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Abstract. We present an algorithm for retrieving tropo-

spheric nitrogen dioxide (NO2) vertical column densities

(VCDs) from ground-based zenith–sky (ZS) measurements

of scattered sunlight. The method is based on a four-step ap-

proach consisting of (1) the differential optical absorption

spectroscopy (DOAS) analysis of ZS radiance spectra us-

ing a fixed reference spectrum corresponding to low NO2

absorption, (2) the determination of the residual amount in

the reference spectrum using a Langley-plot-type method,

(3) the removal of the stratospheric content from the daytime

total measured slant column based on stratospheric VCDs

measured at sunrise and sunset, and simulation of the rapid

NO2 diurnal variation, (4) the retrieval of tropospheric VCDs

by dividing the resulting tropospheric slant columns by ap-

propriate air mass factors (AMFs). These steps are fully

characterized and recommendations are given for each of

them. The retrieval algorithm is applied on a ZS data set

acquired with a multi-axis (MAX-) DOAS instrument dur-

ing the Cabauw (51.97◦ N, 4.93◦ E, sea level) Intercompar-

ison campaign for Nitrogen Dioxide measuring Instruments

(CINDI) held from 10 June to 21 July 2009 in the Nether-

lands. A median value of 7.9× 1015 molec cm−2 is found

for the retrieved tropospheric NO2 VCDs, with maxima up

to 6.0× 1016 molec cm−2. The error budget assessment in-

dicates that the overall error σTVCD on the column values

is less than 28 %. In the case of low tropospheric contribu-

tion, σTVCD is estimated to be around 39 % and is domi-

nated by uncertainties in the determination of the residual

amount in the reference spectrum. For strong tropospheric

pollution events, σTVCD drops to approximately 22 % with

the largest uncertainties on the determination of the strato-

spheric NO2 abundance and tropospheric AMFs. The tro-

pospheric VCD amounts derived from ZS observations are

compared to VCDs retrieved from off-axis and direct-sun

measurements of the same MAX-DOAS instrument as well

as to data from a co-located Système d’Analyse par Obser-

vations Zénithales (SAOZ) spectrometer. The retrieved tro-

pospheric VCDs are in good agreement with the different

data sets with correlation coefficients and slopes close to or

larger than 0.9. The potential of the presented ZS retrieval al-

gorithm is further demonstrated by its successful application

on a 2-year data set, acquired at the NDACC (Network for

the Detection of Atmospheric Composition Change) station

Observatoire de Haute Provence (OHP; Southern France).

1 Introduction

Nitrogen dioxide (NO2) is an atmospheric trace gas that

plays a major role in atmospheric chemistry (Crutzen, 1979).

In the troposphere, it is a key precursor in the formation of

ozone (Crutzen, 1970) and aerosols (Chan et al., 2010), and

can contribute locally to radiative forcing (Solomon et al.,

1999), through which it indirectly affects the climate sys-

tem. As tropospheric NO2 abundances mostly coincide with

a range of other pollutants it can be seen as a proxy for air

pollution in general. According to a recent study on air pol-

lution published by the World Health Organization (WHO,

2013), NO2 can have a direct impact on human health, caus-

ing inflammation, airway hyperresponsiveness and lung cell

changes in the short term and respiratory and cardiovascu-

lar mortality in the long term. Main sources of tropospheric
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NO2 can be of anthropogenic origin (e.g. industrial burning

processes and fossil fuel combustion) and natural origin (e.g.

lightning and soil emissions). Tropospheric NO2 concentra-

tions can be highly variable in time and space in polluted

regions. For the reasons stated, the long-term and accurate

monitoring of this trace gas is of great relevance.

Here, we present a retrieval algorithm developed at BIRA-

IASB (Belgian Institute for Space Aeronomy) for deriving

tropospheric NO2 vertical column densities (VCDs) from

ground-based (GB) zenith–sky (ZS) observations of scat-

tered sunlight by application of the differential optical ab-

sorption spectroscopy (DOAS) technique. DOAS is a well-

established remote sensing technique that is able to quan-

tify the abundance of trace gases like NO2 in the atmo-

sphere, based on their unique spectral signature (Platt and

Stutz, 2008). The main principles of the DOAS technique

are (1) to separate the trace gas fine-scale absorption fea-

tures from broad-band absorption due to scattering effects

(mainly Rayleigh and Mie scattering), (2) to analyse the re-

maining absorber narrow-band structures by least-squares

spectral fitting on laboratory cross-sections. The mathemati-

cal and physical fundamentals of the method are extensively

described in Platt (1994), and Platt and Stutz (2008). DOAS

instruments typically operate in the ultraviolet (UV) and vis-

ible (Vis) channels of the solar spectrum. In the case of the

GB ZS-DOAS setup, an optical head, connected to a spec-

trometer coupled to a charge-coupled device (CCD) detec-

tor, points permanently to the zenith. This setup exploits the

diurnal variation of the solar zenith angle (SZA).

Many studies can be found in the literature discussing

the application of the DOAS method for determination of

NO2 column abundances in the atmosphere based on obser-

vations from ground-based, airborne and spaceborne plat-

forms. Without the intention to be complete, an overview

of some relevant studies is provided here. The pioneering

works of Brewer et al. (1973) and Noxon (1975) report on

observations of NO2 concentrations in the atmosphere based

on GB ZS measurements. For more than 3 decades, these

measurements have been commonly performed to monitor

trace gases related to the ozone depletion in the stratosphere,

such as NO2 (e.g. Solomon et al., 1987; McKenzie et al.,

1991, Goutail et al., 1994; Hendrick et al., 2004; Denis et

al., 2005). More recently, GB Multi-Axis DOAS (MAX-

DOAS) has proven to be a suitable and reliable approach

to retrieve integrated column amounts of tropospheric trace

gases as well as information on their vertical distribution

(e.g. Hönninger et al., 2004; Wittrock et al., 2004; Frieß et

al., 2006; Clémer et al., 2010; Vlemmix et al., 2011; Wag-

ner et al., 2011; Hendrick et al., 2014). In addition to ZS

observations, the GB MAX-DOAS setup measures scattered

sunlight from multiple viewing angles towards the horizon

(the so-called off-axis geometry), increasing, therefore, the

sensitivity to absorbers present close to the ground, because

of the longer light paths through the lower troposphere. The

DOAS method is also applied to assess total and tropo-

spheric NO2 columns from nadir-viewing spaceborne sen-

sors like SCIAMACHY (scanning imaging absorption char-

tography), GOME (Global Ozone Monitoring Experiment),

GOME-2, and OMI (Ozone Monitoring Experiment) (see

e.g. Richter and Burrows, 2002; Beirle et al., 2010; Boersma

et al., 2011; Valks et al., 2011; Bucsela et al., 2013; Hilboll et

al., 2013). Other experiments have been published, present-

ing approaches to monitor tropospheric NO2 from car (Jo-

hansson et al., 2009; Wagner et al., 2010; Constantin et al.,

2013) and airborne platforms (Berg et al., 2012; Merlaud et

al., 2012; Popp et al., 2012).

Here we describe the different steps of a new ZS retrieval

algorithm for tropospheric NO2 columns. The limitations and

possible alternatives for this method are additionally dis-

cussed. The sensitivity of MAX-DOAS observations to the

lower troposphere is larger when compared to ZS-DOAS ob-

servations, and therefore it is generally considered as a more

suitable technique for tropospheric NO2 retrieval. However,

the major merit of the ZS-DOAS approach in comparison to

MAX-DOAS relates to the fact that a large number of histor-

ical stations, e.g. within NDACC (Network for the Detection

of Atmospheric Composition Change), are equipped with in-

struments that only perform zenith observations. For these

stations, the proposed algorithm offers possibilities for tro-

pospheric trace gas retrieval, in addition to the more com-

mon stratospheric monitoring. Furthermore, applied to his-

torical decadal time series of observations (as available at

some stations of the NDACC), the proposed algorithm would

enable to document the long-term variability of tropospheric

NO2 in addition to stratospheric NO2. On the other hand,

the independent tropospheric NO2 estimates, retrieved by

the presented ZS-DOAS algorithm, provide a way to eval-

uate MAX-DOAS retrievals at sites equipped with MAX-

DOAS instruments. So far, only a few studies have been pub-

lished focusing on the retrieval of tropospheric NO2 column

amounts solely based on GB ZS-DOAS observations. Chen

et al. (2009) presented a retrieval algorithm, applied on ZS

observations acquired in Shanghai (China). There are, how-

ever, a number of methodological differences with the ap-

proach presented here and these will be further discussed in

this paper. In Dieudonné et al. (2013), a similar method is

applied on ZS observations acquired in Paris (France). How-

ever, the retrieval strategy is discussed only very briefly as

the focus of the latter publication is on linking retrieved tro-

pospheric NO2 columns to surface concentrations.

The organization of this paper is as follows: Section 2 is

dedicated to the description of the GB instrument used for

the ZS observations, as well as the site where measurements

were conducted. Section 3 describes the four main steps of

the developed methodology for tropospheric NO2 VCD re-

trieval from GB ZS-DOAS observations. Furthermore, the

four steps of the retrieval approach are characterised in terms

of an error budget analysis. Section 4 presents the retrieval re-

sults, including a comparison with correlative MAX-DOAS,

direct sun (DS-) DOAS, and SAOZ (Système d’Analyse par
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Observations Zénithales) data. Section 5 discusses the re-

trieval approach with a focus on recommendations for appli-

cation of the method on ZS observations at other stations. In

Sect. 6 the application on observations acquired over 2 years

at the NDACC site of Observatoire de Haute Provence (OHP;

southern France) is demonstrated. The paper concludes with

a brief summary.

2 Ground-based DOAS observations

The retrieval algorithm is first tested on a data set ac-

quired from 10 June to 21 July 2009 by the BIRA-

IASB MAX-DOAS instrument, operated in the frame-

work of the international Cabauw Intercomparison campaign

for Nitrogen Dioxide measuring Instruments (CINDI). The

CINDI campaign took place at Cabauw, The Netherlands

(51.97◦ N, 4.93◦ E, sea level) at the Cabauw Experimen-

tal Site for Atmospheric Research (CESAR; http://www.

cesar-observatory.nl). It is located in a semi-rural area in the

direct proximity of the four largest cities of the Netherlands

(i.e. Amsterdam, Rotterdam, Den Haag and Utrecht). One

of the main objectives of the campaign was to intercompare

and inter-calibrate GB instruments measuring NO2 and de-

termine their performance and accuracy. A more in-depth

discussion of the CINDI campaign and results can be found

in Roscoe et al. (2010) and Piters et al. (2012).

The BIRA-IASB MAX-DOAS instrument consists of

three main parts. The optical head, mounted on a sun

tracker (INTRA manufactured by Brusag), can collect the

scattered sunlight over a wide range of elevation (0 to

90◦) and azimuth angles (0 to 360◦). Optical fibers guide

the collected skylight from the output of the optical head

to the spectrometers, the latter being placed in a thermo-

regulated container to guarantee high stability and minimise

thermal stress. The dual-channel system is composed of a

UV (ORIEL model MS260i; 1200 grooves mm−1 grating)

and a visible (ORIEL model MS127; 600 grooves mm−1)

grating spectrometer covering a wavelength range of 300–

390 and 400–720 nm, respectively. The Gaussian-shaped

instrument’s slit function, which was determined using a

monochromatic emission light source (HgCd) , has a spectral

resolution of 0.4 nm full width at half maximum (FWHM)

and 0.9 nm FWHM for the UV and visible channels, re-

spectively. Both spectrometers are connected to low-noise

thermo-electrically cooled CCD detectors (Princeton Instru-

ments, model PIXIS 2KBUV with 2048× 512 pixels for

the UV channel and Princeton Instruments, model Spec-10:

100B with 1340× 100 for the visible channel). A pc unit

controls the acquisition and stores all the measured spectral

data. The data acquisition is fully automated using a software

developed at BIRA-IASB. A full description of the instru-

ment can be found in Clémer et al. (2010). The configuration

of the instrument permits measurement of scattered sunlight

from ZS and off-axis viewing angles, as well as to perform

DS observations. Each complete MAX-DOAS scan takes ap-

proximately 20 min and comprises 10 different elevation an-

gles, including ZS observations.

3 Tropospheric NO2 vertical column retrieval

algorithm

The developed methodology for tropospheric NO2 vertical

column retrieval from GB ZS-DOAS observations of scat-

tered sunlight is based on a four-step approach. An overview

of the approach is given here, while the different steps are

described in detail in the following subsections. First, the

ZS spectra are analysed by the DOAS spectral fitting (see

Sect. 3.1). The direct output of the DOAS analysis is the

differential slant column density (DSCD), which is the con-

centration of the trace gas of interest integrated along the

effective light path with respect to a fixed amount of the

same absorber in a measured reference spectrum. As many

light paths contribute in the case of scattered sunlight ob-

servations, the measured slant column is a weighted average

over all contributions. Air mass factors are calculated in or-

der to model radiative transfer in the atmosphere and to con-

vert slant columns to vertical columns (see Sect. 3.2). Ideally,

the concentration of the absorber in the background spectrum

should be zero. However, usually it contains low absorption

from the measured species itself and therefore the residual

amount in the reference spectrum (RSCD) needs to be deter-

mined accurately in order to realise the conversion from the

DSCD to the total measured slant column density (MSCD)

(see Sect. 3.3):

MSCD= DSCD+RSCD. (1)

In the next step, the stratospheric slant column density

(SSCD) is determined and removed from the total slant col-

umn in order to derive the tropospheric slant column density

(TSCD) (see Sect. 3.4):

TSCD=MSCD−SSCD. (2)

In the final step, TSCDs are converted to tropospheric ver-

tical column densities (TVCDs) by using appropriate tropo-

spheric air mass factors (TAMFs) (see Sect. 3.5):

TVCD=
TSCD

TAMF
. (3)

3.1 DOAS analysis of zenith radiance spectra

The ZS observations of scattered sunlight are analysed by

the QDOAS spectral fitting tool, developed at BIRA-IASB

(Danckaert et al., 2014). The 425–490 nm visible wavelength

region is used, as NO2 is characterised by strongly structured

absorption lines in this fitting window, enhancing the sensi-

tivity to the absorber, while on the other hand interference

with the spectral signature of other absorbers is minimised
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in this spectral region. In addition to the relevant trace gas

cross-sections (NO2, O3, H2O, O4), also a synthetic Ring

spectrum and a low-order polynomial term are included into

the non-linear least-squares fitting. They account for, respec-

tively, the Ring effect (Grainger and Ring, 1962), i.e. the

filling-in of Fraunhofer lines, and the contribution of broad-

band absorption and scattering effects (mainly Rayleigh and

Mie scattering).

The main DOAS settings used in this study as well as the

cross-sections included in the spectral fit are given in Table 1.

They have been chosen in accordance with the recommenda-

tions made by the NDACC UV-Vis Working Group for the

sake of harmonising the different data sets provided to the

NDACC database (Van Roozendael and Hendrick, 2012).

DSCDs are the direct output of the QDOAS spectral fit-

ting approach. Prior to further analysis, the NO2 DSCDs are

quality-checked based on the following: (1) their uncertainty,

expressed as standard deviation (SD), and (2) the residual

structure of the retrieval fit, expressed as root mean square er-

ror (RMS). Both measures of dispersion, which can be inter-

preted as quality flags for the measurements, are calculated

for each DSCD by the QDOAS software. An empirically de-

rived threshold based on the 95 % confidence interval is set

for both parameters to determine whether or not a measure-

ment is an outlier, e.g. due to low signal-to-noise ratio (SNR),

and needs to be rejected. On a total of 4226 DSCDs retrieved

based on ZS-DOAS observations, 128 were rejected after the

quality check.

Beside NO2 DSCDs, also the oxygen dimer (O4) DSCDs

have been retrieved. They are essential to determine the pres-

ence of aerosols and clouds, which can both affect the tro-

pospheric NO2 retrieval. O4 has a well-known and nearly

constant column and vertical distribution in the atmosphere,

mainly depending on temperature and pressure, and thus on

the altitude. This makes the oxygen dimer highly sensitive

to the variation of scattering due to aerosols and clouds,

and therefore useful to derive information on these param-

eters, as discussed in Wagner et al. (2004) and Frieß et

al. (2006). A high aerosol loading and/or tropospheric clouds

can introduce additional multiple scattering, which can sig-

nificantly enhance the light path, and subsequently the mea-

sured NO2 optical depth. This results in an overestimation

of the “true” NO2 amount. The retrieved NO2 differential

slant columns are screened for this effect according to the

following approach: the O4 diurnal variation is first mod-

elled with the atmospheric radiative transfer model (RTM)

UVspec/DISORT (Mayer and Kylling, 2005) and the AFGL

standard atmosphere, and then compared with the retrieved

O4 slant columns. The nearly constant concentration of O4

in the atmosphere results in a diurnal variation characterised

by a slow increase at higher SZAs, and therefore by a smooth

u-shaped curve in the case of a clear and non-polluted day.

An empirically derived threshold is set to determine signifi-

cant offsets from the modelled O4, indicating a high aerosol

loading and/or the presence of clouds introducing multiple

Table 1. Main DOAS analysis parameter settings for NO2 slant col-

umn spectral fit, in accordance with the NDACC UV-Vis Working

Group recommendations (Van Roozendael and Hendrick, 2012).

Parameter Settings

Fitting interval 425–490 nm

Wavelength calibration method Calibration based on reference

solar atlas Chance and

Kurucz (2010)

Cross-sections

NO2 Vandaele et al. (1998), 298 K

O3 Bogumil et al. (2003), 223 K

H2O Harder and Brault (1997)

O4 Hermans et al. (2003)

Ring effect correction method Chance and Spurr (1997)

Polynomial term Polynomial of order 5

Intensity offset correction Slope

scattering. When this threshold is exceeded, the correspond-

ing NO2 DSCD spike is identified and rejected. Without the

application of the aforementioned filter strategy, a number

of outliers could be observed when comparing the retrieved

tropospheric NO2 VCD time series with reference data. For

example for day 187 (6 July 2009), such an NO2 enhance-

ment event could be observed, as shown in Fig. 1.

3.2 Air mass factors

Multiple unknown light paths of scattered sunlight contribute

simultaneously to the measured ZS signal. To quantify an

effective light path and thus to be able to interpret the ob-

servations, radiative transfer in the atmosphere needs to be

modelled. Generally the optical path is not expressed in ab-

solute units, e.g. metres, but in terms of an air mass factor

(AMF) (Solomon et al., 1987), being the ratio of the number

of molecules per cm2 detected in an observation (SCD) and

the integrated amount of molecules per cm2 expected for a

single, vertical transect of the atmosphere (VCD):

AMF=
SCD

VCD
. (4)

AMFs are typically determined by using a radiative trans-

fer model (RTM). It simulates the radiative transfer of elec-

tromagnetic radiation through this atmosphere, based on a

priori information on the state of the atmosphere (pres-

sure, temperature, absorbers vertical profiles, aerosol load-

ing, cloud cover, and surface albedo). The AMF enhance-

ment factor calculation depends also on the geometry of ob-

servation and the position of the sun.

The retrieval approach requires the calculation of strato-

spheric and tropospheric AMFs (see Sects. 3.4 and 3.5).

Equation (4) can be reformulated for the stratosphere and tro-

posphere as follows:

SAMF=
SSCD

SVCD
(5)

Atmos. Meas. Tech., 8, 2417–2435, 2015 www.atmos-meas-tech.net/8/2417/2015/



F. Tack et al.: NO2 column retrieval from zenith–sky DOAS 2421

Figure 1. Example of a NO2 enhancement event, due to multiple

scattering, on day 187 (6 July 2009). Both (a) the NO2 DSCD and

(b) the O4 SCD diurnal cycles show a large spike at approximately

17:10 LT (red dot).

and

TAMF=
TSCD

TVCD
. (6)

3.2.1 Stratospheric AMF

Stratospheric AMFs have been calculated with the RTM

package UVspec/DISORT (Mayer and Killing, 2005). This

code has been thoroughly validated in the framework of an

intercomparison exercise between different RTMs for the in-

terpretation of GB ZS-DOAS and MAX-DOAS observations

(Hendrick et al., 2006; Wagner et al., 2007). The radiative

transfer equation (RTE) is numerically solved by the dis-

crete ordinate method in a pseudo-spherical geometry and

including multiple scattering. The wavelength used here is

457 nm, i.e. the middle of the NO2 fitting window. Since

stratospheric NO2 is characterised by a strong diurnal vari-

ation due to photochemistry, the corresponding changes of

the concentration along a given light path complicate the

calculation of AMFs, especially at twilight. To account for

this effect, the RTM is initialised with NO2 fields depend-

ing on SZA and altitude and generated by a photochemical

model. In this study, the stacked box photochemical model

PSCBOX (Errera and Fonteyn, 2001; see also Hendrick et

al., 2004) is coupled to the RTM UVspec/DISORT. PSCBOX

includes 48 variable species, 104 gas-phase and 27 photoly-

sis reactions and is initialised daily with 12:00 UT pressure,

temperature, and chemical species profiles from the three-

dimensional chemical transport model (3-D CTM) SLIM-

CAT (Chipperfield, 2006) for the dates and location of in-

terest. Pressure and temperature fields used in SLIMCAT are

taken from UKMO (UK Meteorological Office) meteorolog-

ical analyses. The output time step is 6 min. For the calcula-

tion of stratospheric AMFs, UVspec/DISORT parameters for

aerosol loading, cloud cover, and surface albedo are respec-

tively set at summer background conditions with a visibility

of 20 km, clear-sky, and 0.07. Then, AMFs are interpolated

from the calculated NO2 AMF look-up tables to the date and

time/SZA corresponding to the observations.

3.2.2 Tropospheric AMF

In contrast to the stratospheric contribution, tropospheric

NO2 concentrations can be highly variable in time and space

in polluted regions. For an optimal simulation of tropospheric

AMFs, realistic a priori profiles that take into account lo-

cal pollution events are required. Therefore daily NO2 and

aerosol profiles retrieved from the BIRA-IASB MAX-DOAS

observations performed during CINDI have been used to de-

rive appropriate tropospheric NO2 AMFs. These calculations

were done with the bePRO package based on the LIDORT

RTM (Spurr et al., 2008). This RT suite, dedicated to the re-

trieval of trace gas and aerosol vertical profiles, and AMF cal-

culation, based on the Optimal Estimation Method (Rodgers,

2000), is extensively described in Clémer et al. (2010) and

Hendrick et al. (2014). It should be noted that in this study,

polarization is not taken into account by means of a full vec-

tor RTM, such as e.g. VLIDORT (Spurr, 2006). The main

reason is that past studies (see e.g. Clémer et al., 2010;

Boersma et al., 2011; Lin et al., 2014) have demonstrated

that the light path length (and therefore the AMF, since for

AMF only light path length matters) in an optically thin at-

mosphere is weakly affected by polarization, in contrast to

total intensities which are more affected by these effects. For

instance, Clémer et al. (2010) showed that neglecting polar-

ization can give rise to a systematic error of up to 15 % for

the intensities while the impact on the slant columns is sig-

nificantly less (5 %).

www.atmos-meas-tech.net/8/2417/2015/ Atmos. Meas. Tech., 8, 2417–2435, 2015
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Tropospheric NO2 AMF look-up tables have been gener-

ated for morning and afternoon conditions based on the av-

eraging of the daily AMFs calculated for the CINDI cam-

paign period. For the aerosol and NO2 vertical profile re-

trievals, the following settings have been used: altitude grid

with 10 layers of 200 m thickness between 0 and 2 km, two

layers of 500 m between 2 and 3 km, and 1 layer between 3

and 4 km, pressure and temperature profiles from US Stan-

dard Atmosphere, and a surface albedo of 0.07, which is the

yearly mean value extracted at 440 nm for Cabauw from the

Koelemeijer et al. (2003) albedo climatology. Regarding the

a priori profiles, an exponentially decreasing profile corre-

sponding to an aerosol optical depth (AOD) of 0.05 and a

scaling height of 1 km has been chosen for the aerosol re-

trieval. Aerosol single scattering albedo and phase moments

were derived as in Clémer et al. (2010) based on co-located

AERONET sun photometer measurements. In the case of

NO2, a profile decreasing linearly from 0.3 ppb at 0 km to

0.01 ppb at 4 km was used as a priori. The a priori covariance

matrices for aerosol and NO2 were constructed as in Clémer

et al. (2010). It should be also noted that the stratospheric

NO2 content is removed from the measured DSCDs by tak-

ing the zenith measurement of each scan as reference.

3.3 Determination of the residual amount in the

reference spectrum

In the DOAS analysis, the concentration of NO2 is deter-

mined with respect to a fixed amount of the absorber in a se-

lected reference spectrum. This method is commonly applied

to remove the most prominent structures in the measured

spectra, the so-called solar Fraunhofer lines, as they blur out

the much weaker absorption structures of trace gases. Fur-

thermore, taking the ratio of measured spectra and a Fraun-

hofer reference spectrum cancels out instrumental effects

under the assumption that the characteristics of the instru-

ment remain stable over a sufficiently long period. Usually

this background spectrum contains (low) absorption from the

measured species itself. This residual amount is, however,

unknown and needs to be quantified in order to be able to

determine the total measured slant column (see Eq. 1).

It should be mentioned that the concentration of the ab-

sorber in the background spectrum would be zero if an ob-

servation outside of the Earth’s atmosphere could be used.

This would avoid the necessity to quantify RSCD. However,

as discussed in Herman et al. (2009) accurate matching of an

extraterrestrial spectrum, measured with a spaceborne instru-

ment, to the GB ZS measured spectra has proven to be hard

due to the differences between the wavelength-dependent in-

strument slit functions. Usually an appropriate observation

from the GB instrument itself serves as reference. To min-

imise the NO2 amount in the background spectrum, the ref-

erence is commonly taken on a non-polluted, clear-sky day

around local noon, when the sun is high and therefore the at-

mospheric absorption, especially in the stratosphere, is low.

For the analysis of the data set, a ZS noon spectrum was se-

lected on 21 June 2009 at 12:16 local time (SZA= 29.3◦).

To constrain and quantify the residual amount of NO2

in the reference spectrum, the statistical minimum-amount

Langley-extrapolation (MLE) method is applied, as de-

scribed in Herman et al. (2009). The MLE method is based

on the assumption that the minimum VCDs are constant or in

other words independent from the AMF during a portion of

the measurement time. The RSCD can be quantified by plot-

ting the observed DSCDs for the whole data set in function

of the associated AMFs, calculated in Sect. 3.2.1. Based on

Eqs. (1) and (4) the relation between these quantities can be

formulated as follows:

DSCD= VCD×AMF−RSCD. (7)

The MLE plot of the observed DSCDs and associated AMFs

is given in Fig. 2. To reduce the impact of uncertainties in

the calculation of the AMFs, only observations with an AMF

below 5 are taken into account in the analysis. This threshold

corresponds to an SZA of approximately 80◦. The plotted

DSCDs are binned in sets of 30 points per group, starting

from the lowest to the highest AMF. Then in each bin, the

lowest value is identified and selected. Thereafter, a linear

regression is applied on the selected minima. According to

Eq. (7), the additive inverse of the y-intercept gives an ap-

proximation for the residual amount in the reference spec-

trum. In the present case, a value of 6.2× 1015 molec cm−2

was determined based on the MLE method. It should be

noted that in Chen et al. (2009), the RSCD was determined

using a completely different strategy, due to the absence of

days without pollution. It was based on measurements, per-

formed when the ZS instrument was located in a clean area

as close as possible to the polluted site of interest (Shanghai),

in combination to co-located long-path DOAS observations.

In principle a single reference spectrum can be used for

the analysis of long-term measurements if the instrumental

properties stay stable. In case of instrumental instability or

configuration changes, a drift or/and a bias could be found

in the observations, requiring the determination of additional

RSCDs for the periods corresponding to the different instru-

mental conditions. Instrumental stability can be monitored

based on the uncertainty on the NO2 DSCDs and the RMS

on the retrieval fit, both a direct product of the DOAS analy-

sis.

Despite the limitations to quantify the NO2 RSCD, it

should be mentioned that since a single reference is used

for the analysis of the whole data set, potential errors in

the RSCD determination will affect all measurements in the

same way. Thus, these RSCD errors scarcely affect the rela-

tive variation of the retrieved tropospheric VCDs.
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Figure 2. A value of 6.2× 1015 molec cm−2 is determined for the

residual amount in the reference spectrum (RSCD) based on appli-

cation of the MLE method. The ZS noon spectrum was selected on

21 June 2009 at 12:16 LT.

3.4 Determination of stratospheric contribution to the

total NO2 column

In order to obtain tropospheric SCDs, stratospheric SCDs

(SSCDs) need to be removed from the total measured SCDs

(see Eq. 2). SSCDs are derived as follows. First, strato-

spheric VCDs (SVCDs) are retrieved both for 90◦ SZA sun-

rise and sunset. Then output from the photochemical box-

model PSCBOX is used to extrapolate both the 90◦ SZA

twilight SVCDs to daytime values. Finally the calculated

SVCDs are converted to SSCDs based on the corresponding

stratospheric AMFs.

3.4.1 Retrieval of stratospheric VCDs at sunrise and

sunset

For the retrieval of stratospheric VCDs from ZS observa-

tions at twilight, the approach recommended by the NDACC

UV-Vis Working Group is followed (Van Roozendael and

Hendrick, 2012). It is based on the assumption that in the

case of ZS observations at dawn and dusk, the effective light

path in the stratosphere is significantly longer than in the

troposphere. Therefore, the tropospheric content generally

does not contribute significantly to the total measured slant

column (MSCD). Neglecting the NO2 tropospheric content,

Eq. (5) can be rewritten as follows:

SVCD=
MSCD

SAMF
. (8)

Only the twilight observations in a limited SZA range (86–

91◦) around 90◦ SZA are taken into account. For both sunrise

and sunset, the SVCD is determined by applying a linear re-

gression on the measurements in the above SZA range and

by taking the values corresponding to 90◦ SZA. According

to Van Roozendael et al. (1994), the precision and accuracy

of the SVCD retrievals are maximised at approximately 90◦

SZA.

Despite the assumed insignificant sensitivity of twilight

observations to the troposphere, tropospheric NO2 pollution

events could still be observed in the measurements for a sig-

nificant number of days at a place like Cabauw. The strong

interference of tropospheric NO2 pollution hampers the cor-

rect retrieval of the stratospheric contribution to the total NO2

column. More precisely, it induces an overestimation of the

stratospheric content. To cope with this problem, an approach

is proposed to identify a non-polluted reference day and to

assume that the retrieved stratospheric content for this day is

representative for the whole data set, instead of a daily ob-

servation of the stratospheric NO2 amount. Various criteria

need to be taken into account to evaluate and identify such a

suitable reference day:

1. Identification of days with, in general, a low tropo-

spheric NO2 contribution in the absence of local pertur-

bations caused by tropospheric pollution events. Non-

polluted days can be differentiated based on a screening

of plots of the NO2 DSCDs or SCDs as a function of

SZA. The diurnal cycle of a “clean” day, dominated by

stratospheric absorption, is well-defined and typically

has the shape of a smooth u-shape without perturbations

(see Fig. 3.a).

2. Identification of non-overcast days with low aerosol

loading based on plots of the O4 DSCDs or SCDs.

The oxygen dimer is highly sensitive to variation in

the aerosol concentration or in the presence of clouds

as already discussed in Sect. 3.1. Days with a low

aerosol loading typically have a minimal deviation from

the modelled O4 diurnal variation, characterized by a

smooth u-shape (see Fig. 3.b).

3. Notwithstanding the fact that the DSCDs are already

quality-checked in Sect. 3.1, based on the slant error

and the RMS on the fit, a reference day should be char-

acterised by low values for both parameters.

4. Preferably a reference day should be selected near to the

middle of the data set in order to minimise the bias, due

to the stratospheric NO2 temporal variance and/or sea-

sonality, between the stratospheric NO2 content of the

reference day and the “true” stratospheric NO2 content

of the other days.

Day 174 (23 June 2009) was selected as the best reference

candidate. The corresponding SVCD values are 4.0× 1015

and 5.8× 1015 molec cm−2 for sunrise and sunset, respec-

tively (see Fig. 4). Although this day does not meet the fourth

criterion, no better candidates could be identified due to high

tropospheric contamination, high aerosol loading or clouds.
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Figure 3. NO2 and O4 slant column diurnal cycle for the non-

polluted, clear-sky reference day 174 (23 June 2009). (a) The NO2

DSCD diurnal cycle, dominated by stratospheric absorption, has a

typical u-shape with minimal tropospheric perturbations. (b) The

observed O4 SCD diurnal cycle largely follows the smooth curve,

modelled with the RTM UVspec/DISORT.

Note that the aforementioned selection criteria are solely

based on the observed spectra itself. According to correla-

tive meteorological observations and in situ measurements

(Piters et al., 2012), day 174 was also identified as a clean,

non-overcast day.

Although the temporal variance of the stratospheric NO2

content can be assumed to be small over a short time interval,

it is characterised by a relatively strong seasonality. There-

fore, the above approach can be applied for short-term data

sets like the CINDI campaign. In the case of long-term ob-

servations, especially at mid- and high-latitudes, reference

days for stratospheric NO2 correction should be preferably

selected at least every month, or better, on a weekly basis.

3.4.2 Stratospheric NO2 diurnal variation modelling

between sunrise and sunset

Stratospheric NO2 is characterised by a strong diurnal cycle

which depends not only on the scattering geometry but pre-

dominantly on the photochemistry, as discussed already in

Sect. 3.2.1. During nighttime, O3 oxidises NO to NO2 in the

absence of sunlight. At sunrise there is a strong decrease of

NO2 due to photolysis. During daytime at mid-latitude, NO2

displays a near-linear increase due to the slow photolysis of

N2O5. At sunset a rapid increase of NO2 occurs due to the

progressive absence of photolytic loss.

In this study, the photochemical model PSCBOX de-

scribed in Sect. 3.2.1 is used to calculate the rapid variation

of the NO2 concentration at twilight. PSCBOX is initialised

with output of the 3-D CTM SLIMCAT based on the date

of the selected clean reference day. Then, the simulated NO2

diurnal cycle is made consistent with the observations and

fitted on the stratospheric VCDs retrieved at twilight for the

reference day: a scaling factor is calculated by taking the ra-

tio of the retrieved and simulated stratospheric VCD at 90◦

SZA for both sunrise and sunset and it is then interpolated

for the SZA range in between. Finally, the full NO2 diur-

nal variation is warped on the retrieved stratospheric twilight

VCDs by multiplying the simulated NO2 diurnal cycle by

the varying scaling factor. Obtaining the stratospheric NO2

diurnal cycle by combining measurements and a CTM has

the advantage that the model accounts for dynamical fea-

tures in stratospheric NO2 while the retrieval does not de-

pend quantitatively on the CTM. Instead it is driven by and

in good agreement with the observations. The simulated and

measurement-adjusted NO2 VCD diurnal cycles are both il-

lustrated in Fig. 4.

In Chen et al. (2009), an assumption is made that the

typical NO2 diurnal cycle is characterized by a quasi-linear

increase and that this can be modelled by a linear inter-

polation between the retrieved stratospheric NO2 VCDs at

90◦ SZA sunrise and sunset. As illustrated in Fig. 4 by the

red dotted curve, this assumption is valid between approx-

imately 80◦ SZA sunrise and sunset. Applying a linear in-

terpolation between 90◦ SZA sunrise and sunset leads to an

overestimation of the stratospheric content by approximately

1.0× 1015 molec cm−2 with respect to the simulated diurnal

variation, adjusted with measurements at 90◦ SZA sunrise

and sunset. This point is further discussed in Sect. 3.6.

3.5 Determination of the NO2 tropospheric vertical

column

Once the daytime SVCDs have been converted into SSCDs

using Eq. (5), the retrieval of tropospheric NO2 VCDs is

straightforward (see Eqs. 2 and 3): SSCDs are removed from

MSCDs and resulting TSCDs are converted into TVCDs

using appropriate AMFs from the generated look-up tables

(TAMFs; see Sect. 3.2.2). TVCDs are retrieved for each day
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Figure 4. Representation of the retrieved stratospheric NO2 VCDs

at 90◦ SZA sunrise and sunset for reference day 174 (Sect. 3.4.1)

and fit of the NO2 diurnal cycle modelled with the photochemical

model PSCBOX.

of the data set between sunrise and sunset with usually a time

interval of approximately 20 min. For a number of days the

frequency is significantly lower because of instrumental is-

sues or the removal of observations with a large uncertainty,

as it was described in Sect. 3.1. As sensitivity to the tropo-

sphere is decreasing rapidly with larger SZAs, tropospheric

columns are derived only during daytime for SZAs below

80◦.

Despite the fact that this study focuses on retrieval of tro-

pospheric VCDs, the retrieved daytime SVCDs are also a

valuable product of the approach. It should be mentioned,

however, that the observed spectra are analysed with a NO2

cross-section at room temperature (298 K) instead of with a

cross-section at 220 K, commonly used for retrieval of strato-

spheric columns. Therefore, the retrieved SVCD product will

be systematically overestimated, as described in Vandaele et

al. (1998), due to the temperature dependency of the NO2

cross-section and the fact that the effective stratospheric NO2

temperature is not taken into account. A compensation factor

is applied in order to correct the retrieved SVCDs. This fac-

tor, given by the slope of the regression between the “warm”

and “cold” cross-sections, is of about 0.8 for the 220–298 K

temperature interval.

3.6 Error budget analysis

To assess the tropospheric NO2 VCD retrieval approach, the

main error sources related to the different steps are estimated

and discussed here. Based on Eqs. (1) and (2), Eq. (3) can be

reformulated as follows:

TVCD=
DSCD+RSCD−SSCD

TAMF
. (9)

The different contributing uncertainties are assumed to be

sufficiently uncorrelated with each other as they arise from

nearly independent steps. The combined or overall error of

the different identifiable uncertainty sources of the tropo-

spheric NO2 VCD retrieval approach can then be calculated

by using the following error propagation method:

σ 2
TVCD =

(σDSCD

TAMF

)2

+

( σRSCD

TAMF

)2

+

( σSSCD

TAMF

)2

+

(
TSCD

TAMF2
× σTAMF

)2

. (10)

Four main error sources are contributing to the overall un-

certainty on the retrieved NO2 TVCDs: (1) random errors

caused by noise in the spectral measurements and the DOAS

spectral fitting (σDSCD), (2) errors originating from the es-

timation of the NO2 SCD residual amount in the reference

spectrum (σRSCD), (3) errors related to the estimation of the

stratospheric contribution to the total NO2 column (σSSCD),

and (4) errors in the calculation of the tropospheric AMFs

(σTAMF) caused by the uncertainties due to the assumptions

made for the NO2 profile shape, aerosol effects and surface

albedo.

The statistical error on the DOAS fit (1-sigma standard de-

viation), a direct output of the DOAS analysis, represents er-

ror source (1). Representative absolute values for σDSCD at

minimum SZA around noon and high SZA at 80◦, are typi-

cally in the order of 3.4× 1014 and 5.5× 1014 molec cm−2,

respectively. As described in Sect. 3.1, the retrieved NO2

DSCDs are quality-checked for outliers and those are filtered

out, prior to further processing.

Error source (2) is the uncertainty related to the statisti-

cal minimum-amount Langley-extrapolation method utilised

for the determination of the residual amount in the refer-

ence spectrum. The RMS error on the fit is estimated to be

1.3× 1015 molec cm−2.

As described in Sect. 3.4, different steps are involved in the

determination of the stratospheric abundance, all contribut-

ing to the overall SSCD error (error source 3). The corre-

sponding error sources can be summed in quadrature to ob-

tain an estimate for σSSCD and are the following:

i. A first main error source originates from the retrieval

approach of stratospheric VCDs at 90◦ SZA at sunrise

and sunset. As the air mass, which is sampled at twi-

light, might be several hundred kilometres further away

towards the sun, the effective SZA at the location of the

air mass is lower than the 90◦ SZA at the measurement

station, used so far in the standard NDACC retrieval. To

take this effect into account, stratospheric VCDs have

been also retrieved at 87◦ SZA at sunrise and sunset and

the impact on the tropospheric VCDs has been investi-

gated. The retrieved stratospheric VCDs corresponding

to 87◦ SZA are approximately 3.7 x 1014 molec cm−2

lower than at 90◦ SZA. This causes an average increase

of the retrieved tropospheric VCDs of 5 %.
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ii. NO2 diurnal cycle by the stacked box photochemical

model and the assimilation with the retrieved strato-

spheric VCDs at sunrise and sunset. Previous sensitivity

studies taking into account uncertainties related to NOx
partitioning reaction rates, O3 and temperature profiles,

and aerosol loading pointed out that 20 % is a conserva-

tive value for the uncertainty on modelled stratospheric

NO2 VCDs and profiles (Preston et al., 1997; Bracher

et al., 2005).

iii. The third main error source is the uncertainty on the

stratospheric AMFs, which is mainly due to the choice

of the RT model settings. Several studies (e.g. Solomon

et al., 1987; Van Roozendael et al., 1994; Ionov et al.,

2008) showed that this uncertainty is of about 10 % at

90◦ SZA.

iv. The fourth error source, contributing to the overall

SSCD error, results from the selection of a fixed ref-

erence day to determine the stratospheric content and

the assumption of temporal invariance of stratospheric

NO2. Although the variation of the stratospheric NO2

content is small at mid-latitude in summer over a short

time interval, like the duration of the CINDI cam-

paign, this error is taken into account by estimating

the maximal variation between the simulations of the

NO2 diurnal cycle for all days of the acquisition period.

This uncertainty is found to be approximately of 1.8 x

1014 molec cm−2.

Errors in the calculation of the tropospheric AMFs, due to

uncertainties in the RT model parameters, are the major error

source (4). They affect the retrievals in a systematic way. In

Chen et al. (2009) and Wang et al. (2012), a thorough sen-

sitivity study is applied with varying input parameters in the

radiative transfer simulations. The influence of parameters

such as aerosol and NO2 layer height, AOD and NO2 profile,

surface albedo, etc. has been tested. Based on these sensi-

tivity studies, the uncertainty on TAMF is estimated to range

between 10 and 20 % for SZAs between 20 and 85◦. As in our

retrieval approach, daily NO2 and aerosol profiles, retrieved

from the MAX-DOAS observations, were utilised instead of

model data for the a priori profile shape, it is assumed that

σTAMF should be definitely within the estimated uncertain-

ties. This is confirmed by the estimation of the uncertainty

on the AMFs due to the variability of the NO2 vertical pro-

files retrieved during CINDI, which is found to be of 12 % on

average.

Results of the error budget analysis are summarised in

Table 2 and are visualised in Fig. 5. In Table 2, the typi-

cal relative errors are presented according to the observed

tropospheric NO2 amount: (1) low (below 33th percentile

or < 0.6× 1016 molec cm−2), (2) moderate (between 33th

and 66th percentile or 0.6 and 1.0× 1016 molec cm−2), and

(3) high (above 66th percentile or > 1.0× 1016 molec cm−2)

NO2 TVCD values. For each NO2 TVCD range, the mean

Table 2. Error budget on the retrieved tropospheric NO2

VCDs. The typical relative and absolute errors (in percent and

1015 molec cm−2 respectively) are given for low (below 33th per-

centile or < 0.6× 1016 molec cm−2), moderate (between 33th and

66th percentile or 0.6 and 1.0× 1016 molec cm−2) and high (above

66th percentile or > 1.0× 1016 molec cm−2) NO2 TVCD values,

respectively. The last column gives the typical uncertainties on all

retrieved TVCDs.

Error Low TVCD Mod TVCD High TVCD Total TVCD

source

σDSCD 14 % (0.5) 6 % (0.4) 3 % (0.5) 8 % (0.5)

σRSCD 40 % (1.3) 16 % (1.3) 9 % (1.3) 22 % (1.3)

σSSCD 20 % (0.8) 19 % (1.5) 19 % (3.1) 19 % (1.8)

σTAMF 13 % (0.2) 14 % (0.2) 15 % (0.2) 14 % (0.2)

σTVCD 38 % (1.3) 24 % (1.9) 21 % (3.5) 28 % (2.2)

relative uncertainty σ is given for both the individual main

error sources and the corresponding overall errors.

The error budget indicates that the overall uncertainty

σTVCD on the retrieved NO2 TVCDs is on average of 28 %.

Larger errors (∼ 40 %) are obtained in case of small TVCD

values. In this case, the errors are dominated by uncertain-

ties in the determination of the NO2 SCD residual amount in

the reference spectrum. For moderate and high TVCD val-

ues, the corresponding overall relative errors are of 24 %

and 21 % respectively. In these conditions, the main error

sources are the determination of the stratospheric NO2 abun-

dance and the calculation of tropospheric AMFs. Errors re-

lated to the DOAS retrieval (σDSCD) and to the determina-

tion of the residual amount (σRSCD) seem to drop in case

of larger NO2 TVCDs, while errors originating from the de-

termination of the stratospheric NO2 abundance (σSSCD) do

not depend significantly on the TVCD values. Errors due to

the calculation of tropospheric AMFs (σTAMF), on the other

hand, slightly increase with increasing TVCDs. In Fig. 5 the

estimated overall absolute and relative errors are plotted in

function of the retrieved NO2 TVCDs. It can be seen that the

largest absolute errors are associated with the largest TVCD

values as expected. The relative errors, on the other hand,

which can be up to 100 % in case of very low tropospheric

contributions show a steep and rapid drop in case of increas-

ing TVCDs. The relative error is almost constant (∼ 22 %)

for NO2 TVCDs larger than 2.0× 1016 molec cm−2.

4 Retrieval results – correlative comparison

The tropospheric NO2 columns have been compared with

correlative data sets in order to thoroughly assess our ZS re-

trieval algorithm. To ensure comparability of data, and to re-

duce instrumental and algorithmic differences, a set of mea-

surement requirements were defined in the framework of

CINDI, which had to be performed by all instruments to

the greatest possible extent (Piters et al., 2012). The same
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Figure 5. Overall absolute and relative errors (σTVCD) on the re-

trieved NO2 TVCDs.

holds for the parameter settings for the trace gas retrieval as

well as the relevant cross-sections included in the spectral fit

(Roscoe et al., 2010). A first comparison is done with the

VCDs obtained from a SAOZ instrument, which has been

operated during the CINDI campaign in the close proximity

of the BIRA-IASB instrument. Then the retrieval results are

compared with VCDs from MAX-DOAS and DS-DOAS ob-

servations, also performed with the BIRA-IASB instrument.

4.1 ZS-DOAS SAOZ

The ZS-DOAS SAOZ instrument was developed by CNRS-

LATMOS at the end of the 1980s. Since then, about 20

SAOZ instruments have been installed at various latitudes

on the globe, with initially the measurement of stratospheric

ozone and NO2 as main objective. Instrumental set-up was

described in Pommereau and Goutail (1998) and Piters et

al. (2012) for the CINDI campaign. During the CINDI cam-

paign, a measurement was done every 2 min, resulting in a

high frequency of ZS observations. The retrieval strategy is

discussed in Dieudonné et al. (2013).

4.2 MAX-DOAS

In addition to zenith–sky observations, the BIRA-IASB

MAX-DOAS instrument measured scattered sunlight at dif-

ferent elevation angles towards the horizon, hereby increas-

ing the sensitivity to absorbers present close to the ground.

The azimuth was fixed along a west-north-westerly direction

(287◦) with an unobstructed view down to an elevation angle

of 0.5◦. Tropospheric NO2 vertical profiles and correspond-

ing VCDs have been retrieved by applying the bePRO pro-

filing tool (Clémer et al., 2010; Hendrick et al., 2014) to the

measured off-axis DSCDs. Retrieval settings are described in

Sect. 3.2.2.

4.3 DS-DOAS

The BIRA-IASB instrument is also able to perform obser-

vations of direct solar irradiance. NO2 vertical columns can

be accurately retrieved based on the DS-DOAS approach as

the light path through the atmosphere, and subsequently the

AMF, is straightforward to model. The determination of the

AMF does not require complex radiative transfer calcula-

tions, but can be geometrically derived as the secant of the

SZA. This significantly reduces uncertainties in the conver-

sion from slant to vertical columns. The stratospheric con-

tribution, determined as described in Sect. 3.4, is subtracted

from the total NO2 columns in order to obtain tropospheric

VCDs. A major drawback of the DS observation is the de-

pendency on clear-sky conditions. As cloud cover was sub-

stantial during the CINDI campaign, the acquired DS-DOAS

data set is relatively scarce. The fundamentals of DS-DOAS

are extensively discussed in Brewer et al. (1973), Cede et

al. (2006), and Herman et al. (2009).

4.4 Discussion of the correlative comparison

The comparisons between ZS-DOAS and SAOZ, ZS-DOAS

and MAX-DOAS, and ZS-DOAS and DS-DOAS are shown

in Fig. 6. A complete scan with the BIRA-IASB instrument,

consisting of 10 off-axis measurements at different elevation

angles including zenith takes approximately 20 min of mea-

surement time. The frequency of ZS measurements is there-

fore much lower than in the case of the SAOZ, which is an

instrument dedicated to perform only ZS observations (ap-

proximately one measurement every 2 min). To reduce the

effect of temporal variability in the tropospheric signals in

combination with different measurement sampling, and in

order to intercompare the different data sets in a meaning-

ful way, the retrievals are averaged in 30 min bins. An overall

good agreement can be observed between ZS-DOAS, SAOZ,

MAX-DOAS and DS-DOAS during the CINDI campaign,

demonstrating the robustness and reliability of the presented

approach.

Figure 7 shows the scatter plot and linear regression anal-

ysis of the binned and averaged NO2 TVCDs, retrieved for

the whole time series from (a) ZS-DOAS vs. SAOZ, and (b)

ZS-DOAS vs. MAX-DOAS, respectively. For both compar-

isons, a correlation coefficient higher than 0.9 can be ob-

served. The linear regression analysis shows slopes within

18 % of unity and intercepts close to zero. In case of small

NO2 TVCD retrievals, we see a positive bias for the SAOZ

with respect to ZS-DOAS retrievals, while the bias gets neg-

ative at higher TVCD values. The tropospheric NO2 retrieval

algorithms applied are different in concept, so their error

budget is different and they also feature different sensitiv-

ities to the vertical distribution of NO2. In this study the

overall uncertainty on retrieved tropospheric vertical col-

umn densities (TVCDs) has been estimated to 28 % on av-

erage for TVCDs > 5× 1015 molec cm−2 and of the order
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Figure 6. Comparisons of the tropospheric NO2 VCD time se-

ries, between (a) ZS-DOAS and SAOZ, (b) ZS-DOAS and MAX-

DOAS, and (c) ZS-DOAS and DS-DOAS. TVCDs are binned and

averaged in time slots of 30 min.

of 1× 1015 molec cm−2 for smaller TVCDs. On the other

hand, the uncertainty on MAX-DOAS NO2 retrievals has

been estimated in a recent study by Hendrick et al. (2014)

to be comprised between 12 and 30 %, a significant part of

this error being systematic in nature. Therefore the scatter

can be explained to a large extent by combined uncertainties

on the different retrieval algorithms. According to Roscoe et

al. (2010), a part of the scatter can also be attributed to the

combination of the temporal variability in the tropospheric

signals and different measurement sampling, as averaging the

retrievals in 30 min bins reduces, but does not eliminate this

effect.

In Figure 8 the NO2 TVCD daily mean time series, re-

trieved from (a) ZS-DOAS and SAOZ, and (b) ZS-DOAS and

MAX-DOAS, respectively, are compared. A very good con-

sistency can be observed between the ZS-DOAS and SAOZ

NO2 TVCD retrievals, for both low and high TVCD values.

The MAX-DOAS retrievals show similar day-to-day vari-

ations with respect to the ZS-DOAS and SAOZ retrievals.

However, a positive bias of about 18 % on average can be

observed for MAX-DOAS retrievals.

The same feature can be seen in Fig. 9, showing the re-

trieved NO2 TVCD diurnal cycle of 2 subsequent days in

the data set, i.e. 3 July 2009 (day 184; see Fig. 9a) and

4 July 2009 (day 185; see Fig. 9b). For most retrievals,

MAX-DOAS data shows a positive offset while ZS-DOAS

and SAOZ retrievals are very close to each other. Differ-

ent air masses were sampled in both cases due to the dif-

ferent viewing geometries of the multi-axis and zenith–sky

approach. This can lead to increased uncertainties especially

if the horizontal distribution of NO2 is inhomogeneous and

in the presence of scattered clouds, as to be expected in a site

like Cabauw. It should also be noted that MAX-DOAS has

a higher sensitivity to NO2 present close to the ground than

the other techniques. In Fig. 9, also the DS-DOAS retrievals

are plotted. To avoid smoothing due to interpolation between

the limited number of retrievals and for a better interpretation

of the results, DS-DOAS retrievals are represented as point

data. The DS-DOAS retrievals are seen to be in good agree-

ment with the TVCDs retrieved by the other approaches.

It is clear from the observations that day-to-day tropo-

spheric NO2 concentrations can have a high variability at the

Cabauw site. For day 184 (3 July), many tropospheric NO2

pollution events can be observed. On the other hand, day 185

(4 July) is a clean day with low tropospheric NO2 values,

showing a smooth decrease in the morning and a slow build-

up starting from noon. The meteorological parameters have

shown that the NO2 concentration variability is strongly de-

pending on wind direction. On day 184, there were moder-

ate winds (4.3 m s−1) from the southwest. The regions north

of Cabauw are relatively clean, while there are strong pollu-

tion sources in the west (Rotterdam) and the south (industrial

Flanders). When the wind is blowing from the south or west,

retrievals from the Ozone Monitoring Instrument (OMI) as

well as CHIMERE simulations over Cabauw have shown

tropospheric NO2 columns that are approximately 2 times

higher than on days with winds from the north or east (Piters

et al., 2012). On day 185 there was a light breeze (2.5 m s−1)

from the northwest. On this day, the air over Cabauw was

dominated by cleaner air originating from the North Sea.

5 Discussion and recommendations

In this section, the presented retrieval approach is briefly dis-

cussed with a focus on recommendations to improve the ap-

plicability on ZS observations acquired at other GB stations.

From the error budget analysis, it can be concluded that re-

liable NO2 TVCDs can be retrieved in case of moderate and

strong polluted sites. Cabauw is a typical example of such a
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Figure 7. Scatter plot and linear regression analysis of the TVCDs retrieved for the whole time series from (a) ZS-DOAS and SAOZ, and

(b) ZS-DOAS and MAX-DOAS, respectively. TVCDs are binned and averaged in 30 min bins.

Figure 8. TVCD daily mean time series for (a) ZS-DOAS and SAOZ, and (b) ZS-DOAS and MAX-DOAS, respectively.

site as it is a semi-rural area, in the direct proximity of the

four largest cities of the Netherlands. Depending on the me-

teorological conditions, the city may therefore be subject to

substantial pollution events. In case of application of the re-

trieval approach on ZS observations performed at a station

with very low or very high tropospheric content, some rec-

ommendations are made below.

Application of chemically modified Langley plots (Lee et

al., 1994), which are frequently used for determination of the

NO2 residual amount in the reference spectrum, was mean-

ingless in the case of the Cabauw data set. Only the observa-

tions in a limited SZA range (90–80◦) with low tropospheric

sensitivity could be used, since tropospheric pollution events

can affect the straight-line fits of the Langley plot method.

Along with the low frequency of ZS observations, i.e. each

15 to 20 min, too few data points remained in the plot to be

statistically relevant. Furthermore, some tropospheric con-

tamination could still be observed, even at high SZA. Con-

stantin et al. (2013) reported similar issues with the chem-

ically modified Langley plot method, when applied on ob-

servations from a polluted site. For the selection of the SZA

interval, a trade-off was discussed between having a suffi-

ciently large set of observations while avoiding tropospheric

contamination at lower SZA. In case of low to moderate tro-

pospheric content, it is however strongly recommended to

apply both the MLE and the chemically modified Langley

plot methods in order to further constrain the determination

of the residual amount in the reference spectrum and to re-

duce the substantial uncertainties in this step.

Another important error source is the determination of the

stratospheric contribution. The assumption that the tropo-

spheric contribution is negligible in the case of ZS observa-

tions at dawn and dusk does not always count in case of sites

where frequent strong pollution events occur. Therefore, an

approach was proposed to identify a non-polluted reference

day and to assume that the retrieved stratospheric content for

this day is representative for the whole data set. It is rec-

ommended, however, to use daily observations (or to take a

weekly mean) of the stratospheric NO2 amount in the ab-

sence of frequent tropospheric pollution events in order to

reduce the uncertainties introduced by the temporal variance

and/or seasonality of the stratospheric NO2 content.
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Figure 9. TVCD diurnal variation for (a) a day with many pollution events (day 184) and (b) a non-polluted day (185), respectively. To avoid

smoothing due to interpolation between the limited number of retrievals and for a better interpretation of the results, DS-DOAS retrievals are

represented as point data here.

In Chen et al. (2009) a strategy was applied to determine

the stratospheric contribution in case of a heavy polluted

site. Due to severe tropospheric contamination at the mea-

surement site in Shanghai (China), no clean reference day

could be identified in the data set. Instead, measurements

were done at Chongming Island, which lies to the northeast

of Shanghai in the Pacific Ocean. Chongming can be consid-

ered as the area with the smallest tropospheric NO2 pollution

in the proximity of Shanghai. The SVCDs determined for a

clean day at Chongming Island were eventually used to re-

trieve the TVCDs from the observations acquired in Shang-

hai. This strategy can be, however, an additional error source,

because of the spatial and temporal variations of the strato-

spheric NO2 content. It makes also difficult its application to

any other station due to the need of these additional measure-

ments in a clean site.

6 Application at the NDACC site OHP

The potential of the presented ZS retrieval algorithm is also

demonstrated by its application on observations acquired at

the NDACC station Observatoire de Haute Provence (OHP,

43.94◦ N, 5.71◦ E, ∼ 650 m a.s.l.), where BIRA-IASB and

LATMOS operate a MAX-DOAS (UV channel only) and a

SAOZ instrument, respectively. OHP is a mostly remote site

at mid-latitude in Southern France, affected from time to time

by pollution events coming from the Marseille area (South of

OHP). Tropospheric columns are retrieved for a 2-year pe-

riod from August 2012 to July 2014.

Taken the recommendations of Sect. 5 into account,

slightly different strategies are applied in the different steps

of the retrieval approach. (1) For the determination of the

RSCD, the comparison between the chemically modified

Langley plot and the MLE method shows consistent results

when applied on observations acquired at a background sta-

tion like OHP. Both a higher frequency of ZS observations

and the lack of frequent tropospheric contamination results

in a sufficiently large and reliable data set to derive the RSCD

by linear least-squares regression in the chemically modified

Langley plot. A single noon spectrum, selected on 31 August

2013 at 11:40 LT, is used for the analysis of the whole time

series. For the RSCD, a value of 2.7× 1015 molec cm−2 is

determined. (2) Due to the absence of frequent tropospheric

pollution events at twilight, daily observations of the strato-

spheric contribution could be performed instead of retriev-

ing the stratospheric content for a number of reference days,

representative for parts of the data set. This strategy reduces

the uncertainties introduced by the temporal variance and/or

seasonality of the stratospheric NO2 content. (3) A season-

ally resolved climatology of tropospheric NO2 AMFs has

been generated based on the lower tropospheric NO2 verti-

cal profiles retrieved by applying the bePRO algorithm (see

Sect. 3.2.2) to the August 2012 to July 2014 MAX-DOAS

measurements at OHP. At this station, the MAX-DOAS in-

strument operates only in the UV at the following elevation

angles: 2, 4, 6, 8, 11, 26, and 90◦ (zenith). Regarding the

a priori NO2 profiles, exponentially decreasing profiles cor-

responding to the vertical columns determined by the geo-

metrical approximation and a scaling height of 0.5 km has

been chosen. In the case of aerosol retrievals, a single ex-

tinction profile taken from the LOWTRAN climatology and

corresponding to background conditions has been used as a

priori. The retrieval altitude grid is one layer of 150 m thick-

ness between 0.65 (altitude of the station) and 0.8 km alti-
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Figure 10. TVCD monthly mean time series at the OHP station for ZS-DOAS, SAOZ and MAX-DOAS for the period August 2012–July

2014. The error bars on the MAX-DOAS data points correspond to the 1-sigma standard deviation.

tude, 10 layers of 200 m thickness between 0.8 and 3 km,

and one layer of 1 km thickness between 3 and 4 km. NO2

and aerosol extinction profiles have been retrieved at 370

and 360 nm, respectively. In the case of AMF calculation,

the following wavelengths were selected: 370 and 460 nm.

These two sets of UV and visible AMFs have been used

for the application of the ZS approach to the MAX-DOAS

and SAOZ measurements, respectively. For the calculation of

AMFs in the visible, the aerosol profiles retrieved at 360 nm

have been converted to 460 nm using the Ångström expo-

nents derived from collocated CIMEL/AERONET sun pho-

tometer measurements (http://aeronet.gsfc.nasa.gov; see also

Wang et al., 2014. MAX-DOAS NO2 vertical columns in-

volved in the comparison with the ZS method have been de-

rived by integrating the retrieved NO2 vertical profiles.

The retrieved TVCDs have been compared again with cor-

relative data sets from SAOZ and MAX-DOAS observa-

tions and the resulting monthly mean time series are shown

in Fig. 10. At OHP, a marked seasonal cycle can be ob-

served with a maximum in winter with mean values close

to 3× 1015 molec cm−2 and a minimum in summer with

mean values around 1.7× 1015 molec cm−2. In general the

three data sets are in good agreement for both low and high

TVCDs: the correlation coefficients are respectively 0.82 and

0.88 for the comparison of ZS-DOAS with MAX-DOAS and

with SAOZ. These results further support the good reliability

of the ZS retrieval approach presented in this study.

7 Summary and conclusions

An algorithm for retrieving tropospheric NO2 VCDs from

GB ZS-DOAS measurements has been presented, with a full

characterisation of the different retrieval steps. This algo-

rithm has been developed and tested based on ZS obser-

vations from the BIRA-IASB MAX-DOAS instrument, ac-

quired during the CINDI campaign at Cabauw, The Nether-

lands. For the tropospheric VCDs, a median value of

7.9× 1015 molec cm−2 can be observed at the Cabauw site

with maxima up to 6.0× 1016 molec cm−2. The retrievals

are in good agreement when compared to TVCDs retrieved

from off-axis and DS observations, and ZS measurements

acquired by a co-located SAOZ instrument. For both com-

parisons a correlation higher than 0.9 can be observed with

slopes within 18 % of unity and intercepts close to zero. The

main error sources are characterised for the four principal

steps of the retrieval approach:

1. Uncertainties due to the DOAS analysis and noise in the

spectral measurements result in a relative error of ap-

proximately 14 and 3 % for low and high tropospheric

VCD retrievals, respectively. It should be noted that

DSCDs are quality-checked, including the removal of

outliers, and compensated for multiple scattering events

prior to the retrieval.

2. The NO2 SCD residual amount in the fixed reference

spectrum, measured on a non-polluted, clear-sky day

around local noon, is determined based on the statis-

tical minimum-amount Langley-extrapolation method.

The related uncertainty can be substantial (22 % on av-

erage and up to 40 % in case of low NO2 TVCDs). How-

ever, since a single RSCD is used for the analysis of the

whole data set, potential errors scarcely affect the rela-

tive variation of the retrieved tropospheric VCDs.

3. The stratospheric contribution to the total column is de-

termined based on a two-step approach. First, strato-

spheric VCDs are retrieved for both 90◦ SZA sunrise

and sunset for the selected reference day (23 June 2009).

Then the NO2 diurnal variation between the 90◦ SZA

twilight observations, modelled by the photochemical

box-model PSCBOX, is fitted to these observations. The
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overall error for this step is estimated to be around 19 %.

It accounts for the uncertainties due to (1) the determi-

nation of the effective SZA corresponding to the twi-

light observations, (2) the modelling of the NO2 diurnal

variation, (3) the simulation of stratospheric AMFs, and

(4) the assumption of the temporal invariance of strato-

spheric NO2 during the CINDI campaign period.

4. In the last step of the retrieval approach, tropospheric

NO2 slant columns retrieved between 80◦ SZA sunrise

and sunset are converted to vertical columns by using

appropriate tropospheric AMFs. Errors on the calcula-

tion of the tropospheric AMFs are estimated to range

between 10 and 20 %, depending on the SZA.

In general, the error budget analysis indicates that tropo-

spheric NO2 VCDs can be retrieved with the ZS approach

with an uncertainty σTVCD of less than 28 %. In case of

low tropospheric content, the relative errors are found to be

higher (i.e. in the order of 40 %) and are dominated by un-

certainties in the determination of the residual amount in the

reference spectrum. In case of strong tropospheric pollution

events, the overall error drops to approximately 22 %. So the

TVCD retrievals are generally more reliable in case of large

tropospheric contributions, as expected, and for such condi-

tions, the largest uncertainties find their origins in the deter-

mination of the stratospheric NO2 abundance (19 %) and the

calculation of tropospheric AMFs (15 %).

The present study demonstrates that ZS observations,

widely used for monitoring of the stratospheric composition

for more than 3 decades, are also suitable for the retrieval

of tropospheric NO2 column amounts, despite the lower sen-

sitivity to the troposphere when compared to MAX-DOAS

observations. In order to further demonstrate the potential of

the presented retrieval algorithm, it has been successfully ap-

plied on a 2-year data set acquired at OHP, being a back-

ground site from time to time affected by pollution events.

This offers new perspectives for the exploitation of ZS UV-

Vis observations at NDACC stations, and the applicability of

the algorithm on data from other stations as well as longer

time series will be further investigated. At present, there are

far more ZS-DOAS than MAX-DOAS GB stations at vari-

ous latitudes and much longer time series of ZS observations

are available than for MAX-DOAS, mainly due to the nov-

elty of the latter technique. This makes the ZS retrieval ap-

proach relevant for investigating the long-term evolution of

tropospheric NO2, with a feed-back of more than 2 decades

at some stations.
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