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ABSTRACT

We found several efficient nonlinear decays for Alfvén waves in the solar wind conditions. Depending on the
wavelength, the dominant decay is controlled by the nonlinearities proportional to either scalar or vector products
of wavevectors. The two-mode decays of the pump MHD Alfvén wave into co- and counter-propagating product
Alfvén and slow waves are controlled by the scalar nonlinearities at long wavelengths ρ2

i k
2
0⊥ < ω0/ωci (k0⊥ is

wavenumber perpendicular to the background magnetic field, ω0 is frequency of the pump Alfvén wave, ρi is ion
gyroradius, and ωci is ion–cyclotron frequency). The scalar decays exhibit both local and nonlocal properties and can
generate not only MHD-scale but also kinetic-scale Alfvén and slow waves, which can strongly accelerate spectral
transport. All waves in the scalar decays propagate in the same plane, hence these decays are two-dimensional. At
shorter wavelengths, ρ2

i k
2
0⊥ > ω0/ωci , three-dimensional vector decays dominate generating out-of-plane product

waves. The two-mode decays dominate from MHD up to ion scales ρik0⊥ � 0.3; at shorter scales the one-mode
vector decays become stronger and generate only Alfvén product waves. In the solar wind the two-mode decays
have high growth rates >0.1ω0 and can explain the origin of slow waves observed at kinetic scales.
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1. INTRODUCTION

Alfvén waves are permeating the solar atmosphere and solar
wind (e.g., Belcher & Davis 1971; Wang et al. 2012 and
references therein), and their evolution is to a large extent
determined by their nonlinear interactions (e.g., Hollweg 1994;
Howes et al. 2008 and references therein). In the early 1960s,
in the last century, it was realized that the finite-amplitude
Alfvén wave is made unstable by its nonlinear coupling with
another Alfvén and slow magnetoacoustic waves (Galeev &
Oraevskii 1963). Namely, the initial (pump) Alfvén wave can
nonlinearly decay into two product waves: the forward slow
waves propagating along the background magnetic field B0 ‖ z
in the same direction as the pump wave, and the reverse-
propagating Alfvén wave. In low-β plasmas (β � 1) where
β is the plasma/magnetic pressure ratio, the product Alfvén
and slow waves have the parallel wavenumbers −k0z and
2k0z, respectively, with k0z the parallel wavenumber of the
original pump Alfvén wave. Later studies have shown that the
modulation instability of Alfvén waves produces slow waves
in a broad range of parallel wavenumbers (e.g., Goldstein
1978; Hollweg 1994). These theoretical predictions have been
confirmed by numerous hybrid simulations (Nariyuki & Hada
2006; Araneda et al. 2008; Matteini et al. 2010; Verscharen et al.
2012; Nariyuki et al. 2012; Gao et al. 2013, 2014), which also
indicated ion acceleration by the nonlinearly generated slow
waves. These processes may have important implications in the
solar corona and solar wind. For example, Alfvén waves driven
by the solar photospheric motions and propagating outward
into the interplanetary space can nonlinearly generate inward
propagating Alfvén waves, initiating development of the MHD
turbulence and/or reducing cross-helicity observed in the solar
wind (Hollweg 1994).

In certain circumstances Alfvén waves can nonlinearly drive
not only slow but also fast waves, as well as cospatial com-
pressional fluctuations (McLaughlin et al. 2011; Thurgood &

McLaughlin 2013a, 2013b). This can happen in the non-uniform
solar atmosphere where the ponderomotive force can be devel-
oped by Alfvén waves due to non-zero spatial gradients of the
wave amplitudes. The related nonlinear dynamics and its con-
sequences are quite complicated, resulting in modifications of
density profiles (McLaughlin et al. 2011), partial transforma-
tion into fast waves accumulating at two-dimensional (2D) null
points (Thurgood & McLaughlin 2013a), and irreversible non-
linear generation of fast and slow magnetoacoustic waves that
can deliver and deposit wave energy in the regions not accessible
in the linear regime (Thurgood & McLaughlin 2013b).

In the recent work by Zhao et al. (2014), denoted hereafter
as Paper I, the cross-scale nonlinear interactions between
MHD-scale Alfvén waves and kinetic-scale Alfvén and slow
waves have been investigated. It was shown that the product
kinetic-scale Alfvén and slow waves can be generated by
the MHD Alfvén wave through two nonlocal decay channels:
the counter-propagating decay channel producing the forward
slow and backward Alfvén waves, and the co-propagating
decay channel producing forward slow and Alfvén waves. The
former channel corresponds to the Alfvén wave decay originally
considered by Galeev & Oraevskii (1963) in the MHD limit
ρik⊥ → 0, where ρi is the ion gyroradius and k⊥ is the
wavevector component perpendicular to B0. The latter channel
can be accessed only by taking into account kinetic effects
of finite ρik⊥. Both channels transfer the wave energy from
the large MHD scales to the small kinetic scales, similarly to
the decay channels studied before (Voitenko 1998; Voitenko
& Goossens 2005; Voitenko & De Keyser 2011; Zhao et al.
2011a, 2011b). In turn, the product kinetic-scale waves energize
plasma particles efficiently, producing non-thermal features
in the velocity distributions (Voitenko & Pierrard 2013 and
references therein).

In situ solar wind measurements exhibit Alfvénic spectra
extending from the MHD scales down to the kinetic scales
(e.g., Sahraoui et al. 2010; He et al. 2012; Podesta 2013;
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Roberts et al. 2013). If Alfvén waves are launched at large
MHD scales, their nonlinear evolution to smaller scales can
proceed through a turbulent cascade produced by local nonlinear
interactions among counter-propagating Alfvén waves (Howes
et al. 2008 and references therein), or through nonlinear decay
mechanisms (Zhao et al. 2014 and references therein). The latter
can produce a wide spectrum of nonlinearly generated Alfvén
waves after a single step. Recent simulations have already shown
such broadband distributions of nonlinearly generated Alfvén
waves (Matteini et al. 2010; Verscharen et al. 2012; Gao et al.
2013). It is therefore of great interesting to investigate the role
of nonlinear Alfvén decays in the turbulent cascades at different
scales. But to do this, one needs first to find out what decay
channel is most efficient at particular wavelength, and what are
its properties.

In the present paper we extend the approach presented in
Paper I by generalizing it to arbitrary perpendicular wavenum-
bers ρik0⊥. We show that at relatively small perpendicular
wavenumber of the (pump) Alfvén wave, ρik0⊥ � √

ω0/ωci ,
its two-mode decays into co- and counter-propagating Alfvén
and slow waves are controlled by the scalar nonlinear inter-
action, whereas the vector nonlinear interaction dominates the
decay at larger wavenumbers, ρik0⊥ 	 √

ω0/ωci . The latter
process at kinetic scales was studied by Hasegawa & Chen
(1976) and Brodin et al. (2006). Here ω0 is the pump wave fre-
quency, ωci is the ion cyclotron frequency, and the terms “scalar”
and “vector” refer to nonlinear terms proportional to the scalar
(k0⊥ · k1⊥) and vector (k0⊥ × k1⊥) products of the pump and
product wavevectors k0⊥ and k1⊥. At sufficiently short kinetic
wavelengths, ρik0⊥ ∼ 1, the one-mode Alfvénic decay into two
product Alfvén waves is strong (Erokhin et al. 1978; Volokitin
& Dubinin 1989; Voitenko 1998; Zhao et al. 2010). We also
discuss a competition between the one- and two-mode decays
at kinetic wavelengths.

The paper is organized as follows. In Sections 2–4, we
study properties of the two-mode decay. In Section 2, the
basic nonlinear equations and nonlinear dispersion relations for
the two-mode decay are derived; in Section 3, the nonlinear
generation of the non-dissipative Alfvén and slow waves is
considered; and in Section 4, the wave dissipation is accounted
for. The one-mode decay and its competition with the two-mode
decay are studied in Section 5. In Section 6, a general discussion
is provided, including the case of broadband waves. The last
section presents a summary of obtained results.

2. NONLINEAR DISPERSION EQUATIONS

A general nonlinear equation describing the nonlinear cou-
pling among the Alfvén, fast, and slow waves is derived in
Paper I in the low-frequency approximation. Let us use a lo-
cal Cartesian coordinate system for every participating wave
with three axes defined by the unit vectors êp ≡ ∇⊥ × ẑ/|∇⊥|,
êt ≡ ∇⊥/|∇⊥| and ẑ ‖ B0. The general nonlinear equation
can be reduced to two independent nonlinear equations for the
Alfvén and slow waves at k2

z /k2
⊥ � 1 and me/mi � β � 1

(see Paper I). After comparing the orders of all nonlinear terms,
we can find the dominant nonlinear effects for particular de-
cay channels. Paper I included all the algebraic details when
dealing with the nonlinear equations, and here we adopt the
same routine generalizing it to arbitrary wavelength of the initial
Alfvén wave.

There are three kinds of nonlinear terms in the coupling
equations: the scalar terms proportional to (k0⊥ ·k1⊥), the vector
terms proportional to (k0⊥ × k1⊥) · ẑ, and the nonlinear terms

independent of k0⊥ and k1⊥. In what follows we will see that the
scalar terms control the long-wavelength Alfvén decay, whereas
the vector terms control the relatively short-wavelength decay.
Quantitatively, what terms are dominant in each case depends
on the relation between the normalized wavenumber ρ2k2

0⊥ and
frequency ω0/ωci .

Let us first consider the wavenumber range ρ2k2
⊥ � ω/ωci ,

in which case the general nonlinear equation reduces to

[
∂2
t − (

1 − ρ2∂2
⊥
)
V 2

A∂2
z

]
∂⊥

BpA

B0

= −ωciVA

(
1 − ρ2∂2

⊥
)
∂z∇⊥ ·

(
nS

n0

JtA

J0

)
(1)

for the Alfvén wave and

[(
1 − ρ2∂2

⊥
)
∂2
t − V 2

T ∂2
z

] nS

n0

= −∂z

[
e

mi

(vitA × BpA) · ẑ − vitA · ∇⊥vizA

]
(2)

for the slow wave. Here −e is the electron charge, mi is the
ion mass, V 2

T = (1 + Te/Ti)V 2
T i , VT i = √

Ti/mi is the ion
thermal velocity, VA is the Alfvén speed, Ti and Te are the ion
and electron temperatures, and ρ = VT /ωci is the effective
ion gyroradius. The plasma parameter perturbations due to the
waves are nS is the number density in slow waves, BpA is
the êp-component of the Alfvén-wave magnetic field, JtA is the
êt -component of the Alfvén-wave current, vitA and vizA are the
ion velocity components in Alfvén waves, n0 is the background
number density and J0 ≡ n0eVA.

At larger wavenumbers, ρ2k2
⊥ 	 ω/ωci , the nonlinear

equations are

[
∂2
t − (

1 − ρ2∂2
⊥
)
V 2

A∂2
z

]
∂⊥

BpA

B0

= ∂z∇⊥ · (vipA · ∇⊥vipS × ẑ + vipS · ∇⊥vipA × ẑ)

− V 2
T

ωci

∂z∂
2
⊥∇⊥ ·

(
nS

n0
vipA +

nA

n0
vipS

)
(3)

for the Alfvén wave and

[(
1 − ρ2∂2

⊥
)
∂2
t − V 2

T ∂2
z

]
∂z

nS

n0

= −ωci∂
2
z

[(
vipA × BpA

B0

)
· ẑ − 1

ωci

vipA · ∇⊥vizA

]

+ ωci

(
∂2
z +

1

ω2
ci

∂2
⊥∂2

t

) (
vepA × BpA

B0

)
· ẑ (4)

for the slow wave, where vipS is the êp-component of the ion
velocity in the slow wave, and vipA and vepA are, respectively,
the ion and electron velocities along êp in the Alfvén wave.

Here we consider the plane wave representation, A =
(Ake

−iωkt+ik·r + c.c.)/2, for the pump Alfvén wave (ω0, k0),
product Alfvén wave (ω1, k1) and product slow wave (ω2, k2).
Then the wave variables in Equations (1)–(4) can be unified
using the following linear responses: vipS/VT = −iρk⊥(nS/n0)
êp, vipA/VA = −(s/K)(BpA/B0)êp, vitA/VA = JtA/J0 =
i(VAskz/ωci)(BpA/B0)êt , vizA/VA = i

√
β(ρk⊥/K2)(BpA/B0)ẑ,

vepA/VA = −sK(BpA/B0)êp, and nA/n0 = i(VAk⊥/ωcisK)
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(BpA/B0). Then from Equations (1)–(4), we obtain the follow-
ing nonlinearly coupled dispersion equations:

(
ω2

1 − V 2
Ak2

1zK
2
1

) B1p

B0
= −V 2

As1k1zk0zK
2
1

2
(êt1 · êt0)

B0p

B0

n∗
2

n0
,

(5)(
ω2

2− V 2
T k2

2z

K2
2

)
n2

n0
= V 2

As2k2zk0z

2

K0 − s1K1

K2
1 K2

2 K0
(êt1 · êt0)

B0p

B0

B∗
1p

B0

(6)
for ρ2k2

0⊥ � ω/ωci , and

(
ω2

1 − V 2
Ak2

1zK
2
1

) B1p

B0
= − iωciVA

2

s1k1z

K0

(
K2

0 K2
1 − K2

2

)
× (êt1 × êt0) · ẑ

B0p

B0

n∗
2

n0
(7)

(
ω2

2 − V 2
T k2

2z

K2
2

)
n2

n0
= − iωciVA

2

s2k2z

K2
0 K2

1 K4
2

(
K2

0 K2
1 − K2

2

)

× (K0 − s1K1) (êt1 × êt0) · ẑ
B0p

B0

B∗
1p

B0
, (8)

for ρ2k2
0⊥ 	 ω/ωci . Here s1,2 indicates the propagation di-

rection of the product waves, such that s1,2 = 1 for waves
propagating along ẑ, and s1,2 = −1 for waves propagating
against ẑ. The pump Alfvén wave is assumed propagating along
ẑ. The K functions describe dispersion properties of the waves,
K0 =

√
1 + ρ2k2

0⊥, K1 =
√

1 + ρ2k2
1⊥ and K2 =

√
1 + ρ2k2

2⊥.
If we discard the nonlinear coupling in the right-hand sides of
Equations (5)–(8), we obtain the linear dispersion relations for
Alfvén and slow waves:

ω1 = VAk1zK1, (9)

and
ω2 = VT k2z/K2. (10)

The nonlinear coupling described by the right-hand sides in
Equations (5)–(8) introduces nonlinear frequency shifts to ω1
and ω2 as well as nonlinear growth rate as shown in the Ap-
pendix. Note that we did not assume any condition for the prod-
uct wavenumbers ρ2k2

1⊥ and ρ2k2
2⊥

3. NONLINEAR GENERATION
OF NONDISSIPATIVE WAVES

To show clearly properties of the two-mode decays, we
consider first a simpler case of nondissipative product waves.
The corresponding nonlinear growth rate can be easily found
from Equations (5)–(8) and is given by

γ 2
NL

ω2
0

� − s1s2

16 (β/2)1/2

(K0 − s1K1)

K1K2K
3
0

(êt1 · êt0)2

∣∣∣∣B0p

B0

∣∣∣∣
2

(11)

at ρ2k2
0⊥ < ω0/ωci and

γ 2
NL

ω2
ci

� − s1s2

16 (β/2)1/2

1

K3
1 K3

2 K3
0

(
K2

0 K2
1 − K2

2

)2

× (K0 − s1K1) [(êt1 × êt0) · ẑ]2

∣∣∣∣B0p

B0

∣∣∣∣
2

(12)

at ρ2k2
0⊥ > ω0/ωci .

In the low-frequency low-wavenumber limit, ρ2k2
0⊥ ∼

ρ2k2
1⊥ ∼ ρ2k2

2⊥ < ω/ωci � 1, the growth rate (11) is non-zero
only for the counter-propagating product waves s1=−s2 = −1
and reduces to the MHD growth rate found by Galeev &
Oraevskii (1963). This decay is dominated by the scalar non-
linearity ∼êt1 · êt0, hence we will call it the scalar I decay.
Besides this fully MHD local decay, there is also a nonlocal
decay, ρk0⊥ � ρk1⊥ � ρk2⊥, where the MHD Alfvén wave
generates kinetic-scale Alfvén and slow waves. In this case the
scalar decay rate (11) reduces to that obtained in Paper I:

γ 2
NL

ω2
0

= − s1s2

16 (β/2)1/2

(1 − s1K1)

K2
1

(êt1 · êt0)2

∣∣∣∣B0p

B0

∣∣∣∣
2

.

Note that the scalar I decay is reduced but does not vanish in
this limit. Another decay, into co-propagating product waves
s1 = s2 = 1, is intrinsically nonlocal; we will call it the
scalar II decay.

In the wavenumber range ρ2k2
0⊥ > ω0/ωci the vector non-

linear interactions and decays dominate. Equation (12) general-
izes previous results by Hasegawa & Chen (1976) and Chen &
Zonca (2011) on the kinetic-scale two-mode decay into Alfvén
and slow product waves. From Equations (11) and (12) we
find three vector decays: the counter-propagating decay into the
backward Alfvén and forward slow waves (s1 = −s2 = −1, la-
beled as vector I decay); the co-propagating decay into forward
Alfvén and slow waves (s1 = s2 = 1, vector II decay); and the
counter-propagating decay with forward Alfvén and backward
slow waves (s1 = −s2 = 1, vector III decay). The correspond-
ing triplets of resonant waves in the (ω, kz) plane are shown in
Figure 1. Kinetic-scale product waves can also be generated by
the channel II (see Paper I). All three channels are possible for
the kinetic-scale pump Alfvén wave.

When the condition of slow nonlinear growth, γNL � ω1,2,
is violated, one needs to use the modified decay formalism
(Sagdeev & Galeev 1969), and the nonlinear growth rate is
consequently modified:

γmod =
√

3

2
(2ω2/γNL)1/3 γNL. (13)

Figures 2–4 present the nonlinear growth rates (11–13). For
the comparative discussion, the growth rates are conventionally
denoted as “the scalar growth rate γ s

NL” and “the vector growth
rate γ v

NL”, respectively. This terminology indicates what nonlin-
earity, scalar or vector, is dominant in each case. The same can
be done for the modified decay rates (13).

Figure 2 shows γ s
NL and γ v

NL for the long-wavelength pump
wave with ρik0⊥ = 10−4 in the 2D space of the wavenumber
ratio k1⊥/k0⊥ and the angle θ between k0⊥ and k1⊥. It shows
that the scalar growth rate is much (more than two orders)
larger than the vector growth rate, which is consistent with
the theoretical prediction that the scalar nonlinearities control
the Alfvén wave decay at ρ2k2

0⊥ � ω0/ωci = 0.01. There
are two decay channels for such waves, channels I and II. The
former decay can excite the waves in the wide wavenumber
range k1⊥/k0⊥ ∼ 10−4 to 104, which means both local and
nonlocal spectral transfer can be produced by this decay. On
the contrary, the latter channel is intrinsically nonlocal and can
generate only short-wavelength waves with k1⊥/k0⊥ 	 1.

Figure 3 shows γ s
NL and γ v

NL for the short-wavelength pump
Alfvén wave with ρik0⊥ = 0.3 in the 2D space of k1⊥/k0⊥
and θ . In this case the vector decay is stronger than the scalar
one and its growth rate γ v

NL reaches maximum at k1⊥/k0⊥ ∼ 1
and θ ∼ 43◦. Similar wavenumbers of all interacting waves
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Figure 1. Three possible channels for the nonlinear decay of a pump Alfvén wave into product Alfvén and slow waves: (a) channel I, into backward Alfvén and
forward slow waves; (b) channel II, into forward Alfvén and slow waves; (3) channel III, into forward Alfvén and backward slow waves. Alfvén waves are denoted as
AWs and slow waves are denoted as SWs.

Figure 2. Scalar γ s
NL (top) and vector γ v

NL (bottom) nonlinear growth rates as functions of the wavenumber ratio of k1⊥/k0⊥ and the angle θ between êt1 and êt0 for
three possible decay channels. The pump Alfvén wave is long-wavelength, ρik0⊥ = 10−4, the wave frequency ω0/ωci = 0.01, and the wave amplitude B0p/B0 = 0.1.
The ion plasma beta βi = 0.01, the temperature ratio Te/Ti = 1.

imply locality of the vector decay. Note the appearance of the
channel III in Figure 3, which is still less efficient than the
channels I and II.

Figure 4 shows the maximal growth rates γ s
NL and γ v

NL as
functions of the pump wavenumber ρik0⊥ and the product/
pump wavenumber ratio k1⊥/k0⊥. It again demonstrates that
the scalar (vector) decay dominates at small (large) ρik0⊥.

4. NONLINEAR GENERATION OF DISSIPATIVE WAVES

In reality, the excited Alfvén and slow waves undergo Landau
damping with the damping rates (see Paper I)

γL1

Ω1
= −

√
π

8

μ2
1i

K

Te

Ti

VA

VT i

[
Te

Ti

Λ0exp

(
−V 2

AK2
1

2V 2
T i

)

+
VT i

VT e

exp

(
−V 2

AK2
1

2V 2
T i

V 2
T i

V 2
T e

)]
(14)

for the Alfvén wave and

γL2

Ω2
= 0.14 − 0.61

√(
1 +

Ti

Te

)
0.42 + 0.58μ2

2i

0.42 + 0.038μ2
2i

− 1

+ 0.05

[(
1 +

Ti

Te

)
0.42 + 0.58μ2

2i

0.42 + 0.038μ2
2i

− 1

]
(15)

for the slow wave, where Ω1 is the linear frequency of prod-
uct Alfvén wave given by Equation (9), Ω2 is the linear fre-
quency of product slow wave given by Equation (10), Λ0 =
I0(μ2

i ) exp (−μ2
i ), I0 (μ2

i ) is the zero-order Bessel function, and
μ1,2i ≡ ρik1,2⊥. In the case of relatively slow evolution of wave
amplitudes, γL, γNL � ω, the growth rate of the dissipative
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Figure 3. Scalar γ s
NL (top) and vector γ v

NL (bottom) nonlinear growth rates as functions of k1⊥/k0⊥ and θ for short-wavelength pump wave with ρik0⊥ = 0.3, frequency
ω0/ωci = 0.01, and amplitude B0p/B0 = 0.1. The ion plasma beta βi = 0.01 and temperature ratio Te/Ti = 1.

Figure 4. Maximal scalar γ s
NL (top) and vector γ v

NL (bottom) growth rates as functions of ρik0⊥ and k1⊥/k0⊥. The pump wave frequency ω0/ωci = 0.01 and amplitude
B0p/B0 = 0.1. The ion plasma beta βi = 0.01 and temperature ratio Te/Ti = 1.
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Figure 5. Nonlinear excitation rates, linear wave frequencies and Landau damping rates for the scalar (top) and vector (bottom) decays. Solid lines denote excitation
rates for dissipative waves, dashed lines denote excitation rates for non-dissipative waves, dash-dotted lines denote linear wave frequencies (thick lines for Alfvén and
thin lines for slow waves), and dotted lines denote Landau damping rates (thick lines for Alfvén and thin lines for slow waves). Ion plasma beta βi = 0.01, temperature
ratio Te/Ti = 1, pump wave frequency ω0/ωci = 0.01, pump wave amplitude B0p/B0 = 0.1, pump wavenumber ρik0⊥ = 0.0001 and angle θ = 0◦ in the scalar
decay, and ρik0⊥ = 0.3 and θ = 43◦ in the vector decay.

waves is given as

γtot = γL1 + γL2

2
±

√(
γL1 − γL2

2

)2

+ γ 2
NL. (16)

For strong nonlinear growth (γNL > ω), the growth rate can
be approximately given by

√
3/4(2Ω2/γtot)1/3γtot as was used

in Paper I. Here we use a more general dispersion equation
(Equation (A6) in the Appendix) to calculate the growth rate for
dissipative waves. The derivation and discussion for the general
dispersion equation are given in the Appendix in detail. Here
we only present the result:

[
x2 − 2Ω1

ω0

(
1 + i

γL1

Ω1

)
x + i

2Ω2
1

ω2
0

γL1

Ω1

]

×
[
x2 +

2Ω2

ω0

(
1 − i

γL2

Ω2

)
x − i

2Ω2
2

ω2
0

γL2

Ω2

]

= 4Ω1Ω2

ω2
0

γ 2
NL

ω2
0

, (17)

where x ≡ (Δω + iγ )/ω0, Δω is the nonlinear frequency shift,
γ is the actual growth rate, and γNL is the nonlinear driving rate
(Equations (11) and (12)). We numerically solve Equation (17)
in two cases, dissipative γL1,2 �= 0 and non-dissipative γL1,2 = 0.

Figure 5 presents the resulting growth rates and frequencies
of the excited waves,

ω1

ω0
= 1 − s2

√
β/2

K2 (K1 − s1K0)

K0K1
; (18)

ω2

ω0
= s2

√
β/2

K2 (K1 − s1K0)

K0K1
, (19)

restricted by the spatio-temporal resonance conditions. We see
that at ρik1⊥ ∼ 0.1–10, where the Landau damping of Alfvén
waves is strong, the nonlinear generation of dissipative waves
by the scalar decay is depressed. That is why there are two
separated regions where the scalar decay is efficient and can
generate dissipative waves: ρik1⊥ � 0.1 and ρik1⊥ � 10. On the
contrary, the vector decay is stronger and hence is less affected
by the Landau damping. We can also see that the nonlinear
growth overcomes the linear slow wave damping at kinetic
scales ρik⊥ > 1. Note that without nonlinear pumping the
(linear) damping rate of the slow wave would be larger than
its frequency.

Combining all scalar and vector decays, the absolute maxi-
mum of the growth rate of dissipative waves,

γeff = max
[
γ s

tot, γ
v
tot

]
, (20)

is calculated and shown in Figure 6. It is clear that (1)
scalar (vector) decay dominates at long (short) wavelengths,
and (2) counter-propagating decay is stronger than the
co-propagating one.

From the zero-growth condition γeff = 0, one usually obtains
the threshold amplitude Bthr/B0 of the decay instability. Here
we adopt a more realistic threshold condition of a slow growth
γeff/ω = 0.01 and calculate the threshold amplitude, which
is presented in Figure 8. The threshold amplitude varies in
the range Bthr/B0 ∼ 0.01–0.1 at ρik0⊥ � 1. At kinetic
scales, ρik0⊥ ∼ 1, the threshold is very low, Bthr/B0 ∼ 0.001.
The threshold amplitude in all cases is smaller than the wave
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Figure 6. Nonlinear pumping rates (a), and effective excitation rate for the dissipative waves (b). Thin lines are for scalar decays and thick lines are for vector decays.
Solid lines denote channel I, dashed lines denote channel II, and dash-dotted lines denote channel III. Ion plasma beta βi = 0.01, temperature ratio Te/Ti = 1, pump
wave frequency ω0/ωci = 0.01, and pump wave amplitude B0p/B0 = 0.01.

amplitudes observed in the solar atmosphere and solar wind,
Bobs/B0 ∼ 0.01–1.

The above results imply that the nonlinear decays are ef-
ficient evolution mechanisms for Alfvén waves in solar and
space plasmas.

5. ONE-MODE DECAYS AND ITS COMPARISON WITH
TWO-MODE DECAYS

Besides the two-mode decays generating slow and Alfvén
product waves, the one-mode Alfvénic decays occur at kinetic
scales. Only waves belonging to the same Alfvén wave mode
participate in the one-mode decay, where the pump Alfvén wave
(0) decays into two product Alfvén waves (1) and (2). The one-
mode Alfvén decay has been discussed in detail by Voitenko
(1998) using kinetic theory and by Voitenko & Goossens (2000)
and Zhao et al. (2010) using two-fluid MHD. The one-mode
decay rate is(

γ one−mode
NL

ωci

)2

= − 1

16 (β/2)

K1K2

ρ2k2
2⊥

(K1 − s1K0) (K2 − s2K0)

×
(

ρ2k2
0⊥

K0
+

s1ρ
2k2

1⊥
K1

+
s2ρ

2k2
2⊥

K2

)2

× |(ê1t × ê0t ) · ẑ|2
∣∣∣∣B0p

B0

∣∣∣∣
2

(21)

and the modified decay rate is

γ onemode
mod =

√
3

2

[
2 × min (ω1, ω2) /γ onemode

NL

]1/3
γ onemode

NL .

(22)
There are two one-mode decays, both vectorial: decay one-

mode I generating counter-propagating product waves (s1 =
−s2 = 1), and decay one-mode II generating co-propagating
product waves (s1 = s2 = 1). Since both product waves
are Alfvénic in the one-mode decay, the decay channel III is
identical to the channel I. From Equation (21) we find the decay
condition (K1 − s1K0)(s2K0 − K2) > 0, which is the same as
the conditions found by Voitenko (1998) and Zhao et al. (2010).
This condition implies that K1 < K0 (hence k1⊥ < k0⊥) in the
one-mode I decay and K1 < K0 < K2 (hence k1⊥ < k0⊥ < k2⊥)
in the one-mode II decay. Note that this decay and hence the

above conditions are symmetric with respect to exchange 1�
2. Figure 7 combines the nonlinear growth rates (21) and (22)
in their validity ranges. It is seen that the growth rates reach
maximum at k1⊥/k0⊥ ∼ 1, which implies locality of the one-
mode interaction. The growth rate increases with increasing
ρik0⊥, which is different from the behavior of the two-mode
decay reaching an isolated maximum at the finite wavenumber
ρik0⊥ ∼ 1 (see Figure 4).

To calculate the nonlinear excitation rate for dissipative
product Alfvén waves, we use the dispersion Equation (17)
with γ onemode

NL instead of γ twomode
NL and Alfvén instead of slow

wave with subscript 2. A competition between the two-mode
and one-mode decays is presented in Figure 8. One can see
that the one-mode decay rate gradually increases with ρik0⊥
exceeding the two-mode growth rate at ρik0⊥ � 0.3. Therefore,
we conclude that (1) two-mode decays dominate at MHD scales
ρik0⊥ � 1; (2) the one-mode decay dominates in the mildly/
strongly dispersive range ρik0⊥ � 1; and (3) both decays
are important at intermediate scales, 0.1 < ρik⊥ < 1. These
conclusions are also supported by the threshold amplitude
shown in Panel (c). The two-mode threshold amplitude is much
smaller (larger) than for the one-mode decay at ρik0⊥ � 1
(ρik0⊥ � 1). At the intermediate scales the threshold amplitudes
of these decays are similar. Besides, one should note that the
vector two-mode and one-mode decays do not depend on the
wave frequency γ /ω0 ∝ ωci/ω0, and the decay rate of low-
frequency pump wave can approach the wave frequency.

6. DISCUSSION

All two-mode and one-mode decays display anisotropic prop-
erties. Among them, scalar decays generate mainly waves prop-
agating in the same (k0z, k0⊥) plane, and the vector decays gen-
erate primarily oblique waves out of this plane. This distinction
has several important implications. First of all, scalar decays are
2D, whereas vector decays have essentially three-dimensional
(3D) character. Consequently, many recent 2D simulations could
not capture vector decays that are in many cases stronger. On
the other hand, recent 3D hybrid simulations by Lin et al. (2012)
did captured the 3D (vector) two-mode decay. Another conse-
quence is that only vector decays can induce spectral transport
across the original wavevector k0⊥ spreading the original wave
spectrum in the azimuthal direction around B0.
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It should be also noted that interaction between oblique
kinetic-scale Alfvén waves and parallel slow waves propagating
along B0, considered by Shukla & Stenflo (2000) and Sharma
& Modi (2013), is weaker than the fully oblique interactions we
study here. This follows from the direct comparison of the case

k⊥2 = 0 in Equation (11) for parallel slow waves, and the case
k⊥2 �= 0 in Equation (12) for oblique slow waves.

The solar wind Alfvén waves usually have a broad power-
law spectrum extending from the MHD to kinetic scales
(e.g., Sahraoui et al. 2010; He et al. 2012; Podesta 2013;
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decays. Ion plasma beta βi = 0.1, electron/ion temperature ratio Te/Ti = 1.

Roberts et al. 2013). The MHD-range power spectrum ∼ k
−5/3
⊥

is typical for the solar wind turbulence. This spectrum is thought
to be produced by anisotropic turbulence cascade (e.g., Howes
et al. 2008; Zhao et al. 2013 and references therein). It is inter-
esting to estimate the obtained decay rates for individual Alfvén
waves constituting this spectrum. To this end we use the fol-
lowing frequency and amplitude distributions of the Alfvénic
fluctuations (Zhao et al. 2013):

ω

ωci

= (
1 + ρ2k2

⊥
)−1/6

(k⊥/kini)
2/3 ωini

ωci

, (23)

and
B⊥
B0

= (
1 + ρ2k2

⊥
)−1/6

(k⊥/kini)
−1/3 Bini

B0
, (24)

which results in the magnetic power spectrum ∼(1 +
ρ2k2

⊥)−1/3k
−5/3
⊥ . Here kini, Bini, and ωini are the perpendicu-

lar wavenumber, magnetic field perturbation, and frequency of
Alfvén waves at the turbulence driving scale.

As an example, we adopt the following parameters typical
for the solar wind turbulence: ρikini = 10−4, Bini/B0 = 0.3
and ωini/ωci = 10−4. Using these values, in Figure 9 we
plot the Alfvén wave amplitude and frequency as functions
of the perpendicular wavenumber ρik0⊥ (panel (a)), and the
corresponding growth rates of the decay instabilities (panels (b)
and (c)). We see that the growth rates can reach values larger
than 0.1ω. In general, regular Alfvénic fluctuations in the solar
wind turbulence have amplitudes Bk/B0 = 0.1–0.5 at MHD
scales 10−4 < ρik⊥ < 0.1, and Bk/B0 � 0.1 at kinetic scales
ρik⊥ � 0.1. We see that with these values the relative decay
rates can be very high, up to γeff/ω � 0.3.

Since the estimated decay rates � 0.1ω are still lower than the
cascade rate in the strong Alfvénic turbulence, γcas ∼ ω (Howes
et al. 2008; Zhao et al. 2013), the strong turbulence is expected to
be controlled mostly by the turbulence cascade, i.e., by the local
nonlinear shearing interactions. Nevertheless, at every cascade
step a fraction of energy is consumed by the two-mode decay,
generating slow waves that are efficient in the ion energization
(e.g., Araneda et al. 2008). Also, kinetic-scale Alfvén and slow
waves are generated at almost the same rate by the nonlocal
decay, which can explain kinetic slow waves observed in the
solar wind (Howes et al. 2012). Since the product kinetic-
scale waves are efficient in wave–particle interactions, a part
of turbulent energy at large scales can avoid the inertial-range
cascade and replenish the dissipation range directly, supporting
energization of plasma species via dissipative product waves.

The decay-related effects should be more pronounced in the
cases of weak Alfvénic turbulence, where the decay rates can
be as fast as the turbulent cascade rates. Such cases need further
investigations.

7. SUMMARY

We investigated nonlinear decay instabilities of Alfvén waves
in a wide range from MHD to kinetic wavenumbers. Depending
on the perpendicular wavenumber, the decays are controlled
either by the scalar nonlinear interaction (terms proportional to
the scalar product of perpendicular wave vectors, ∼k0⊥ · k1⊥),
or by the vector nonlinear interaction (terms proportional to
the vector product, ∼k0⊥ × k1⊥). In addition, the decays are
differentiated by the propagation directions of product waves
along or against k0z because the decay rate depends strongly on
the signs of k1z · k0z and k2z · k0z. Taking into account all these
important factors, we found seven decay channels, each of which
can dominate in certain circumstances. The main properties of
the Alfvénic decays are summarized as follows.

1. Scalar two-mode decays of the pump Alfvén wave (sub-
script 0) into product Alfvén (subscript 1) and slow (sub-
script 2) waves dominate at ρik0⊥ <

√
ω0/ωci , where all

the interacting waves propagate in the same (k0z, k0⊥)
plane. There are two non-negligible scalar decays: (1)
scalar I decay generating counter-propagating Alfvén and
co-propagating slow (s1 = −s2 = −1) product waves,
and (2) scalar II decay generating only co-propagating
(s1 = s2 = 1) product waves. The former decay ex-
hibits both local and nonlocal properties, whereas the lat-
ter decay is intrinsically nonlocal. Because of their one-
dimensional nature in the cross-B0 plane, the scalar decays
do not produce an azimuthal spread of the initial Alfvénic
spectrum, but can strongly accelerate cross-scale spectral
transport via nonlocal nonlinear couplings. The channel III
(s1 = −s2 = 1) is inefficient at long wavelengths.

2. Vector two-mode decays dominate at relatively large per-
pendicular wavenumbers, ρik0⊥ >

√
ω0/ωci , which can ap-

proach kinetic scales. These decays are strongest at θ ∼ 43◦
and are therefore 2D in the cross-B0 plane, producing
an azimuthal spreading of the initial Alfvénic spectrum.
There are three vector decays: (1) vector I decay generat-
ing counter-propagating Alfvén and co-propagating slow
waves (s1 = −s2 = −1), (2) vector II decay generat-
ing only co-propagating product waves (s1 = s2 = 1),
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and (3) vector III decay generating counter-propagating
slow and co-propagating Alfvén waves (s1 = −s2 = 1).
Among them, the vector I decay is strongest in
normal circumstances.

3. In the weakly dispersive kinetic range, 0.1 < ρik0⊥ < 1,
in addition to the two-mode vector decays, the one-mode
vector decays arise generating only Alfvén product waves.
All vector decays are intrinsically 3D and local; they do
produce the spectral spreading in the azimuthal angle, but
cannot produce the cross-scale spectral transport.

4. In the mildly/strongly dispersive range, ρik0⊥ � 1, the one-
mode vector decays dominate. Their growth rates reach
maximum at θ ∼ 40◦ for the counter-propagating (one-
mode I) decay and at θ ∼ 25◦ and 115◦ for the co-
propagating (one-mode II) decay. Both these decays are
local and 3D.

5. For the Alfvén waves composing turbulence in the solar
wind, the decay rates reach high values, γeff/ω0 > 0.1, and
hence these decays are important for the wave evolution
and turbulence. In particular, kinetic-scale slow modes,
observed in the solar wind (Howes et al. 2012), can be
generated by the local and nonlocal two-mode decays of
Alfvén waves.

Combining the above results we conclude that, in general,
the scalar I two-mode decay dominate at largest MHD scales
ρik0⊥ � 1, and the vector one-mode decays dominate at
small kinetic scales ρik0⊥ � 1. At the intermediate scales
0.1 < ρik0⊥ < 1 there is a competition between the two-mode
vector I and the one-mode I vector decays.

The nonlinear processes studied here compete with linear
generation mechanisms for kinetic Alfvén waves (Voitenko &
Goossens 2003) and contribute to the kinetic-scale spectra in
solar and space plasmas. The related effects and their role in
particular conditions need further investigations.
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APPENDIX

NONLINEAR DECAYS INTO DISSIPATIVE WAVES

Nishikawa (1968) considered the three-wave interaction by
including wave dissipation. Here we use similar coupling
equations as Nishikawa (1968) to study the nonlinear coupling
of Alfvén and slow waves,(

ω2
1 − Ω2

1 − i2ω1γD1
)
B1p = C1B0pn∗

2, (A1)

(
ω2

2 − Ω2
2 − i2ω2γD2

)
n2 = C2B0pB∗

1p, (A2)

where C1,2 are the coupling coefficients, and Ω1,2 are the linear
eigenmode frequencies, Ω1 ≡ VAk1zK1 and Ω2 ≡ VT k2z/K2.
Equations (A1) and (A2) yield(
ω2

1 − Ω2
1 − i2ω1γD1

) (
ω2

2 − Ω2
2 − i2ω2γD2

)∗ =C1C
∗
2

∣∣B0p

∣∣2
.

(A3)

As the product Alfvén wave 1 is affected by the nonlinearly
coupled pump wave (B0p) and slow wave 2 (n2), its frequency
can be written as

ω1 = Ω1 + Δω + iγ, (A4)

where Δω and γ denote the nonlinear frequency shift and the
nonlinear excitation rate. Then the slow wave frequency is given
by

ω2 � Ω2 − Δω − iγ, (A5)

where the nonlinear frequency shift is ignored for the pump
Alfvén wave, ω0 � Ω0. The latter condition means that the pump
wave is not much affected by the product waves. Then from
Equations (A3)–(A5), we obtain the general dispersion equation[

x2 − 2Ω1

Ω0

(
1 + i

γL1

Ω1

)
x + i

2Ω2
1

Ω2
0

γL1

Ω1

]

×
[
x2 +

2Ω2

Ω0

(
1 − i

γL2

Ω2

)
x − i

2Ω2
2

Ω2
0

γL2

Ω2

]

= 4Ω1Ω2γ
2
NL

Ω4
0

, (A6)

where x ≡ (Δω + iγ )/Ω0 and

γNL =
√

C1C
∗
2 |B0p|2

4Ω1Ω2

is the nonlinear pumping rate.
This equation can be reduced in the following limits:
(1) weak excitation of nondissipative waves (|x| � Ω1,2/ω0

and γL1,2 = 0),

x = i
γNL

Ω0
; (A7)

(2) strong excitation of nondissipative waves (Ω2/ω0 �
|x| � Ω1/ω0 and γL1,2 = 0),

x3 = −2Ω2

γNL

(
γNL

Ω0

)3

, (A8)

with the unstable solution

x = 1 + i
√

3

2

(
2Ω2

γNL

)1/3
γNL

Ω0
; (A9)

(3) weak excitation of dissipative waves (|x| � Ω1,2/ω0 and
γL1,2/Ω � 1),

x = i

⎡
⎣γL1 + γL2

2Ω0
+

√(
γL1 − γL2

2Ω0

)2

− γ 2
NL

Ω2
0

⎤
⎦ . (A10)

Note that the particular expressions for the nonlinear pumping
rate γNL in different decays are given by Equations (11), (12),
and (21).
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