently, a regularization technique needs to be used [Press et al., 1992],
which transforms the original problem into another one that has nearly
the same solution, but that also has a better conditioning. Regularization
of a least squares fitting modifies the concept of optimum by penalizing a
suitably chosen property of the fitted parameters in addition to making
the χ2 as small as possible.

The slant optical thickness τobsl,j = τobs
(
robs0,j , λl

)
measured at a set of

tangent radius robs0,j , j = 1,…, nrobs and wavelengths λl, l = 1,…, L pro-
vided by a spectrally-resolved instrument staring at the sun through the
atmosphere, such as ExoMars-TGO-NOMAD for example, can be packed

using one single index aggregating all the observations: τobsjobs = τobsl,j =

τ
(
robs0,j , λl

)
with jobs = l+ (j − 1) L. The standard deviation affecting τobsl,j

can be deduced from the standard derivatives methods to be applied to
Eq. (30), allowing to compute the weight wl,j (or wjobs ) to be given to each
observation in a least-squares fitting procedure. The fitting parameters
will be defined at a set of altitudes (or radial distances) which may be
chosen differently for the gas species and for the dusts, as already pro-
posed in Section 2.1. The fitting basis functions, and their Abel trans-

form will then need to be evaluated at all
(
robs0,j , λl

)
, i.e. for all values of

the jobs index used to pack the observations, so that the χ2 function is
successively written:

χ2 =
∑nrobs

j=1

∑L

l=1

(
∑
nrfit

k=1

(
∑nsp

i=1
aikσi(λl) Tk

(
r0,j
)
+ κ0,kTd

k
(
r0,j, λl

)
)

− τobsl,j

)2

wl,j

=
∑nrobs

j=1

∑L

l=1

(
∑
nrfit

k=1

(
∑nsp

i=1
aikF

sp,i
k

(
r0,j, λl

)
+ κ0,kFdk

(
α→, r0,j, λl

)
)

− τobsl,j

)2

wl,j

=
∑nrobs

j=1

∑L

l=1

⎛

⎝
∑nfit

kfit=1
pkfit Fkfit

(
α→, r0,j, λl

)
− τobsl,j

⎞

⎠

2

wl,j

=
∑nobs

jobs=1

⎛

⎝
∑nfit

kfit=1
pkfit Fkfit ,jobs ( α→) − τobsjobs

⎞

⎠

2

wjobs

(35)

Where we introduced functions Fsp,ik

(
r0,j, λl

)
= σi(λl) Tk

(
r0,j
)

that in-
cludes the altitude and wavelength functional dependencies of the gas
species, functions Fdk

(
α→, r0,j, λl

)
for the dusts, which explicitly reminds

the dependency over the α parameter at all relevant fitting altitudes,
parameters pkfit that packs together all the linear parameters with index
kfit varying from 1 to nfit = nsp nsprfit + ndrfit ,and functions Fkfit

(
α→, r0,j, λl

)
that

pack the altitude and wavelength dependencies of all the basis fitting
functions, gas and dust aggregated (the dust functions being the only
ones that explicitly depend on the α parameters). The set of parameters
pkfit can be viewed as a vector aggregating the linear parameters p→ =
(

a1
1,…, a1

nsprfit
,…, ansp1 ,…, anspnsprfit

, κ0,1,…, κ0,ndrfit

)

. The observations are

aggregated as one single set as announced above, joining the wavelength
and tangent radius dependencies.

For any given set of αk values, there exists a set of pkfit values of the
linear parameters minimizing the χ2 value of Eq. (35): the ones that
nullify all the derivatives of χ2 with respect to the pkfit . This condition
produces a linear system of equations for the pkfit that, in principle, can
be solved using standard numerical analysis methods such as LU
decomposition. The pkfit (all the linear parameters) can then be viewed as
functions of the αk, at the expense of a linear system resolution.
Denoting, for the sake of formal conciseness F kfit ,jobs = Fkfit ,jobs

̅̅̅̅̅̅̅̅̅wjobs
√ and

L
obs
jobs = τobsjobs

̅̅̅̅̅̅̅̅̅wjobs
√ we define the second member vector b

→
and the ma-

trixes U and H of the linear system of this least squares minimization

problem by equating the derivatives of the usual χ2 function with respect
to the pi to zero, all depending on the αk (kept constant at this stage), and
obtain a system of equations for vector p→:

∂χ2

∂pi
= 2

∑nobs

jobs=1

⎛

⎝
∑nfit

kfit=1

pkfit F kfit ,jobs ( α→) − L
obs
jobs

⎞

⎠F i,jobs ( α→) = 0

Uk,j = F k,j H( α→) = U U+ b
→
( α→) = U+ L

̅→obs

H p→= b
→

(36)

As already warned before, those systems of equations solving an
inversion problem are prone to ill-conditioning, which requires modi-
fying the concept of optimum for the sake of regularization. This is
generally achieved by adding a suitably chosen matrix to the optimi-
zation matrix, H in Eq. (36), thus defining a new system with a better
conditioning. It can conceivably be desired limiting the effects of the
noise unavoidably affecting the data, so that a regularization that pe-
nalizes a derivative of the fitting parameters, seen as a set of discrete
values of an altitude-dependent function, can reasonably be adopted.
The second derivative of the ith gas specie density (or the dust extinction
parameter), discretized as the aik fitting parameter can be evaluated
along the lines of, e.g., Hubert et al. [2016], defining hk = rk+1 - rk (hn =
hn-1) and using a simple finite difference scheme (dropping upper index
i),

da
dr

⃒
⃒
⃒
⃒
k
≃
ak+1 − ak

hk

d2a
dr2

⃒
⃒
⃒
⃒
⃒
k

≃

da
dr

⃒
⃒
⃒
⃒
k
− da

dr

⃒
⃒
⃒
⃒
k− 1

1
2
(hk− 1 +hk)

≃
2ak− 1

h2
k− 1 +hk− 1hk

−
2ak
hkhk− 1

+
2ak+1

hk− 1hk+h2
k
(1< k< n)

d2a
dr2

⃒
⃒
⃒
⃒
⃒
k=1

≃
d2a
dr2

⃒
⃒
⃒
⃒
⃒
k=2

d2a
dr2

⃒
⃒
⃒
⃒
⃒
k=n

≃
d2a
dr2

⃒
⃒
⃒
⃒
⃒
k=n− 1

(37)

Expressions for k = 1 and k = n are obtained assuming the second
derivative remains constant near the boundaries. Denoting qk = 1/(hk-12

+ hk-1 hk) and vk = 1/(hk-1 hk + hk2), the derivatives are expressed in
vector format defining vector D→a and matrix B0 as follows:

D→a=B0 a→

B0=2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q2 − q2 − v2 v2

q2 − q2 − v2 v2

q3 − q3 − v3 v3

⋱ ⋱ ⋱

qn− 2 − qn− 2 − vn− 2 vn− 2

qn− 1 − qn− 1 − vn− 1 vn− 1

qn− 1 − qn− 1 − vn− 1 vn− 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(38)

Regularization will rely either on minimizing the sum of the squares
of the second derivatives, which amounts to

D2
0,a = a→+ B0

+B0 a→ (39)

or on minimizing the integral of the square of the second derivative, i.e.
the sum of the squares weighted by the spacing between the altitude
nodes:

Bki = B0ki

̅̅̅̅̅
hk

√

D2
a = a→+ B+B a→

(40)

Matrixes Q0 and Q, which will be used when computing derivatives
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of the regularization term with respect to the ak, are defined as

Q0 = 2 B+
0 B0

Q = 2 B+B
(41)

A regularization matrix suitable for the set of linear parameters
packed in vector p→ in Eq. (36) can be constructed along the same lines
by combining matrixes such as B and B0 in a block-diagonal matrix, each
block having a number of elements that corresponds to the number of
fitting altitude (and basis fitting functions) used for the aik and the κ0,k.
The corresponding Q matrixes of Eq. (41) will then be block-diagonal as
well. Let us denote Q this grand regularization matrix packing the Q
matrixes relevant for all the linear parameters. Regularization will be
introduced in the fitting process by assigning a weight to it, based on the
properties of the H and Q matrixes.

The regularized χ2 expression now includes a term penalizing the
second derivative of the linear parameters pi, which are retrieved by
solving the corresponding minimization system having second member

vector b
→

and Hermitian matrix H , built using the matrix U of the
unregularized fitting problem and the regularization matrix Q . Param-
eter λ is introduced in order to adapt the weight given to the regulari-
zation to the properties of the Hermitian matrix H of the unregularized
minimization problem, so that the minimization system is expressed as:

χ2=
∑nobs

jobs=1

⎛

⎝
∑nfit

kfit=1
pkfit F kfit ,jobs ( α→)− L

obs
jobs

⎞

⎠

2

+cλD2
p

∂χ2

∂pi
=2

∑nobs

jobs=1

⎛

⎝
∑nfit

kfit=1

pkfit F kfit ,jobs ( α→)− L
obs
jobs

⎞

⎠F i,jobs ( α→)+cλQ p→

Uk,j( α→)=F k,j H( α→)=UU+
b
→
( α→)=U+ L

̅→obs
H ( α→)=H( α→)+cλ( α→)Q

λ( α→)=
Tr(H( α→))

Tr(Q )

H p→= b
→

(42)

where c is a user-supplied weight, while Tr(A) denotes the trace of
matrix A, along the lines of the weighting proposed by Press et al.
[1992]. Strictly speaking, the trace is generally not considered a matrix
norm. However, it amounts to the sum of the eigenvalues of any
(diagonalizable) matrix. From that standpoint, it makes sense using the
trace ratio of Eq. (42) in order to balance the importance given to the
usual least squares minimization term and to the regularization term. It
can also be argued that, as matrixes H and Q are produced by multi-
plying a matrix U and B, respectively, by its transpose, the traces of H
and Q are then the squares of the Frobenius norm of those U and B
matrixes, which gives some mathematical grounds to the trace ratio
weighting.

As was defined before, regularization penalizes the second derivative
of the altitude-dependent linear parameters. If, however, these param-
eters represent a density, for example, that varies exponentially with
altitude, its derivative could be intrinsically large at places, without any
effect of noise. It is then preferable to modify the weight given to the
regularization by multiplying it by a chosen factor c. The deep goal of
regularization remains to protect the method from the ill-conditioning of
the linear system to be solved by modifying its set of eigenvalues. Both H
and Q are indeed Hermitian matrixes and can, in principle, be diago-
nalized using numerical methods, which may fail in the case of H, pre-
cisely due to its ill-conditioning.

In the context of the inverse Abel transform fitting of occultation

observations through a dusty atmosphere, the H matrix, b
→

vector and
trace ratio λ all depend on the αk parameters. And that is where a sub-
tlety arises: Eq. (42) can be viewed as defining the system to be solved in

order to retrieve the linear parameters pkfit as functions of the non-linear
αk parameters, while Eq. (35) can be viewed as a definition of the χ2 to
be minimized against the αk only, the pkfit being themselves functions of
the αk after resolution of the system of Eq. (42). One may even consider
adding a regularization term in Eq. (35) that would penalize the varia-
tions of the αk. We will not explicitly include such term here as it only
incurs straightforward modifications similar to what was explained
above. The non-linear minimization with respect to the αk then amounts
to equating to zero all the derivatives of the χ2 with respect to the αk:

χ2 =
∑nobs

jobs=1

⎛

⎝
∑nfit

kfit=1
pkfit ( α→) F kfit ,jobs ( α→) − L

obs
jobs

⎞

⎠

2

∂χ2

∂αk
= 2

∑nobs

jobs=1

⎛

⎝
∑nfit

kfit=1

pkfit ( α→) F kfit ,jobs ( α→) − L
obs
jobs

⎞

⎠

⎛

⎝
∑nfit

kfit=1

(
∂pkfit ( α→)

∂αk
F kfit ,jobs ( α→) + pkfit ( α→)

∂F kfit ,jobs ( α→)

∂αk

) ⎞

⎠

(43)

Naturally, among the F kfit ,jobs ( α→), only those that explicitly depend
on the αk, i.e. the dust functions, will have a non-zero derivative. In
contrast, all the pkfit depend on the αk through matrixes H and U, vector

b
→

and the trace ratio λ in Eq. (42). The derivatives of the elements of
matrix U are computed after the developments of Section 2.1, mostly
using Eqs. (24) and (25). The trace of matrix H is equal to the sum of the
squares of the elements of matrix U, so that the derivative of λ is easily
found:

Tr(H) =
∑

j
Hj,j =

∑

j

(
∑

i
(U+)j,iUi,j

)

=
∑

i,j
U2
i,j

∂λ( α→)

∂αk
=

2
Tr(Q )

∑

i,j
Ui,j

∂Ui,j

∂αk

(44)

The derivative of matrix H and vector b
→

can also be obtained from
those of matrix U, so that the derivatives of matrix H can also be
computed:

∂H
∂αk

=

(
∂U
∂αk

)+

U+ U+ ∂U
∂αk

∂ b
→

∂αk
=

(
∂U
∂αk

)+

L
̅→obs

(45)

All the elements needed to compute the derivative of the pk are now
known, and we have successively

H p→= b
→

H
∂ p→

∂αk
=

∂ b
→

∂αk
−

∂H
∂αk

p→
(46)

so that, as soon as p→ is known from the resolution of the system of Eq.
(42), its derivatives can also be computed solving a system that has the
same matrix, a situation particularly suitable for the use of standard
resolution methods such as the LU decomposition. It is straightforwardly
shown that ∂H − 1

∂αk = − H
− 1∂H

∂αk H
− 1 given that H

− 1
H = I (the identity

matrix) and that Leibnitz’s derivation product rule also applies to matrix
multiplication. Formally, the last line of Eq. (46) is then equivalent to

∂ p→

∂αk
= H

− 1∂ b
→

∂αk
+

∂H − 1

∂αk
b
→

(47)

as expected. Computationally, it nevertheless remains preferable using
Eq. (46) and avoid explicitly manipulating the inverse of matrix H .

The preceding developments can be used in a method performing the
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inverse Abel transform. All the needed function evaluation expressions
and their derivatives are available to implement a non-linear least-
squares fitting technique, such as the Levenberg Marquardt algorithm
[Press et al., 1992], to be ran in a parameter space made as small as
possible, i.e. having a number of dimensions as restricted as possible.
This reduction of the number of dimensions comes at the expense of
more complex derivatives evaluations and linear systems solving, which
fortunately all rely on the same matrix. Regularization can be addressed
and implemented in a direct manner in order to improve the condi-
tioning of that matrix, with a weight adaptatively applied depending on
the matrix trace.

2.4. Exponentially-varying species

In a planetary atmosphere, the gas density varies mostly exponen-
tially with altitude, according to the hydrostatic and diffusive equilib-
rium laws, with a slope that depends locally on the gas temperature and
composition. It is therefore tempting to represent the density profile of
the several gas species as piecewise exponential functions, instead of
piecewise linear functions as was done above, even for minor species
(such as O3) although it is expected to reach an extremum owing to its
photochemistry, where it can depart from the exponential function, even
locally.

Let us consider a function f(r) assumed to have strictly positive values
ϕk at a set of discrete radial distances rk. This function can be approxi-
mated using exponential pieces matching those discrete values, and
their Abel transforms and derivatives can also be computed. Denoting ak
and bk the parameters of the exponential function used to represent the
ϕk between rk and rk+1. Those parameters are directly computed from
the rk and ϕk, so that the exponential pieces fk and their Abel transform
Fk can be expressed. Function f being the sum of the fk, its Abel transform
F is then the sum of the Fk, and all the derivatives with respect to the ϕk,
which are required for non-linear fitting purposes, follow naturally:

f(r) =
∑n− 1

k=1

akexp(bk (r − rk) ) χ[rk ,rk+1 [(r)

f(rk) = ϕk f(rk+1) = ϕk+1

ak = ϕk bk =
ln
(

ϕk+1

ϕk

)

rk+1 − rk

f(r) =
∑n− 1

k=1

fk(r) : fk(r) = ϕk

(
ϕk+1

ϕk

) r− rk
rk+1 − rkχ[rk ,rk+1 [(r)

F(r0) = 2
∫ ∞

r0

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√ f(r) dr =
∑n− 1

k=1

Fk(r0)

Fk(r0) = 2
∫ r*k+1

r*k

r
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − r20

√ fk(r) dr = 2
∫

̅̅̅̅̅̅̅̅̅̅̅̅̅
r*k+1

2
− r20

√

̅̅̅̅̅̅̅̅̅̅
r*k

2
− r20

√ fk
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

y2 + r20
√ )

dy

∂fk(r)
∂ϕk

=

(

1 −
r − rk

rk+1 − rk

)(
ϕk+1

ϕk

) r− rk
rk+1 − rkχ[rk ,rk+1 [(r)

∂fk(r)
∂ϕk+1

=
r − rk

rk+1 − rk
ϕ

1−
r− rk

rk+1 − rk
k ϕ

r− rk
rk+1 − rk

− 1

k+1 χ[rk ,rk+1 [(r)

∂Fk(r0)
∂ϕk+1

= 2
∫

̅̅̅̅̅̅̅̅̅̅̅̅̅
r*k+1

2
− r20

√

̅̅̅̅̅̅̅̅̅̅
r*k

2
− r20

√
∂fk
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

y2 + r20
√ )

∂ϕk+1
dy

(48)

where again r*k = max(rk, r0) and substitution y =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2 − r20
√

has been
used, which gets rid of the singularity of the Jacobian of the Abel
transform near the tangent radius r0. Abel transforms Fk of the expo-
nential pieces fk of Eq. (48) can be computed analytically (as far as
incomplete gamma and exponential integral functions can be considered

analytic) using the non-alternating series development proposed by
Hubert et al. [2022], or using a numerical integration, which these au-
thors also recommend as computationally less expensive.

In the context of inversing the Abel transform of the optical thickness
of the atmosphere, determined by occultation of the sun, the ϕk of Eq.
(48) represent the estimated gas density

[
gik
]
, and as many fk and Fk

functions must be defined as gas species are included in the treatment.
They will be denoted with an upper index, f ik and Fik. The χ2 is then
expressed as

χ2 =
∑nrobs

j=1

∑L

l=1

(
∑
nrfit

k=1

(
∑nsp

i=1
σi(λl) Fik

(
r0,j
)
+ κ0,kTd

k
(
r0,j, λl

)
)

− τobsl,j

)2

wl,j

(49)

to which a regularization term can again be added. Deriving the χ2 with
respect to all the fitting parameters can be done using the formulas given
above. Again, it can also be convenient packing all the observations
using one single index to enumerate the pairs r0,j, λl. Determining the gas
densities and dusts properties can then be considered using a general
non-linear least squares fitting method such as the Levenberg-Marquardt
algorithm. We anticipate here over the next section and state that
obtaining an algorithm performing the fitting with the assumptions
made in this paragraph is difficult. The problem is non-linear with
respect to the gas species densities (as well as the dust α parameter) and
the number of dimensions of the space in which the optimum is searched
becomes large. As far as we could test, the fitting requires a very good
first guess that may be provided using the method presented in Section
2.3, but it is not clear including the exponential dependency will
improve the fitting. Indeed, using exponential elements requires
imposing the fitted densities remain all positive, whereas the other
method tolerates negative densities. These negative values are naturally
non-physical, but this gives the fitting method additional freedom,
seemingly allowing a better fitting and a better determination of all
fitting parameters over most of the altitude range. We suspect, although
we could not establish it formally, that the higher degree of nonlinearity
introduced here can result in the χ2 function having more local extrema,
therefore implying that a very good first guess must be provided.

3. Numerical methods and validation

3.1. Test case properties

Performing the inverse Abel transform fitting of occultation obser-
vation of a dusty atmosphere requires a non-linear method, owing to the
wavelength dependence of the dusts extinction. Several algorithms exist
for minimization in a multidimensional space, including the Levenberg-
Marquardt method [Press et al., 1992], which avoids explicit compu-
tation of the Hessian matrix using a numerical approximation for the
second derivative of the function. The Nelder and Mead down-hill
simplex method can also be considered, but it implies a large number
of function evaluations, especially when applied in a parameter space
that has many dimensions. For example, if the α parameters must be
determined at 40 altitudes, the corresponding parameter space will have
40 dimensions, and the number of nodes of the moving simplex of the
algorithm will reach 41. This will unavoidably lead to heavy
computations.

The simplest method proposed in Section 2.2 separates the inversion
and parameters fitting, so that a first least squares fitting is needed for
the inverse Abel transform (at all wavelengths), followed, at each fitting
altitude (i.e. for each rk), by a second least squares fitting which remains
non-linear with respect to one single parameter only. This is clearly the
computationally fastest method one may consider.

To test different methods, we will use a fictitious case of atmosphere
observation having realistic prescribed CO2 and O3 densities, with dust
properties vertical profiles resembling observational results given by
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Määtänen et al. [2013], presenting numerically challenging character-
istics, such as local extrema and variation across a broad range of values.
We will test the method with and without noise included. It is expected
that, when no noise is included, any reliable inversion method should
retrieve the prescribed atmospheric properties with a reasonable accu-
racy, but not necessarily exactly, since the inversion method includes a
regularization term. Fig. 2 shows the atmospheric properties used for
testing purposes. The CO2 density is from Krasnopolski [2002] extended
to low altitudes under an isothermal hypothesis, the detail of the profile
being not crucial for the sake of method testing. The O3 density profile is
build using a Chapman profile with properties compatible with Leb-
onnois et al. [2006], with a scale height of 5 km and a peak density of 8
× 109 cm− 3 at 40 km of altitude. The dust properties are interpolated at
all altitudes using cubic spline interpolation of discrete values taken
from a profile by Määttänen et al. [2013], artificially completed at high
altitude. The detailed values are indeed of little importance as far as they
are representative of what can be expected in the Mars atmosphere and
present a sufficient complexity to challenge the method (i.e. broad range
of variation, local extrema). We avoid using extremely small values of
the dusts α parameter at high altitude, as it would imply nearly no de-
pendency on wavelength, and it is not expected a fitting method should
retrieve the exact value of a parameter over which the observation is
nearly not sensitive, especially if the problem is somewhat ill-
conditioned. The solar spectrum used to create simulated occultation
data is taken from the Solar 2000 model [Tobiska et al., 2000].

Fig. 3 shows the attenuation of solar radiation at 285 nm occulted by
the Mars atmosphere given in Fig. 2. The presence of local minima in the
density of an absorber or in the extinction coefficient of the dusts can
lead to a counter-intuitive shape of the attenuation. As the line-of-sight
tangent point passes under the altitude of the local O3 extremum, a
significant portion of the l.o.s. near the tangent point passes through an
atmosphere layer nearly devoid of O3, so that the length of the l.o.s.

segments through which significant O3 absorption takes place is severely
reduced, as it can be understood considering the geometry of Fig. 1 and
lines-of-sight of different tangent altitude passing through a thin
spherical shell of absorbing material. The simulated profile is vastly
dominated by dust absorption, while CO2 plays a minor role. If, how-
ever, dust attenuation were severely smaller and could be neglected,
CO2 absorption may become locally dominant for l.o.s. tangent altitudes
below ~25 km, i.e. a few scale heights below the O3 peak density. Only a
small fraction of the solar radiation is however expected to reach such a
low altitude. The dust, O3 and CO2 optical thickness shown in Fig. 3,
suggest that, at lower wavelengths, CO2 may play a major role in the
bottom side of the profile. The solar flux does, however, severely
decrease at short UV wavelength and exp.(− 3) is already 0.05: a division
by 20, so that few photons would reach the detector of an instrument
observing at short wavelength and low tangent height. As it will be
discussed in Sections 4 and 5, retrieving the CO2 density from occulta-
tion observation in this wavelength range remains very challenging. The
peak of the O3 optical thickness is conspicuous. It corresponds to the
maximum of the Hartley band cross section and to the maximum of the
ozone density profile. The combined dependency of the dust extinction
parameter with respect to altitude and wavelength is apparent in the
optical thickness as well, but from a relative standpoint, the 200–300 nm
wavelength range clearly offers the best sensitivity to ozone. It can also
be expected that the very tenuous atmosphere of the topside will
generally not make it possible retrieving the profiles and properties of
the constituents from occultation data, the optical thickness remaining
too close to 0 for producing very significant attenuation of the solar flux
of UV photons.

3.2. Two-steps inversion

We first consider the inversion method proposed in Section 2.2., i.e.,

Fig. 2. Atmospheric vertical profiles used for method testing. CO2 and O3 densities are shown in panels (a) and (b) respectively. Panel (c) shows the dust extinction
coefficient at reference wavelength λ0 = 250 nm, while panel (d) gives the vertical profile of the dusts α parameter. The diamonds of panels (c) and (d) show the small
set of reference discrete values used to build the vertical profiles at all altitudes using cubic spline interpolation.
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the total optical thickness (or extinction coefficient) is obtained at each
wavelength and tangent radius by computing the opposite of the loga-
rithm of the ratio of the attenuated intensity over the unattenuated (i.e.
topside) intensity. The local, differential extinction coefficient is ob-
tained by inverse Abel transform of the l.o.s. -integrated extinction co-
efficient, at each wavelength, for a set of fitting altitudes (or radial
distances), then, at each fitting altitude, the wavelength-dependent local
differential extinction coefficient is used to fit the dusts properties and
the absorbing gas densities. The results obtained when no noise is

included in the test are shown in Fig. 4. The differences between the
original input profiles and the inversion-retrieved profiles are imper-
ceptible except for the bottom-side of the O3 density profile. In that
domain of altitudes, the ozone density rapidly drops, while the simu-
lated intensity is already strongly extinguished. The ozone retrieval is
therefore less accurate (in a relative sense). The inversion was per-
formed giving a very small weight to the regularization, as there is no
point in trying to accommodate the effect of noise here. Increasing the
weight of regularization can, indeed, degrade the quality of the retrieval,

Fig. 3. Attenuation of the solar radiation at 285 nm as a function of tangent point altitude, under occultation through the Mars atmosphere, simulated using the
atmosphere characteristics shown in Fig. 2 (top panel). The contributions of the dusts, CO2 and O3 are explicitly given. Local extremum of an absorber can lead to a
local minimum in the attenuation factor vertical profile. Attenuation optical thickness of the dusts, ozone and CO2 in the 200–300 wavelength range for lines of sights
having their tangent height ranging from 20 to 100 km (bottom panels).
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Fig. 4. Atmospheric properties retrieved using the two-steps inversion method of Section 2.2, applied to simulated observations described in Section 3.1., without
including any noise. Panels (a), (b), (c) and (d) show the results for the CO2 density, O3 density, dusts extinction coefficient at reference wavelength κ0 and dusts α
parameter, respectively. The dotted lines show the input profiles of the test, while the dashed lines show the inversion-retrieved profiles. The grey shades indicate the
±1-σ confidence interval that would be obtained owing to a realistic noise level, if applied.

Fig. 5. Same as Fig. 4 when including a realistic noise level in the simulated occultation.
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as expected since regularization modifies the concept of optimum. It is
therefore also not surprising that the bottom-side O3 profile cannot be
perfectly retrieved at levels a few orders of magnitude lower than the O3
peak density. A confidence interval was estimated giving some reason-
able weight to the simulated pseudo-observations. A signal of 5000
count was assumed at 200 nm on the very top side, and scaled according
to the solar flux obtained from the Solar2000 model [Tobiska et al.,
2000], the test being conducted using a wavelength interval ranging
from 200 to 300 nm. Assuming a Poisson noise then gives a reasonable
standard deviation. A noisy disturbance of the simulated pseudo-
observation is however not applied here: the goal is to figure out what
the confidence interval would look like. Large uncertainties can be ex-
pected concerning the α parameter and retrieval of all parameters is less
accurate in the altitude range where little extinction occurs, either
because the atmosphere is too tenuous (i.e. on the top side) or because
the solar UV flux has become too weak and there remain too few photons
to characterize the extinction (i.e. on the bottom side).

Fig. 5 shows the inversion results, retrieved using the two-steps
method when noise is included in the test. The deleterious effects of
noise obviously appear when comparing Fig. 4 and Fig. 5. The different
parameters are well retrieved in altitude ranges where the occultation is
sufficiently sensitive to that parameter. The CO2 density is poorly
retrieved at high altitude, ozone is still retrieved in an altitude range that
corresponds to several orders of magnitude of variation of its density,
compared with its peak value. In the altitude ranges where noise
severely degrades the retrieval of the gas densities, unrealistic negative
values can even be found. This is not surprising considering that those
densities are poorly retrieved at altitudes where they are relatively
small, some 2–3 orders of magnitude below the peak density in the case
of ozone. The reference extinction coefficient of dusts, κ0, remains well
retrieved as well, with poorer reliability on the topside and at very low
altitude. In contrast, the alpha parameter is only retrieved in the altitude
range where the dusts produce an important attenuation of the simu-
lated intensity and where this intensity remains sufficiently high, so that
the overall minimization problem remains sensitive to the parameter.
We verified that, after the local, total differential extinction coefficient is
correctly retrieved by inverse Abel transform, the second step non-linear
fitting of the alpha parameter at each fitting altitude relies on a rather
flat χ2 function near the optimal α. It is therefore expected that noise can
degrade the retrieval of the α parameter. Moreover, when the absolute
value of the α parameter is small, it introduces a nearly negligible
wavelength dependency, so that finding an offset value for alpha makes
little difference as long as the parameter remains small. The test was
conducted here using a wavelength range from 200 to 300 nm, where
ozone has a major absorption band, with a resolution of 1 nm. We
verified that extending this range to longer wavelengths, up to 350 nm,
for example, does improve the retrieval of the α parameter, without
allowing a complete, reliable retrieval over the whole profile. This is not
surprising, since introducing more observations naturally reduces the
uncertainties over any fitting parameter, and since, in the 300–350 nm
wavelength range, the dusts extinction dominates over the ozone ab-
sorption, which becomes inexistant beyond ~300 nm. It remains that
noise degrades information and therefore the retrieval quality.

It can be concluded from the previous paragraphs and figures that
the two-steps fitting method can be considered to realize a quick fitting
of the atmospheric properties. Its reliability naturally depends on the
noise level contaminating the observation. Its main weakness is that it
does not easily allow estimating uncertainties over the fitted parameters.
In particular, it cannot explicitly account for covariance between the
fitting parameters in the error propagation process. A bootstrapping
method for uncertainties estimate was not considered given that it
would require heavy computations, making it less attractive for real
applications over a broad database, but the possibility remains to use the
result of the two-steps method as a first guess for another, more so-
phisticated general method that provides the uncertainties. The reli-
ability can nevertheless be appreciated in Fig. 5 by comparing the input,

known profile (the “truth”) represented by the dotted lines and the fitted
values shown by the dashed lines. The parameter which is the harder to
estimate remains the dusts α parameter, for reasons explained in the
previous paragraph.

3.3. Coupled linear-nonlinear method

We now turn to testing of the method described in Section 2.3. It is
said to be a coupled linear-nonlinear method as the minimization
problem is considered as only depending on the dusts αk parameters,
while all the other relevant fitting parameters are found, for given αk, by
solving the corresponding linear least squares problem, with regulari-
zation included to cope with the ill-conditioning of the problem. Regu-
larization over the αk can also be included to the non-linear fitting
method (Levenberg-Marquardt, for example) by including additional
equations to the fitting problem. These additional equations correspond
to a numerical evaluation of the second derivative of the αk (with respect
to altitude) to be equated to zero, in a least squares sense. A very ac-
curate estimation of those derivatives is not required as the goal is only
to penalize noisy variations of the fitted parameters, while improving
the conditioning of the optimization Hermitian matrix. Applying a
weight to the regularization of the αk is not straightforward, but it should
remain reasonably small as to avoid giving the false feeling of a reliable
smooth estimate of the α profile, while it would only reflect the penal-
ization of the derivative rather than a physically accurate estimate of
parameter values. As already stressed above, regularization inherently
modifies the concept of optimum. The strategy that was followed to
reduce the needed computational time is to process the inversion over a
restricted set of wavelengths and provide the estimated α profile as an
input for a second pass of the fitting procedure using the whole wave-
length interval. Indeed, computing the derivative of the matrix elements
with respect to all the αk remains computationally intensive. In return,
the number of dimensions of the space over which the non-linear fitting
algorithm must search for an optimum is drastically reduced.

Fig. 6 shows the result of the inversion realized using the coupled
linear-nonlinear method. A wavelength interval ranging from 200 to
300 nm was used, with a 1 nm resolution. Each simulated pseudo-
observation was assigned a weight corresponding to a realistic noise
level as explained above regarding Fig. 4. At this stage, no noise was
applied to the simulated pseudo-observation and the noise level is only
used for the sake of weighting and confidence interval estimate. The
grey shades then show the 1-σ confidence interval that can be expected
from the fitting. Those intervals are of little significance since no noise
was explicitly applied, but they reveal what can be expected from the
inversion method. Without a surprise, the inversion closely retrieves all
the parameters, except in altitude ranges where the problem is weakly
sensitive to the values of the parameters. In the case of the ozone profile,
the bottom side is poorly retrieved as the gas density rapidly drops at
low altitude while most of the photons have already been absorbed at
higher altitude. The use of logarithmic scales allows to appreciate the
efficiency of the method over several orders of magnitudes, but it must
however be warned that they are also somewhat misleading concerning
the method reliability as they make dramatically appear inaccuracies
over insignificantly small quantities. The dust properties are again
retrieved in a very satisfactory manner, but the broad width of the un-
certainties over the α parameter suggests that retrieving its value is
challenging when a reasonably large noise is applied to the simulated
intensities. Along the same lines, it appears that retrieving the CO2
density may reveal challenging as well, especially at high altitude.

Introducing a realistic noise in the test naturally degrades the quality
of the retrieval as it appears in Fig. 7, although a slight smoothing was
applied to the simulated noisy intensities prior to proceeding to the
inversion algorithm. It is also conspicuous that the estimated un-
certainties provide a very pessimistic evaluation of the fitting reliability
of the inversion method, especially for the absorbing gases concentra-
tions and for the dusts κ0. The dusts α parameter is again the harder to
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retrieve. The uncertainties affecting its value nevertheless remain
exaggeratedly large.

The retrieval of the α parameter profile can be improved by
extending somewhat the wavelength interval over which the fitting is
performed, as shown in Fig. 8 giving the result of the inversion test
realized over a wavelength range from 200 to 350 nm. Including more
spectrally extended data naturally improves the knowledge of the sys-
tem, and in this particular case, the improvement is brought in a
wavelength range where ozone is not expected to largely contribute the
occultation. The estimated uncertainties are rather large, given that the
retrieved parameters, especially the linear parameters (gas concentra-
tions and differential dust extinction coefficients), remain quite close to
the input “truth” represented by the dotted lines over a significant
portion of the vertical profiles. As already mentioned, the topside and
bottom-side values remain the hardest to retrieve because the atmo-
sphere is scarce on the top side and produces little absorption while the
attenuated solar flux is small on the bottom side, leaving few remaining
photons to be absorbed. The retrieval of the αk is also somewhat better.
In particular, the α parameter is better retrieved below ~45 km of
altitude, down to ~32 km of altitude. The topside of the retrieved profile
is less noisy, and fairly reliable up to ~75 km. The improvement is
however obtained at the expense of a somewhat longer computational
time, and noisy, spurious variations remain important on the very top
and bottom sides. Their amplitudes appear less severe, though. The
ozone peak appears to be perfectly retrieved, with negligible un-
certainties affecting the O3 and κ0 parameters over most of the vertical
profile, over which a nearly perfect agreement is found with the dotted
“true” profiles. The very topside of the ozone density profile appears also
better retrieved in Fig. 8 than in Fig. 7, but the ±1-σ interval is so broad
that the improvement can hardly be considered significant. Retrieving
the CO2 concentration remains difficult at high altitudes, the product of

its density and extinction cross section being very small at high altitude
in this test case.

We also attempted to increase the weight given to the regularization
applied to the α parameter profile to produce a smoother result,
apparently closer to the expected “truth” (the dotted lines). It is found
that the shape of the noisy portion of the retrieved profile does not
appear to be better nor worse than what is shown in Fig. 8. The interest
of regularization remains to protect the inversion method against ill-
conditioning: it is, by conception, not able to intrinsically reduce the
difference between the fit and the observation. At best can it somewhat
dampen noisy variations, which would otherwise be larger owing to ill-
conditioning. As the regularization method used here relies on the local
evaluation of second derivatives, a too large weight given to the regu-
larization can even become counter-productive, since exponentially-
varying quantities (such as gas concentrations in a planetary atmo-
sphere) have large derivatives when those quantities are large.

The coupled linear-nonlinear method appears as a valid method to
invert occultation observations of a dusty atmosphere. Comparing its
results with those shown in Section 3.2, it also appears preferable as the
uncertainties over the profiles appear to be less. Both sets of retrieved
profiles remain quite comparable, however. Computationally, the
coupled linear-nonlinear method is more expensive, but it also provides
an estimate of all the atmospheric parameters in a unique fitting process,
which includes possible interdependence and covariance between the
parameters determined at different altitudes.

3.4. Exponentially-varying gas species

Tests similar to those of Sections 3.2 and 3.3 have also been con-
ducted using a fully non-linear method adjusting simultaneously the
dusts properties and the gas density profiles assuming gas concentration

Fig. 6. Atmospheric properties retrieved using the coupled linear – non-linear inversion method of Section 2.3, applied to simulated observations described in
Section 3.1., without including any noise. Panels (a), (b), (c) and (d) show the results for CO2 density, O3 density, dusts extinction coefficient at reference wavelength
κ0 and dusts α parameter, respectively. The dotted lines show the input profiles of the test, while the dashed lines show the inversion-retrieved profiles. Grey shades
show the ±1-σ confidence interval of the fitted parameters.
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varies exponentially between fitting altitudes, i.e. using the formalism
developed in Section 2.4. The least squares fitting process is by far more
complex, since all parameters are considered non-linear (even the
aerosol extinction parameter), so that the number of dimensions of the
parameter space explored by the Levenberg-Marquardt algorithm is
multiplied by 4. This increased complexity results in longer computa-
tional time, and less efficient retrieval of the sought atmospheric
properties.

Fig. 9 shows the inversion-retrieved profiles of the gas densities and
dust properties. As already done above, the ±1-σ confidence intervals
represented by the grey shades reflect the noisy variations that could be
expected if a realistic noise had been included. The method can hardly
retrieve the proper atmospheric properties on the very top side, as well
as the α parameter on the bottom side of the profile. Fitting convergence
is indeed harder to achieve in this case for the reasons explained above
(stronger non-linearity, larger number of dimensions of the parameters
space), especially in altitude ranges where the simulated pseudo-
observations are only weakly dependent on the atmospheric properties.

Fig. 10 presents the results obtained when a realistic noise is
included in the simulated occulted intensity profile. The noisy

degradation of the retrieved parameters is conspicuous, especially on
the top side. The α parameter is again the harder to retrieve. Its assumed
relatively low value implies a weak simulated dependency of the dust
extinction with respect to wavelength. It is therefore logical that this
parameter remains difficult to estimate in this case as well.

3.5. Statistical evaluation

The three methods presented in the previous paragraphs show a
common feature when noise is included in the test simulations. The
retrieved dusts extinction parameter (at reference wavelengths of 250
nm) presents a similar overestimate on the topside in each case. It can be
wondered if this overestimate is incidentally inherent to the specific
noise distribution that was adopted in the present simulation. We
therefore conducted a statistical test simulating 1000 noise distributions
to be added to the same simulated count rates to be inverted. This test
being computationally intensive, it was not conducted using the method
of Section 2.4.

Fig. 11 presents the statistical properties of the inversion of the
simulated noisy occultation profiles, using the coupled linear –

Fig. 7. Same as Fig. 6, with a realistic noise applied to the simulated occulted intensities. A wavelength range extending from 200 to 300 nm was used.
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Fig. 8. Same as Fig. 7, using a wavelength range from 200 to 350 nm.

Fig. 9. Atmospheric properties retrieved using a Levenberg-Marquardt fitting applied to the simulated observations described in Section 3.1., without including any
noise, using the functional dependencies described in Section 2.4, i.e. assuming the gas density profiles are locally exponential. Panels (a), (b), (c) and (d) show the
results for CO2 density, O3 density, dusts extinction coefficient at reference wavelength κ0 and dusts α parameter, respectively. The dotted lines show the input
profiles of the test, while the dashed lines show the inversion-retrieved profiles. Grey shades show the ±1-σ confidence interval of the fitted parameters.
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nonlinear method of Section 2.3. It appears that the confidence intervals
estimated in Fig. 7 match the statistical testing rather well. This is
noticeable, given that the standard methods generally used to estimate
uncertainties rely on the assumption that the data follow a Gaussian
distribution. This assumption can hardly be considered strictly valid,
since, in the case of occultation observations, inversion is applied to the
logarithm of the (simulated) intensity, which provides an estimate of the
total extinction optical thickness at all wavelengths. Surprisingly, the
topside of the (differential) extinction coefficients of the dusts at 250 nm
determined by the inversion process is significantly larger than the ex-
pected “true” value shown by the dotted lines. For all other parameters,
the “true” dotted line profile is bracketed by the ±1-σ interval about the
mean. It therefore appears that, at least as far as the aerosols are con-
cerned, the effect of noise contamination of the (simulated) observations
is not only to introduce a scatter on the retrieved profiles, but also to
introduce a bias, especially in altitude ranges where the observed in-
tensity profile only weakly depends on the properties of the atmosphere.

As expected, the confidence interval of the α parameter becomes
large in altitude ranges of low sensitivity (i.e. the upper and lower parts
of the profile). The noisy nature of the retrieved α profile shown in the
previous sub-sections can therefore be attributed to the very noisy na-
ture of the (simulated) observations, rather than to a serious defect of
the retrieval methods. We nevertheless investigate possible subtleties
that may result from the fitting algorithm.

The Levenberg-Marquardt method combines the conjugate gradient
method with a quasi-Newton method, giving more and more weight to
this latter as the algorithm approaches the optimum. Quasi-Newton
methods approximate the function to be minimized, i.e. the χ2 func-
tion, with a multi-dimensional second-degree function, replacing the
actual Hessian matrix, by a pseudo-Hessian matrix computed based on
first derivatives only. As emphasized by Press et al. [1992], the optimum
of the merit function is identified by nullifying its first derivatives, and it
does not much matter what path in parameter space is followed by the
algorithm to reach and satisfy that condition, so that using an

approximate Hessian generally fits the need as well as the exact Hessian
matrix would. It is then implicitly assumed that any point satisfying a
zero-gradient condition will do as an optimum point. We estimated
(numerically) the exact Hessian matrix near the optimum, for a very
limited number of cases owing to the extreme computational cost this
incurs. It is found that, although the pseudo-Hessian has only positive
eigenvalues (which would point at a true extremum), the exact Hessian
matrix evaluated at the estimated optimum has a few negative eigen-
values of relatively small absolute value. This indicates that, in the
particular case of inverse Abel transform fitting, the Levenberg-
Marquardt algorithm (and very likely any quasi-Newton algorithm)
may stop at a saddle point instead of a true extremum. We are not aware
of any other fitting problem presenting a similar issue. We however
point out that the two-steps method presented in Section 2.2 and tested
in Section 3.2 leads to fairly similar results as the coupled linear-
nonlinear method, whereas the nonlinearity of the fitting with respect
to the α parameter is addressed in the two-steps method using a one-
dimensional bisection method, which is not subject to any confusion
between a saddle point and an extremum. Although we could not prove
it, we suspect that the confusion between a saddle point and an
extremum occurs here because the (simulated) intensity is only weakly
dependent on some of the parameters, especially on the topside α values.
If however, it should appear that, for a given optimization problem, such
an optimum mis-attribution would become critical, another fitting
method may need being applied. This may include the Nelder-Mead
down-hill simplex or a simulated annealing method [Press et al.,
1992], or even a particle swarm optimization (PSO) technique [e.g.
Banks et al., 2007; 2008] or any other stochastic method. Those methods
are however known to be very expensive from a computational stand-
point, which makes them less usable for the analysis of large datasets. It
must be added that the different fitting parameters covary to various
extent in this fitting problem, parameters obtained at nearby altitudes
influencing each other more efficiently than very distant ones. It can
then be also considered that opposite deviations of the gas densities and

Fig. 10. Same as Fig. 9, with a realistic noise applied to the simulated occulted intensities. A wavelength range extending from 200 to 300 nm was used.
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Fig. 11. Synthesis of inversions of 1000 simulated noisy occultation profiles. The dotted lines represent the input (noise-free) profiles to be retrieved. The black
dashed lines represent the average of the 1000 retrievals. The red and blue dashed lines bracketing the black one show the ±1-σ interval of the retrieved distribution.

Fig. 12. Results of the inversion of the solar occultation of the Mars atmosphere observed with EXOMARS-NOMAD-UVIS on May 4, 2018, at 0059 UT.. The altitude is
estimated from a reference radial distance of 3390 km. Grey shades give the 1-σ standard deviation over the fitting parameters, i.e., from left to right, the ozone
density, the differential extinction parameter of the dusts, and the Angström α parameter of the dusts. (Standard UVIS data ID: nmd_cal_sc_uvis_20180504T005927-
20,180,504 T011659-e).
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dust extinction coefficients can, at least partly, compensate, non-
physical negative values being even possibly retrieved by the algo-
rithm, as a consequence of non-linear contamination by noisy variations.
It nevertheless remains that, on the very topside, the atmosphere is so
tenuous that expecting to retrieve the “true” parameters is somewhat
illusory.

4. Preliminary inversion results

The methods developed and presented above can be applied to
occultation datasets from spacecraft observing planetary atmospheres
known to contain aerosols, such as the atmosphere of Mars. The Trace
Gas Orbiter (TGO) of the ExoMars mission of the European Space
Agency (ESA) carries the Nadir and Occultation for MArs Discovery
(NOMAD) instrument, which comprises three spectrometers, including
the UltraViolet/VISible (UVIS) spectrometer, sensitive from 200 to 650
nm [Vandaele et al., 2015]. The NOMAD instrument can be used to
remotely sense the vertical profile of the atmosphere recording the ab-
sorption of sunlight as it is progressively occulted by the Mars atmo-
sphere along the orbital motion of TGO. The instrument passband
includes the ozone Hartley band. Aerosols also produce extinction of the
solar UV radiation. It can also be expected that CO2 can scatter the sun
light out of the instrument field of view and produce some extinction.
We anticipate over the next paragraphs to warn that preliminary tests
conducted on the calibrated NOMAD-UVIS solar occultation data
[Mason et al., 2022; Willame et al., 2022] suggest that it appears diffi-
cult to retrieve the CO2 density profile in addition to the ozone and dust
profiles, for reasons to be discussed in the next section.

Fig. 12 shows the results of an application of the linear-nonlinear

inversion method (Section 3.3) to the ExoMars-NOMAD-UVIS solar
occultation of May 4, 2018, at 0059 UT, with a high spectral sampling of
~0.46 nm. Altitude is estimated from a reference radial distance of
3390 km, which can be above the soil of Mars, at places. The inversion
was performed over the wavelength range from 240 to 360 nm, the
shorter wavelength domain being subject to larger uncertainties owing
to the lower solar intensity. A slight smoothing was applied to the UVIS
observation to be fitted using the LOWESS method [Clevland, 1985] of
first order, with a width of 4.23 km, i.e. corresponding to twice the
median altitude bin in the UVIS observation. The retrieved ozone den-
sity layer has a profile resembling a Chapman layer with minor distur-
bances. The dust extinction parameter presents a deep local minimum
resulting from two main layers of aerosols. The uncertainties obtained
by the inversion process, represented with grey shades, are very small
for these parameters and nearly overlap with the lines and appear very
dim between the dashes. The α parameter is retrieved with a high ac-
curacy in the altitude range where dusts are abundant (or particularly
efficient at extinguishing the UV flux).

Fig. 13 shows the observed and retrieved transmittance corre-
sponding to the vertical profiles of Fig. 12, at four selected wavelengths.
The local maximum of the dusts extinction parameter found in the upper
part of the profile results in a shoulder observed (and retrieved) at low
altitude. The topside shows a weak, progressive attenuation due to the
presence of dusts and ozone at low density. At ~250 nm, the solar ra-
diation is attenuated by only ~5 % by the atmosphere above ~20 km.
Transmittance oscillations found in that altitude range, especially at
shorter wavelengths, do probably not correspond to a real physical
phenomenon.

Fig. 14 shows another example of inversion results, obtained for the

Fig. 13. Observed transmittance (dashed lines) at four different wavelengths using NOMAD-UVIS on May 4, 2018, at 0059 UT. The dashed lines show the trans-
mittance retrieved by the inversion procedure, corresponding to the retrieved atmospheric properties shown in Fig. 12. Observation 1-σ confidence intervals are
given by the grey shades. The statistical standard deviation of the retrieved transmittance is very small.
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occultation profile recorded on June 21, 2018, at 0809 UT. The retrieved
dust extinction parameter profile shows a local maximum above 20 km.
As in Fig. 12, the uncertainties over κ0, represented using grey shades,
are very small and appear very dim. The ozone density is an order of
magnitude less than the one observed on May 4, 2018, illustrating the
high variability of ozone in the atmosphere of Mars. The density being
lower, the relative uncertainty is also larger. The detailed fitted trans-
mittance is shown in Fig. 15 at several wavelengths. Agreement between

the observations and the fitted values is again very good. Note the local
minimum found somewhat above 20 km at all wavelengths: it can be
understood as the consequence of the presence of a thin absorbing layer
near that altitude range (i.e. somewhat above), consistently with the
local maximum found in the aerosol extinction coefficient.

Fig. 14. Same as Fig. 12 for NOMAD-UVIS occultation observation obtained on June 21, 2018, at 0809 UT. (Standard UVIS data ID: nmd_cal_sc_uv-
is_20180621T080914-20,180,621 T082453-i).

Fig. 15. Same as Fig. 13 for NOMAD-UVIS occultation observation obtained on June 21, 2018, at 0809 UT.
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5. Discussion

5.1. Inability of CO2 retrieval

The first aspect that requires further examination is the inability of
the method to reliably retrieve the CO2 density, although the method
conception and testing indicate it should be possible. Indeed, the cross
sections used in the tests of the previous paragraphs, as well as in the
NOMAD-UVIS inversions above, rather quantify the Rayleigh scattering
process. This does not necessarily amount to effective extinction, as it
can be speculated that a fraction of the Rayleigh-scattered photons may
nevertheless come back to the field of view after further scattering.
Quantitatively assessing the importance of that process would, however,
require solving completely the radiative transfer of the solar UV radia-
tion through the Mars atmosphere, which is beyond the scope of the
present study. It is however expected that this should not produce a very
dramatic effect for the following reasons. Resonance scattering is not at
play in this problem, so that the optical thickness is not comparable to
what would be expected for the oxygen 130.4 nm radiation in the Earth
atmosphere, for example. Rayleigh scattering is a less efficient process.
For lines of sight nevertheless having a relatively large slant optical
thickness, it can be expected that scattered photons will escape the at-
mosphere upward and seldom reach the instrument because scattering
deflects photons at some angle, and photons will travel across larger
distances when propagating upward, as it is a direction in which the
atmosphere optical thickness is lower owing to the exponential decrease
of the gas density with altitude. A photon mean free path therefore
represents a longer distance through the atmosphere when it is moving
upward. Multiple scattering, when it occurs, therefore has the tendency
to funnel the photons upwards, away from the instrument line of sight
during occultation observation, especially considering that most of the
slant optical thickness is accumulated near the tangent point.

The wavelength dependency of the Rayleigh scattering is a (fourth)
power law, functionally similar to that of the aerosols. Consequently, in
a real situation, the inversion can turn from an ill-conditioned problem
to an ill-posed problem, especially if at some altitude ranges, the aero-
sols have an Angström parameter close to 4, or if the dusts extinction
becomes weak, so that the observation may not allow discriminating
between the dusts and CO2. A misattribution between both therefore
becomes possible. One may consider safer ignoring the CO2 absorption
(as was done in the figures of the preceding section), and track cases in
which the dusts α parameter is found to be near 4. If, in addition, the
dust extinction parameter is found to decrease exponentially with alti-
tude, this would legitimately cast doubts on the physical interpretation
of the inversion. A mis-estimation of the wavelength dependency of the
extinction cross section also stands among the possible reasons for an
inability of an inversion procedure to retrieve that gas concentration.

As extinction is weakly dependent on the CO2 density in the near UV,
the retrieved CO2 density is, conversely, highly sensitive to small dis-
turbances in the input data used for the inversion as well as to small
departures from the underlying hypothesis of the method. Several
sources of such disturbances can be considered: any instrument cali-
bration is unavoidably subject to uncertainties. Along the same lines,
pre-treatment of the raw data (flat-fielding, background subtraction
etc.) is also unavoidably affected by uncertainties as well. Any such
uncertainty may slightly affect the input data used in the inversion
process, therefore impairing the quality of the retrieved CO2 without
significant consequence over the retrieved O3 and dust properties, which
remain, by design, the main scientific targets of the UVIS instrument in
that wavelength range.

Finally, inverse Abel transform relies on a spherical symmetry
assumption. By definition, solar occultation observations are obtained
near the terminator, i.e. a region where horizontal gradients may easily
exist, even moderate ones. A slight breach of the spherical symmetry
assumption may well sufficiently disturb the inversion process to pre-
vent a reliable retrieval of the numerically over-sensitive CO2 density

profile. In contrast, as pointed out by Piccialli et al. [2021], horizontal
gradients near the terminator are not expected to seriously impair the
retrieval of O3 and of the dust properties. Moreover, our method ignores
the weak dependency of the ozone absorption cross section with respect
to temperature. This simplifying assumption eliminates an unknown
from the problem by assuming a fixed value of the temperature. Strictly
speaking, we should use the spectra to estimate the temperature profile
as well, and adapt the cross section at all altitude, or rely on an assumed
temperature profile. This would anyway lead to an even more compli-
cated retrieval procedure, without warranty that the CO2 density could
be retrieved efficiently, nor that the ozone density would be better
estimated given the uncertainties of the inversion method. The breach of
both hypotheses nevertheless results in a mathematical description
producing an inverse problem that slightly departs from the actual
problem we wish to solve. Moreover, the piecewise representation of the
physical properties of the atmosphere necessarily departs, even just
slightly, from the actual properties of the atmosphere, somewhat dis-
turbing the inversion results as well.

Consequently, given that UV solar occultation is only weakly sensi-
tive to the CO2 concentration, it is not clear whether it can really be
expected retrieving it by analyzing this wavelength range. At the current
stage of this preliminary analysis, we could not convincingly establish
that CO2 can reliably be retrieved although, in principle, the inversion
software offers the possibility to account for extinction by several gas
and to estimate their density in addition to the dust extinction proper-
ties. If, in addition, the actual CO2 density were smaller than the value
used in our simulated tests, this weakness inherent to the method and
physical properties may appear even more critical.

5.2. Geometry and assumptions

A breach of the spherical symmetry assumption may also arise from
other conditions than horizontal gradients along the terminator. The
geographic distribution of aerosols may be intrinsically non-symmetric.
For example, clouds of icy or solid grains (or of any aerosol) may exist
everywhere in a planetary atmosphere, and indeed, water ice clouds
have been reported in the literature [e.g. Streeter et al., 2022 and ref-
erences therein]. The aerosol size and composition may also vary from
place to place, leading to asymmetries in the geographic distribution of
the Angström parameter. Retrieving the atmosphere properties by
inverting remote sensing data obtained from a single vantage point then
becomes severely under-constrained by the observation. One would
either need observations from several vantage points to be used in a
tomographic inversion method, or a smart hypothesis regarding how
patchy aerosol populations can exist in the atmosphere and an adapted
inversion technique. Unfortunately, none are available at this stage.

The possible existence of very localized layers of aerosols can also
complicate the inversion of the observation. If the vertical characteristic
scale of such layer (i.e. its thickness and vertical variation scale) is larger
than the resolution of both the data and the inversion method, then it
can be expected the retrieval method can cope with such a layer. If that
scale length is intermediate between the resolution of the observation
and of the inversion method, then the retrieval is becoming critical and
will likely inaccurately analyze discontinuous variations (as compared
to that resolution) in terms of a continuous feature. If the observing
resolution becomes poorer than the characteristic scale, then the prob-
lem is irremediably impossible to address and the thin, localized layer
can hardly be assessed by the observation. As a general matter, the
smallest feature size that can be retrieved from observation is limited in
a Nyquist sense: we need several observations across a given feature in
order to characterize it.

5.3. Numerical aspects

From a theoretical standpoint, we could establish that a globally non-
linear fitting method can take advantage of separating the non-linear
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and linear fitting parameters and of expressing these latter as functions
of the non-linear parameters. The benefit of reducing the number of
dimensions of the parameter space can easily outweigh the computa-
tional burden of evaluating the derivatives of the linear parameters with
respect to the non-linear parameters. Formally, expressing those de-
rivatives remains surprisingly simple, but the software conception is
nevertheless more complicated. In this context, including a dynamically
weighted regularization in the least squares fit process is also surpris-
ingly easy from a conceptual standpoint, the derivative of the trace of
the matrix of the system requiring regularization remaining easy to
compute without incurring a heavy computational cost.

Estimating uncertainties over the fitting parameters is often a deli-
cate task. We evaluate the uncertainties applying the usual methods
used in pseudo-Newton fitting algorithms, which use a computationally
cheap approximation of the Hessian matrix based on first derivatives
only. Those estimates generally assume that the uncertainties of the data
follow a Gaussian statistical distribution. In the case of the inversion of
occultation observations, the logarithm of the transmittance is the input
of the fitting procedure, and the uncertainties of this logarithm are not
expected to remain Gaussian. We conducted a bootstrapping test that
indicates that the uncertainties over the fitting parameters remain
correctly estimated despite the breakdown of the Gaussian hypothesis
used in pseudo-Newton methods.

An analysis of the exact Hessian matrix of the least squares fit method
was conducted near the fitting solution found by the applied Levenberg-
Marquardt method. Near convergence, this algorithm becomes equiva-
lent to a pseudo-Newton method. It was found that, despite the eigen-
values of the pseudo-Hessian matrix are all positive, a few of those of the
exact Hessian matrix can be slightly negative. This indicates the algo-
rithm mis-identified a saddle point as a local minimum. This is however
less dramatic than it may seem. It is clear that the whole transmittance
vertical profile is only weakly sensitive to the topside atmospheric
properties, where the gas and dust densities are very low. The chi-square
function is therefore weakly sensitive to the topside fitting parameters,
compared with those determined at altitudes where the bulk of the
attenuation takes place, so that only unimportant parameters have a
fitted value that may depart from the actual one. Indeed, our simulated
tests indicate that the top-side parameters are not necessarily perfectly
retrieved. This can be due to a border effect as well as to this misiden-
tification issue. Conversely, it can hardly be expected determining the
value of parameters over which the observation is nearly not sensitive,
producing therefore a χ2 function looking like a deep, flat (multidi-
mensional) valley along the directions of variations of those parameters.
As a general matter, we nevertheless warn that pseudo-Newton methods
enforce a zero gradient condition, but do not guarantee for sure that a
local minimum will be found, although in general, the pseudo-Hessian
approximation suffices to reach a true minimum. Several ideas can be
considered to mitigate the problem. We suggest that, in the case of in-
verse Abel transform methods, adding to the pseudo-Hessian matrix a
few contributions of the second derivative terms at and near the diag-
onal could perhaps help mitigating the problem at a relatively moderate
computational cost. This would however require an in-depth re-thinking
of the Levenberg-Marquardt algorithm and of pseudo-Newton methods
in general. Adopting a totally different fitting method could also be
considered. Possible candidates are the Nelder-Mead down-hill simplex
(including simulated annealing or not) [Press et al., 1992], or swarm
minimization techniques [see, e.g. Fajr and Bouroumi, 2020; Banks
et al., 2007; 2008]. It is however expected that those methods will have
a prohibitively high computational cost to offer a workable mean to treat
a large, extensive satellite dataset, at least using currently available
microprocessors. Indeed, we tested the Nelder-Mead algorithm and
found that reaching convergence can take a long time, and that it re-
quires being initialized with a very good first guess without necessarily
giving a result more reliable than the Levenberg-Marquardt method. An
elementary implementation of a swarm minimization was attempted,
but it convinced us that the computational cost will remain prohibitive

in a foreseeable future.

5.4. Application to NOMAD-UVIS observations

Application of the linear-nonlinear method to real NOMAD-UVIS
observations indicates that the method produces reasonable estimates
of the O3 density profile and dusts properties. We notice that, because
the solar flux at shorter UV wavelengths is relatively low, it can suffice
restricting the wavelength range in the low wavelength domain.
Extending somewhat the range to longer wavelengths is feasible and
helps obtaining reasonable ozone density profiles and dust properties,
but does not suffice to recover the CO2 profile. As expected, the dust
extinction parameter profiles can be retrieved even when it presents
local extrema. Recovering the CO2 density can certainly be achieved
including additional data collected in another wavelength domain, as
proposed by [Trompet et al., 2023a, 2023b], using infrared observations
near 3 μm. CO2 absorption at shorter wavelength, in the FUV domain,
may also be considered, given that the CO2 absorption cross section
reaches a local maximum near 130 nm, as shown by Yoshino et al.
[1996] and Parkinson et al. [2003]. This wavelength range may, how-
ever, present the difficulty of excluding the effect of the resonance
scattering of the O(3P) triplet at 130.4 nm and of the carbon multiplets at
126.1, 156.1 and 165.7 nm. Knowing the CO2 density profile may also
allow us to include the temperature dependency of the ozone absorption
cross section. It is however not expected that this further refinement
would dramatically modify the results, given the temperature range to
be accounted for and the unavoidable uncertainties of inversion
methods. A reasonable temperature dependency could nevertheless be
included in two manners. First, one may use a model output, providing a
realistic temperature profile, though not necessarily the exact one.
Second, one may obtain it from the slope of the CO2 density profile as
was done by Trompet et al. [Trompet et al., 2023a, 2023b]. This profile
may be limited in altitude when spectral saturation occurs at large op-
tical depth [Trompet et al., 2023b], which may require combining the
observation-derived temperature with model outputs.

Adapting the regularization level (with parameter c in Eq. (42))
could be considered critical. Trompet et al. [Trompet et al., 2023a]
examined several strategies to adapt regularization, which they apply to
another inversion method. They found that a total error minimization
technique [Xu et al., 2016] appears the most efficient technique to be
used in their inversion technique. Morozov’s discrepancy principle may
also be considered [Morozov, 1966; Vogel, 2002]. Regularization
methods generally rely on eigenvalues filtering, such as the Tickhonov-
Philips method, with regularization level selection that either depends
on some knowledge of the problem solution and noise characteristics, or
on so-called a posteriori estimate such as the Morozov principle [Vogel,
2002]. Those methods are generally particularly suited for linear
problems, and may require several inversion attempts to pick a suitable
regularization level. Our method includes non-linear parameters, i.e. the
α parameters, and all other parameters are expressed as functions of the
α, including the regularization weighting through the trace of the linear
system that needs to be solved for each function evaluation. In a sense,
the simple method we choose still accounts for the problem character-
istics by comparing the trace of the χ2-derived matrix and the regulari-
zation matrix. The main goal here is not so much to smooth the retrieved
quantities than to protect the whole fitting procedure from nearly sin-
gular matrix inversion, which would both amplify the effects of noise
and prevent proper parameters retrieval. So the trace ratio weighting is
lowered by a multiplication by a small c parameter. We tested that
keeping this c parameter below ~10− 2–10− 3 suffices, without too much
altering the retrieved parameters. The choice made here is particularly
suited to our method, since it allows to smoothly adapt the regulariza-
tion level to the α-dependent fitting matrix, the derivative of the trace
ratio being surprisingly easy to evaluate at a moderate computational
cost. Estimating the regularization weight according to other principles
would make the derivative computation intractable. Further
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improvements may however be considered, for example, by analyzing
the eigenvalues of the χ2 minimization system at the end of the fitting
problem and restart the non-linear fitting procedure using a c value
updated according to a comparison between the largest and smallest
eigenvalues. It is however not expected this would produce a dramatic
modification of the retrieved results as c is already small and no singular
system has been encountered when the method was applied to a number
of observed profiles.

We also mention here that additional preliminary analysis has been
performed on NOMAD-UVIS data having a somewhat lower wavelength
resolution. In that case, the wavelength resolution of the extinction cross
section of ozone is degraded and reduced, averaging the value of the
high resolution cross section over each low resolution bin with a
weighting by the solar spectrum. Under a spectral resolution of 1.9 nm,
the retrieved dust properties and ozone density profiles then present
reasonable characteristics, compatible with what is expected in the
Martian atmosphere. This does however not guarantee that the retrieved
parameters are insensitive to the spectral resolution of the observation.

5.5. Spurious ozone detection

Retrieval of trace gases from occultation observations has the
recurrent weakness of being exposed to so-called spurious identifica-
tions, as was extensively discussed by Määttänen et al. [2022] and
Piccialli et al. [2023], who identified erroneous estimate of ozone den-
sity inherently due to the observation technique. They propose several
filtering methods to cope with this issue and exclude spurious ozone
detections. Our method is no exception to this problem and we identified
several cases of spurious ozone detection. It is anticipated that system-
atic analysis of a broad database will require the development of
misestimate identification techniques as well, which may be specific of
the method and used wavelength range. The reason behind spurious
ozone detection is thought to stem from the sometimes very low ozone
density of planet Mars. In that case, the least squares fitting algorithm
uses the degrees of freedom allowed by the fitting parameters aimed at
the ozone retrieval to overfit the data instead of just giving zero con-
centrations. In a sense, the problem then becomes ill-posed instead of
being ill-conditioned. From a photochemical perspective, previous
studies based on inversion techniques have indicated a relation between
ozone and water vapor, which reacts with O3 [Patel et al., 2021; Khayat
et al., 2021]. When the water vapor is more abundant in the atmosphere,
the ozone destruction rate is enhanced, which can drastically reduce the
ozone abundance. Moreover, water vapor and dusts have been found to
be interdependent [Streeter et al., 2022], so that it appears valuable
studying the aerosol, ozone and water profiles simultaneously, high-
lighting a complex photochemistry possibly dependent on retroactions
and feedbacks.

6. Conclusions

Three different methods have been introduced from a theoretical and
numerical standpoint to evaluate the inverse Abel transform of occul-
tation observations of a planetary atmosphere containing several
absorbing gas and aerosols, such as the Mars atmosphere. All methods
rely on a piecewise analytic representation of the altitude-dependent
parameters to be retrieved and their direct Abel transform along
observation line-of-sights, least-squares fitting of those parameters to
match the observed wavelength-dependent extinction scan obtained at a
set of tangent altitudes, and regularization techniques applied to cope
with the possible ill-conditioning of the inverse problem. Inclusion of
aerosol extinction assumes a power dependency with respect to wave-
length, while extinction by atmospheric gas is computed using known
extinction cross sections.

The first method proceeds in two steps: wavelength-by-wavelength
least-squares based inversion of the observed transmittance and total
optical thickness of the atmosphere followed by least squares

determination of the fitting parameters at each fitting altitude. It is
tested that this method allows the retrieval of the atmosphere properties
at little computational cost, even when a realistic noise is included in the
tests. It is however argued that the two-steps procedure does not
necessarily account for the possible covariance between the fitted pa-
rameters, especially under noise contamination, and that, in principle, it
is preferable determining all the fitting parameters at once in a single
leas-squares fitting procedure. The main advantage of the method re-
mains its small computational cost as the non-linearity of the fitting
problem only appears in the second fitting step, where only one non-
linear parameter appears.

The second method uses a Levenberg-Marquardt fitting algorithm
assuming all the parameters leading to a linear variation of the optical
thickness can be expressed as functions of the parameters with respect to
which the extinction optical thickness varies non-linearly. The linear
parameters are the gas local concentrations and the aerosols local
extinction coefficients at a reference wavelength of interest, while the
non-linear parameters are the local power coefficients governing the
wavelength dependance of the aerosols extinction, i.e. the so-called
Angström or α parameter. The gas concentration and dust extinction
parameter at reference wavelength are represented as piecewise linear
functions of the radial distance, while the non-linear α parameter profile
is represented using a piecewise linear function of the logarithm of the
radial distance, which can be used advantageously in numerical evalu-
ation of the line-of-sight integrated optical thickness of the dusts, and
even reduce to analytic expressions using hypergeometric 2F1 functions.
It is found that this method reduces the computational cost of the fitting
by reducing the number of dimensions of the parameter space spanned
by the fitting algorithm in its search for an optimum. It also allows for an
estimate of the uncertainties affecting all the relevant physical param-
eters, without risk of misaccounting for covariances since all parameters
are determined at once using all the observations simultaneously. Our
tests indicate that this combined linear-nonlinear method can retrieve
the needed fitting parameters (including the linear parameters) even
when a noise contamination is accounted for. We also verified using a
boot strapping test that the error retrieved by our method matches the
dispersion of the results of the boot strap sampling. We note that the
Levenberg-Marquardt algorithm evolves into a pseudo-Newton method
near the determined optimum, which uses a pseudo-Hessian matrix, so
that the algorithm can stop at a saddle point when the inversion problem
is very weakly dependent on some of its parameters. Those less relevant
parameters may then be poorly retrieved by any inversion algorithm.

The third method presented here uses a piecewise exponential
approximation for the gas species, and uses a fully non-linear fitting
method to perform the inversion. It is found that this method is
computationally very expensive, with only marginal improvement
compared with the second method. We note that this method requires
initialization at a very good first guess to have the fitting algorithm
reach convergence.

Preliminary tests have been conducted on observations from the
NOMAD-UVIS solar occultation UV channel. It is found that the aerosol
properties and O3 density profiles can be retrieved using the second,
linear-nonlinear method, with a very good accuracy. However, in this
wavelength range, extinction depends too weakly on the CO2 density
profile to allow reliably retrieving it.
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Määttänen, A., Litowski, C., Montmessin, F., Maltagliati, L., Reberac, A., Joly, L.,
Bertaux, J.-L., 2013. A complete climatology of the aerosol vertical distribution on
Mars from Mex/SPICAM UV solar occultations. Icarus 223, 892. https://doi.org/
10.1016/j.icarus.2012.12.001.
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