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Integrated satellite observations unravel
the relationshipbetweenurbanizationand
anthropogenic non-methane volatile
organic compound emissions globally
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As urban areas expand globally, human activities are leading to a sustained increase in non-methane
volatile organic compound (NMVOC) emissions, escalating both environmental and health-related
concerns. Given their diverse origins, estimating anthropogenic NMVOC emissions levels from global
urban areas remains challenging. Here, we integrate TROPOspheric Monitoring Instrument
(TROPOMI) formaldehyde (HCHO) column data, Visible Infrared Imaging Radiometer Suite (VIIRS)
nighttime light (NTL) radiance data, and the Emission Database for Global Atmospheric Research
(EDGAR) to develop a method for estimating global anthropogenic NMVOC emissions. Furthermore,
we construct a linear model to analyze the relationship between urbanization and anthropogenic
NMVOC emissions. Our research reveals that meticulously filtered TROPOMI HCHO columns have a
high Pearson correlation coefficient (r = 0.91) with anthropogenic NMVOC emissions, indicating its
reliability as an indicator reflecting the levels of anthropogenic NMVOC emissions. We establish linear
models at various scales, including global, continental, and national, linking HCHO columns (as
indicators of anthropogenic NMVOC emissions) and NTL radiance (as an indicator of urbanization).
The global-scale linearmodel exhibits an rof 0.81, with a slopeof 0.42 × 1015 molec. cm−2 nanoWatts−1

cm2 sr and an intercept of 9.26 × 1015 molec. cm−2. This linear model reflects a positive correlation
between urbanization and anthropogenic NMVOC emissions, also serving as a tool for estimating the
levels of anthropogenic NMVOC emissions in urban areas. This study offers valuable insights for real-
time monitoring of extensive anthropogenic NMVOC emissions.

Among the key issues exacerbated by urbanization is air pollution1,2,
such as the emission of large quantities of non-methane volatile organic
compounds (NMVOCs) from human activities3,4. From 1970 to 2012,
global anthropogenic NMVOC emissions increased from 119 Tg to
169 Tg5. NMVOCs are crucial in atmospheric chemistry, acting as
precursors to ozone6 and secondary organic aerosols7. Additionally, they
pose health risks, including respiratory ailments and elevated cancer

risks8. The emitting activities of anthropogenic NMVOC emissions
range from vehicular traffic, industrial processes, and biomass burning
to smaller scales yet ubiquitously present actions such as cooking and the
use of volatile chemical products9,10. The complexity of these sources
makes anthropogenic NMVOC emissions especially hard to monitor,
regulate, and control. Estimating the anthropogenic NMVOC emissions
in urban areas globally still poses a challenge.

1School of Environment, Harbin Institute of Technology, Harbin, China. 2School of Environmental Science and Engineering, Southern University of Science and
Technology, Shenzhen, Guangdong, China. 3Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay
Area, Shenzhen, Guangdong, China. 4Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks,
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China. 5Royal Belgian Institute for
Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Uccle, Belgium. 6School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China. 7School of
Geography and Remote Sensing, Guangzhou University, Guangzhou, Guangdong, China. e-mail: zhul3@sustech.edu.cn

npj Climate and Atmospheric Science |           (2024) 7:125 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-024-00683-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-024-00683-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-024-00683-5&domain=pdf
http://orcid.org/0000-0002-3919-3095
http://orcid.org/0000-0002-3919-3095
http://orcid.org/0000-0002-3919-3095
http://orcid.org/0000-0002-3919-3095
http://orcid.org/0000-0002-3919-3095
http://orcid.org/0000-0003-1335-8477
http://orcid.org/0000-0003-1335-8477
http://orcid.org/0000-0003-1335-8477
http://orcid.org/0000-0003-1335-8477
http://orcid.org/0000-0003-1335-8477
http://orcid.org/0000-0002-9063-3260
http://orcid.org/0000-0002-9063-3260
http://orcid.org/0000-0002-9063-3260
http://orcid.org/0000-0002-9063-3260
http://orcid.org/0000-0002-9063-3260
http://orcid.org/0000-0002-4099-8958
http://orcid.org/0000-0002-4099-8958
http://orcid.org/0000-0002-4099-8958
http://orcid.org/0000-0002-4099-8958
http://orcid.org/0000-0002-4099-8958
http://orcid.org/0000-0002-8556-7326
http://orcid.org/0000-0002-8556-7326
http://orcid.org/0000-0002-8556-7326
http://orcid.org/0000-0002-8556-7326
http://orcid.org/0000-0002-8556-7326
mailto:zhul3@sustech.edu.cn


Recent studies underscore the significant potential of satellites in
offering an expansive geographical and temporal perspective for NMVOC
emissions monitoring3,11–14. Formaldehyde (HCHO), identified as an
intermediary compound in the atmospheric oxidation of various
NMVOCs15, positions satellite HCHO columns as effective indicators for
terrestrial NMVOC emissions16,17. Satellites, such as the Global Ozone
Monitoring Experiment18 (GOME), the Scanning Imaging Absorption
Spectrometer for Atmospheric Cartography19 (SCIAMACHY), the Ozone
Monitoring Instrument20 (OMI), and the TROPOspheric Monitoring
Instrument21 (TROPOMI), play pivotal roles in retrievingHCHO columns.
TROPOMI, a satellite payload of the European Space Agency’s (ESA) S-5P
mission, delivers daily global information on trace gases and aerosol con-
centrations at a resolution of 5–7 km crucial for air quality, climate forcing,
and global environmental changes. Specifically, TROPOMI delivers high
signal-to-noise ratio data on HCHO columns with superior spatial
resolution22,23, which is pivotal for more precise NMVOC emissions mon-
itoring. Integrating Visible Infrared Imaging Radiometer Suite24 (VIIRS)
nighttime light (NTL) radiance data25, which are indicative of urbanization,
enhances our comprehension of the nexus between urbanization and
anthropogenic NMVOC emissions.

Urban areas stand as focal points driving environmental changes from
local to global scales26–28. The interplay between urbanization and ecological
degradation, such as atmosphericpollution, has emergedas a critical topic in
urban sustainable development29. Different air pollutants and their pre-
cursors exhibit varied responses to urbanization30–32. For instance, NO2

emissions displays an invertedU-shapedpattern in relation to urbanization,
as represented by per capita income33, while PM2.5 shows a linear trendwith
respect to time34. Globally, the relationship between anthropogenic
NMVOC emissions and urbanization remains ambiguous35, due largely to
uncertainties in estimating the anthropogenic NMVOC emissions in urban
areas36–38. While some studies have expanded our grasp of biogenic
NMVOC emissions through satellite HCHO columns15,39,40, current scho-
larly work has yet to adequately meld global HCHO columns with
anthropogenic NMVOC emissions in urban areas. Global NMVOC emis-
sions predominantly originate from plants16,41–43, making the precise iden-
tification of anthropogenic sources from satellites a challenge.

Here, we utilize data from TROPOMI HCHO columns, VIIRS NTL
radiance, the Emission Database for Global Atmospheric Research
(EDGAR)44, and the Global Earth Observing System Chemistry (GEOS-
Chem)45 to monitor the global levels of anthropogenic NMVOC emissions
and the impact of urbanization on these emissions. We develop a satellite-
based technical approach to estimate the levels of anthropogenic NMVOC
emissions; furthermore, we establish linear models relating anthropogenic
NMVOC emissions to urbanization from a national to a global scale and
conduct sensitivity experiments. Our aim is to provide references for global
air quality assessments and promote sustainable development of the
environment.

Results and discussion
Global HCHO columns, HCHOemission rates, and NTL radiance
Figure 1 shows the global HCHO columns from TROPOMI, HCHO
emission rates based on the EDGAR inventory, and NTL radiance from
VIIRS. Our research primarily focuses on urban areas located in the
northernhemisphere.WeuseTROPOMIHCHOcolumndata fromMay to
October in both 2019 and 2021 to ensure data quality, as satellite HCHO
columns exhibit weaker signals during the in other months (winter) in the
northern hemisphere46 (Supplementary Figure 1). The 2020 outbreak of
coronavirus disease (COVID-19) significantly impacted the global econ-
omy, leading tomarkedvariations in theHCHOcolumns11,47. As a result, we
exclude the 2020 data. TROPOMI Level 2 column pixels are filtered based
on cloud fraction (< 30%), solar zenith angle (<60°), and quality assurance
values (> 0.5).We then resample all eligible level-2pixels ontoa0.05° × 0.05°
(~5 × 5 km2) grid for the periods mentioned, built on our previous over-
sampling approach36. The TROPOMI HCHO columns (Fig. 1a) provide a
top-down proxy of anthropogenic NMVOC emissions.

Using the EDGAR inventory, we estimated the HCHO emission rates
(Fig. 1b), both primary and secondary, based on five highly reactive volatile
organic compounds (VOCs) with atmospheric lifetimes of less than 3 hours
(Supplementary Table 1), employing themethodology proposed by Palmer
et al. 17,42. When not constrained by real-time constraints, the HCHO
emission rates estimated from the EDGAR inventory reflect the more
tangible characteristics of anthropogenic NMVOC emissions from a
bottom-up perspective.

Here, we employ VIIRS NTL radiance data as an indicator of urba-
nization levels (Fig. 1c). NTL radiance data are collected through remote
sensing and capture the amount of artificial lighting during nighttime. One
common application of nightlight data is to explore urbanization, for
instance, by mapping urban areas48–51 and estimating economic
parameters52,53. We synthesize the 2019VIIRS NTLmonthly radiation data
based on the Google Earth Engine54,55 platform with a previously used
median composite method35,56 that can remove some interference from
wildfires and ice.

Globally, evident relationship exists among HCHO columns, HCHO
emission rates, and NTL radiance. Developed regions and major urban
centers typically exhibit elevated nighttime radiance, reflecting heightened
human activities and urban dynamism, often corresponding to increased
NMVOCanthropogenic emissions.However, this relationship varies across
geographic regions. In Asia, large regions such as eastern China and
northern India, where nighttime radiance has significantly increased, also
demonstrate high HCHO columns and HCHO emission rates, under-
scoring their rapid urbanization. In contrast, Africa and South America
primarily feature natural sources of NMVOC emissions57, making
anthropogenic emissions challenging to discern based on HCHO columns.

Furthermore, Supplementary Figure 2 shows the variations at the city
scale inHCHOcolumns,HCHOemission rates, andNTL radiance forParis
(Europe), NewYork (NorthAmerica), andTokyo (Asia). The selected cities
are developed metropolises with the highest per capita GDP58 in their
respective continents. The normalized latitudinally averaged results (Sup-
plementary Figure 2j–l) present a comprehensive comparison of these three
cities. The HCHO columns, HCHO emission rates, and NTL radiance in
Paris show a relatively consistent pattern of change (Supplementary Figure
2j), whereas New York and Tokyo exhibit lower consistency than Paris.
Globally, using HCHO columns as indicators of anthropogenic NMVOC
emissions presents certain challenges, even in developed urban areas, due to
the need to consider the effects of factors such as NOx and biological
NMVOC emissions.

Through spatial sampling and filtering, we have identified urban sites
globally dominated by anthropogenic NMVOC emissions. Using NTL
radiance with intervals of 0.1 log (nanoWatts cm-2 sr-1), we perform a
linear correlation analysis. Supplementary Figure 3a shows the relationship
between HCHO columns and HCHO emission rates for the selected
months (May to October). It is observed that higher levels of urbanization
correlate with higher anthropogenic NMVOC emissions, as evidenced by
the concurrent increase in HCHO columns and HCHO emission rates.
Moreover, HCHO columns and HCHO emission rates exhibit a high
positive correlation, with a Pearson correlation coefficient (r) of 0.91. Sup-
plementary Figure 3b presents the relationship between HCHO columns
and HCHO emission rates for other months, showing a lower r, which
indicates aweaker capability to indicate anthropogenicNMVOCemissions.

Global anthropogenic NMVOC emissions and urbanization
Figure 2 shows the linear models between TROPOMI HCHO columns
(indicating anthropogenic NMVOC emissions) and VIIRS NTL radiance
(indicating urbanization) for the entire globe and four continents: Asia,
Africa, Europe, andNorthAmerica. These representations are derived from
linearmodels applied to selectedurban sites. Considering the high skewness
in NTL radiance (skewness = 3.31), the linear models are conducted in
logarithmic space.VIIRSNTL radiance values are categorized into binswith
a width of 0.1 log (nanoWatts cm−2 sr−1). Mean values for VIIRS NTL
radiance and TROPOMI HCHO columns in each bin are calculated and
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then subjected to linear fitting. The global-scale linear model (Fig. 2a)
exhibits an rof 0.81,with a slopeof 0.42 × 1015molec. cm−2 nanoWatts−1 cm2

sr and an intercept of 9.26 × 1015 molec. cm−2. The results reveal a significant
positive correlation (p value ranging from 0 to 0.03), with r ranging from
0.60 to 0.93, across the four continents. We obtained the uncertainty of the
models based on the 1000MonteCarlo analysis (Supplementary Fig. 4). The
results show the distribution of slopes and intercepts, which implies the
stability of the method used for the linear model.

A particularly insightful metric is the intercept, which reflects the
background HCHO columns in urban areas, primarily derived from the
oxidation of methane and long-lived VOCs. Through spatial sampling and
filtering, NMVOC emissions at urban sites globally are mainly from
anthropogenic sources, although there is also an influence from biological
emissions. Urban sites in Asia record the highest intercept, possibly indi-
cating high emissions of methane and long-lived VOCs.

The high r and slope suggest that urbanization more strongly drives
anthropogenic NMVOC emissions, possibly due to regional differences in
industrial activities and energy use patterns. Figure 3a illustrates the pro-
portion of sector emission contributions for urban sites on the four

continents, as estimated from the EDGAR inventory. Across the four
continents, industrial and transportation contributions to anthropogenic
NMVOC emissions exceed 75%, with other sectors contributing a smaller
proportion of anthropogenic NMVOC emissions. Supplementary Table 2
shows the proportion of species emission contributions for urban sites on
the four continents, as estimated from the EDGAR inventory. For Asia,
Europe, and North America, ethene and propene dominate urban
anthropogenic NMVOC emissions, accounting for more than 60%. In
contrast, primary formaldehyde is the predominant component in Africa,
constituting 63% of anthropogenic NMVOC emissions. Generally, the
structure of emission proportions across continents appears similar, sug-
gesting that industrial and transportation NMVOC emissions likely drive
the linear model.

On the one hand, as the VIIRS NTL radiance values for urban sites
increase, the five anthropogenic NMVOC emissions also rise (Supple-
mentary Figure 5). On the other hand, the structure (or proportionate
contributions) of anthropogenic NMVOC emissions across various sectors
changes (Fig. 3b). The VIIRS NTL radiance values are still categorized into
0.1 log (nanoWatts cm−2 sr−1) bins, with the average percentage

Fig. 1 | Global TROPOMI HCHO columns, esti-
mated HCHO emission rates with EDGAR, and
VIIRS NTL radiance. a Shows the TROPOMI
HCHO columns forMay through October 2019 and
2021, resampled to a grid resolution of 0.05° × 0.05°
(~ 5 × 5 km2) grid resolution. Panel (b) shows
HCHO emission rates in 2012 at a resolution of
0.1° × 0.1° (~10 × 10 km2) estimated from anthro-
pogenic NMVOC emissions of five species (ethene,
propene, isoprene, monoterpenes, and primary
formaldehyde) from EDGAR using the methodol-
ogy proposed by Palmer et al. 42. Panel (c) shows
VIIRS annual NTL radiance in 2019 at a resolution
of 0.05° × 0.05° (~ 5 × 5 km2), computed based on
the median synthesis method provided by the
Google Earth Engine.
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contribution of each sector’s anthropogenic NMVOC emissions calculated
for each bin. The standard deviation of the percentages for each bin is then
computed to represent structural changes. From the smallest to the largest
bin, the standard deviations for the four continents vary by 10.8%, 3.3%,
14.2%, and 4.2%, respectively.

We also analyze the relationship between anthropogenic NMVOC
emissions (indicated by TROPOMI HCHO columns) and urbanization
(indicated by VIIRS NTL radiance) in the 12 major countries (defined as
those with more than 500 urban sites), as shown in Supplementary Table 4.
Overall, we find significant linear relationships in 8 of the 12 major coun-
tries, with r ranging from 0.59 to 0.95. We examine the possible driving
factors for the differences in response relationships betweenmajor countries
by the contributions of various sectors and species (SupplementaryTable 5).
For example, the correlation coefficient between anthropogenic NMVOC
emissions and urbanization in Brazil (r = 0.95) is much higher than that in
India (r = 0.59) (Supplementary Table 4). We hypothesize that this differ-
ence is caused by the contribution of emission sectors (72% vs. 56%),
including industry and ground transport. The response of NMVOC to
urbanization is more likely related to industry and ground transport
emissions rather than residential and agricultural sources. In short, this is
consistent with the comparison of some local cities (Supplementary Fig. 2)
and the global comparison result (Fig. 2 and Supplementary Table 3),
indicating that there are similar positive patterns in the responses of
anthropogenic NMVOC emissions to urbanization at the scales of cities,
countries, continents, and even globally.

Sensitivity simulations for the linear models
Factors such as NOx and biogenic NMVOC emissions can affect HCHO
columns indicativeof anthropogenicNMVOCemissions,which can further
interfere with the reliability of the linear models. One of the interference
factors in the linear models is the biogenic NMVOC emissions. Subse-
quently, using the Olson terrestrial ecoregions59, we assess the influence of
biological NMVOC emissions on those linear models. Each urban site is
marked according to its ecoregion, revealing that the five most prevalent

biomes are tropical and subtropical moist broadleaf forests, temperate
grasslands, savannas and shrublands, deserts and xeric shrublands, tem-
perate broadleaf and mixed forests, and boreal forests or taigas.

By excluding urban sites from each of the five ecoregions and re-
establishing the global-scale linear model, we compare the subsequent
changes in the r, slope, and intercept, as shown in Fig. 4a. The exclusion of
sites from the temperate broadleaf and mixed forest biomes led to a small
increase in the r of the linearmodel, indicating that these sites are influenced
to a lesser degree by biological NMVOC emissions. When excluding sites
from the other four ecoregions, the r decreases slightly, indicating that there
are no strong biologicalNMVOCemissions. Following the exclusion of sites
from the temperate broadleaf and mixed forests biome for each continent,
linear models are established and are presented in Supplementary Table 3.
Notably, the standard deviations (Fig. 3b) exhibit a Spearman rank corre-
lation of 0.9 with linearmodels’ r and 0.8 with the slope. The variation in the
structure of sectoral anthropogenic NMVOC emissions reflects the differ-
ences in the various linear models (both the slope and r).

Subsequently, we establish relationships between EDGAR HCHO
emission rates andNTL radiance for four continents (Supplementary Table
3). In Europe, the linear relationship between HCHO columns, HCHO
emission rates, andNTLradiationdisplays a highdegree of consistency. The
model’s r (0.91 vs. 0.90) and slope (0.58 vs. 0.59) are nearly identical. There is
also a noticeable consistency in Asia and North America. However, a sig-
nificant divergence is observed in Africa.We hypothesize that this disparity
stems frommore potent biological NMVOC emissions and varied emission
species contributions within the continent (Supplementary Table 2). We
also establish relationships between HCHO emission rates and NTL radi-
ance for the 12major countries (Supplementary Table 4). The linear model
between HCHO columns, HCHO emission rates, and NTL radiation dis-
plays some degree of consistency. Themodel’s r in Indonesia (0.74 vs. 0.71)
and Russia (0.68 vs. 0.59) are similar. The model’s slope, in Indonesia (0.80
vs. 1.96) and Russia (0.32 vs. 0.62) have similar patterns. This suggests that
our top-down approach formonitoring anthropogenic NMVOC emissions
remains broadly reliable.

Fig. 2 | Comparison of TROPOMI HCHO column with VIIRS NTL radiance
grouped by global regions. In panel (a), a point represents the mean HCHO
columns at a specific NTL radiance bin for all urban grid cells. The blue line shows
the simple linear regression line, with a blue area enveloping the 95% confidence

interval of the mean response. Pearson correlation coefficients (r) and the linear
model equation are also inserted. Kernel density estimates for all global urban sites
are plotted in the background. Panel (b) shows the results of the linearmodels for the
four continents, including Asia, Africa, Europe, and North America.
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Another interference factor in the linear model is NOx emissions. As
NOx an important participant in the photochemical reaction that oxidizes
NMVOCs to HCHO60,61, we base five sensitivity simulations with GEOS-
Chem (nested version, 0.5° × 0.625°) and TROPOMI NO2 column data to
quantify this primary interference. Figure 4b shows the differences in the
linear models established using the aforementioned methodology between
GEOS-Chem simulated HCHO columns and VIIRS NTL radiances under
varying NOx levels. It is found that when NOx levels are not zero, the
influence of NOx on the linear models (r, slope, and intercept) is generally
less than 20%, indicating the reliability of the linear model. We also use the
previously proposed method35 to quantify this dependency among 4 major
countries from four continents by TROPOMI NO2 columns. For 4 coun-
tries with a significant positive correlation (p-value = 0.01) between
anthropogenic NMVOC emissions and urbanization, we found that this
effect exists in most countries but does not alter this positive linear rela-
tionship. For example, after considering the spatial variation in NOx

emissions, the correlation coefficient of Brazil decreases by 8%, and the slope
decreases by 19% (Supplementary Figure 6). Therefore, we believe that the
linear pattern between HCHO columns and VIIRS NTL radiance is mainly
driven by the NMVOC emission gradient within each country, but the
impact of NOx emissions still needs to be noted.

Methods
TROPOMI HCHO and NO2 columns
TROPOMI is a space-based observational hyperspectral imager that mea-
sures atmospheric properties and composition21, developed jointly by the
Netherlands and European Space Agency (ESA). The instrument uses
passive remote sensing technology to retrieve atmospheric trace gas col-
umns by measuring solar radiation reflected and radiated at the top of the
atmosphere22,62. TROPOMI provides daily products of HCHO and NO2

columns with global coverage and a high spatial resolution22,63 of up to
5.0 × 3.5 km2. Vigouroux et al. 23 based on Fourier transform infrared
(FTIR) observations, validated the accuracy of the TROPOMI HCHO
column product and demonstrated its reliability. The TROPOMI HCHO64

and NO2
63,65 column products have passed an intercomparison check with

the OMI product.

Quantitative analysis and spatial sampling
To quantify the response patterns of anthropogenic NMVOC emissions to
urbanization, we eliminate the influences of wildfires and biogenic sources
on NMVOCs. Air temperature is the main driving factor for the seasonal
variations in NMVOCs from biogenic sources40,66,67. Tomitigate the impact
of biogenic sources and wildfires, we select grid cells based on two criteria.

Fig. 3 | Evaluating the structure of anthropogenic
NMVOC emissions from various sectors. Panel (a)
shows the share of emission contributions by sector
for urban sites on four continents based on EDGAR
inventory statistics. The error bar indicates the
standard deviation of 1000 simulations by the
Montecarlomethod. Panel (b) depicts the variations
(standard deviation) in the structure (contribution
percentage) of anthropogenic NMVOC emissions
from different sectors with increasing VIIRS NTL
radiance at urban sites.
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One criterion is that HCHO columns weakly depend on air temperature36.
This is done by using the exponential dependence (Supplementary Fig. 7) of
biogenic HCHO columns on air temperature from NASA Modern-Era
Retrospective Analysis for Research and Applications, Version 2 (MERRA-
2)55. We then exclude grid cells with strong biogenic influence (R2 > 0.5 and
slope > 0.05)35. The second criterion is to eliminate grid cells (carbon
monoxide emissionflux>1 × 10–6 kgm−2 year−1) affectedbywildfires based
on the Global Fire Emissions Database version 4 (GFED 4) in 201968.

We restrict our analysis to urban sites. Themain data issue with VIIRS
NTL radiance is background noise, such as the high reflection of ice and
snow69. To reduce its impact, we survey 119,670 global urban sites (NTL
radiance > 0.5 nanoWatts cm−2 sr−1) by using information about imper-
vious surfaces, population density, and industrial and commercial centers56.
The accuracy (95%) of the defined urban sites is verified by visually
inspecting 1000 randomly selected sites against corresponding high-
resolution remote sensing images in Google Earth. Some impacts of bio-
genic sources and wildfires have been further eliminated to limit the
selection of urban sites.

Sensitivity tests with the GEOS-Chemmodel
GEOS-Chem (http://www.geos-chem.org), a global three-dimensional (3-
D) model of tropospheric chemistry, has been previously used to simulate
HCHO under various NOx conditions

42,67. To explore the impact of NOx

emissions on HCHO columns in major countries, we perform five simu-
lations using the nested version (0.5° × 0.625°) of the GEOS-Chem model
(version 12.9.3) globally, driven by theMERRA-270 meteorological fields. In
the control run, we use anthropogenic emissions from the EDGAR inven-
tory, biogenic VOC emissions from the MEGAN v2.171, and open fire
emissions from the fourth-generation global fire emissions database

(GFED4). In the sensitivity runs, we reduce anthropogenic NOx emissions
inEDGARby25%, 50%, 75%, and100%, andkeepother emissions the same
as in the control run. All runs are for July 2019, with a spinning-up time of
1 month.

We use TROPOMI tropospheric NO2 data
65 along with GEOS-Chem

results to quantify the impact ofNOx emissions on the spatial distribution of
HCHOcolumnswithin a certain country.Wefilter, regrid, and sampleNO2

TROPOMI pixels following the same methods as HCHO. Second, we
compute the relative change in the tropospheric NO2 columns at grid cell i,
ΔNO2(i), from the background, defined as the minimum NO2 columns in
that country. As tropospheric NO2 columns andNOx emissions are linearly
related, such a relative change in tropospheric NO2 columns, ΔNO2(i), can
be roughly regarded as the relative change inNOx emissions,ΔNOx(i), from
a baseline emission of that country. Third, we build a 4-segmented function
at grid cell i, δ(ΔNOx(i), i), to describe the relative change in the HCHO
columns, ΔHCHO(i), in response to the reduction in NOx emissions,
ΔNOx(i), based on localized results from GEOS-Chem sensitivity simula-
tions, which are run with 25%, 50%, 75%, and 100% reductions in NOx

emissions (Supplementary Fig. 8). Finally, we substitute TROPOMI-based
ΔNO2(i) to quantify the impact of spatial variations of NOx emissions on
HCHO columns at each grid cell i by interpolating δ(ΔNOx(i), i) between
the two nearest reductions.

Data availability
The TROPOMI HCHO, NO2, and MERRA-2 products used in this study
were downloaded from the NASA Goddard Earth Sciences Data and
Information Services Center (https://disc.gsfc.nasa.gov/datasets/S5P_L2__
HCHO___1/summary?keywords=TROPOMI%20HCHO, https://disc.
gsfc.nasa.gov/datasets/S5P_L2__NO2____HiR_1/summary?keywords=

Fig. 4 | Sensitivity simulations for the linear model. Panel (a) illustrates the
comparison of the linear model (r, slope, and intercept) before and after excluding
urban site data from five terrestrial ecoregions. Panel (b) shows the differences

between the linear models established from GEOS-Chem simulated HCHO col-
umns andVIIRSNTL radiance at differentNOx levels, relative towhen theNOx level
is at 100%.
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NO2, and https://disc.gsfc.nasa.gov/datasets/M2T1NXSLV_5.12.4/
summary?keywords=MERRA-2). The VIIRS night light data are from
NOAA National Centers for Environmental Information (NCEI) (https://
ngdc.noaa.gov/eog/viirs/download_ut_mos.html). The EDGAR data are
from the European Union Joint Research Centre (https://edgar.jrc.ec.
europa.eu/dataset_htap_v3).

Code availability
The code used to oversample satellite data on: https://zenodo.org/record/
6843869#.YtJMLXZByUk.
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