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ABSTRACT

We study the nonlocal nonlinear coupling and generation of kinetic Alfvén waves (KAWs) and kinetic slow waves
(KSWs) by magnetohydrodynamic Alfvén waves (MHD AWs) in conditions typical for the solar wind in the inner
heliosphere. This cross-scale process provides an alternative to the turbulent energy cascade passing through many
intermediate scales. The nonlinearities we study are proportional to the scalar products of wave vectors and hence
are called “scalar” ones. Despite the strong Landau damping of kinetic waves, we found fast growing KAWs
and KSWs at perpendicular wavelengths close to the ion gyroradius. Using the parametric decay formalism, we
investigate two independent decay channels for the pump AW: forward decay (involving co-propagating product
waves) and backward decay (involving counter-propagating product waves). The growth rate of the forward decay
is typically 0.05 but can exceed 0.1 of the pump wave frequency. The resulting spectral transport is nonlocal and
anisotropic, sharply increasing perpendicular wavenumbers but not parallel ones. AWs and KAWs propagating
against the pump AW grow with about the same rate and contribute to the sunward wave flux in the solar wind.
Our results suggest that the nonlocal decay of MHD AWs into KAWs and KSWs is a robust mechanism for the
cross-scale spectral transport of the wave energy from MHD to dissipative kinetic scales in the solar wind and
similar media.
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1. INTRODUCTION

Magnetohydrodynamic Alfvén waves (MHD AWs) permeate
the solar atmosphere and the solar wind (Belcher & Davis
1971; Mathioudarks et al. 2012). These waves are thought to be
produced by the convective motion jostling magnetic flux tubes
below the photosphere and/or by the magnetic reconnections
in the photospheric network (Ruzmaikin et al. 1998; Ryutova
et al. 2001; Cranmer & van Ballegooijen 2005). There is ample
observational evidence for MHD AWs in the chromosphere
(De Pontieu et al. 2007; Cirtain et al. 2007; He et al. 2009;
McIntosh et al. 2011), corona (Tomczyk et al. 2007; Okamoto
et al. 2007; Tomczyk & McIntosh 2009), and solar wind (Belcher
& Davis 1971). Recent observations of the transition region and
solar corona have revealed a significant energy flux carried by
the ubiquitous outward-propagating AWs, which is more than
enough to heat the solar corona and to accelerate the fast solar
wind (McIntosh et al. 2011). These waves are also thought
to accelerate the slow solar winds and power the solar wind
turbulence (Cranmer et al. 2007). However, how MHD AWs
dissipate and deposit energy in the plasma of solar atmosphere
and solar wind remains unresolved.

The inhomogeneous plasma density and flow in the solar
atmosphere and solar wind support the phase mixing and
resonance absorption of MHD AWs (Ionson 1978; Heyvaerts
& Priest 1983; Voitenko & Goossens 2006), which evolve
to small-scale kinetic Alfvén waves (KAWs) undergoing an
efficient dissipation. The small dissipative AW scales can also be
generated through the turbulent cascade mechanism in the AW
turbulence resulting from nonlinear local interactions among
counter-propagating AWs (Matthaeus et al. 1999; Cranmer &
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van Ballegooijen 2003; Verdini & Velli 2007; van Ballegooijen
et al. 2011). Modern theory of the AW turbulence suggests
that KAWs are generated by the turbulent cascade at kinetic
ion or electron scales (Howes et al. 2008, 2011; Voitenko &
De Keyser 2011; Zhao et al. 2013), which is consistent with
the turbulence characteristics measured in situ in the foreshock
of the Earth and in the quiet solar wind (Sahraoui et al. 2009;
Alexandrova et al. 2009). There is growing evidence that the
proton kinetic scales (He et al. 2012; Roberts et al. 2013), as well
as shorter ones (Chen et al. 2013), are dominated by KAWs (see
also the overview of some measured KAW effects by Podesta
2013). Kinetic-wave–particle interactions of KAWs are efficient
even in weakly collisional plasmas and in plasma heating and
particle acceleration. These phenomena can be responsible for
energy deposition by AWs in the solar atmosphere and solar
wind (Cranmer & van Ballegooijen 2003; Wu & Fang 2003;
Wu & Yang 2007; Chandran et al. 2010).

The above-mentioned processes imply a gradual evolution
of wave energy from large MHD to small kinetic scales. At the
same time, recent theory (Voitenko & Goossens 2005; Zhao et al.
2011a, 2011b) and simulations (Singh & Rao 2012) suggest that
MHD waves can couple energy directly into small-scale kinetic
waves. The first nonlocal decay of MHD-scale fast mode wave
into KAWs was considered by Voitenko & Goossens (2002).
Later, Voitenko & Goossens (2005) demonstrated analytically
that the nonlocal decay of MHD AWs into KAWs should occur
in very low-β plasmas where the gas/magnetic pressure ratio
is less than the electron/proton mass ratio, β < me/mi . This
result was recently confirmed by numerical simulations (Singh
& Rao 2012). A similar process, incorporating an oblique MHD
AW as the pump wave, has been considered (Zhao et al. 2011a),
and a fusion interaction between MHD AWs and KAWs has
been studied in the low-β domain me/mi � β � 1 (Zhao et al.
2011b). The advantage of the nonlocal decays as the spectral
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transport mechanisms is that they transport energy in a single
step across a wide interval of scales, avoiding many short local
steps as, for example, in the local turbulence cascade (Howes
et al. 2008; Zhao et al. 2013). Therefore, the nonlocal decays
can provide faster spectral transport than the turbulence cascade
or other gradual processes.

Formalism of parametric decay instability was first invented
by Oraevsky & Sagdeev (1962) for electrostatic waves, which
was then extended by Galeev & Oraevskii (1963) for electro-
magnetic MHD AWs. In the low-β plasma the strongest MHD
decay (where all participating waves are MHD waves) was found
into the backward propagating AW and forward slow wave
(SW). The corresponding growth rate by Galeev & Oraevskii,
γGO, can be estimated as

γGO

ω
� 1

3β1/4

B

B0
, (1)

where ω and B are the pump AW frequency and magnetic
amplitude, respectively.

The process of the AW decay into the backward AW and
forward SW has been confirmed by many subsequent analytical
and simulation studies with various modifications (see recent
papers by Nariyuki & Hada 2006; Matteini et al. 2010;
Verscharen et al. 2012; Gao et al. 2013, Gao et al. 2014).
The parametric decay is found in the hybrid simulations for
both parallel and oblique AWs (Matteini et al. 2010; Verscharen
et al. 2012; Gao et al. 2013, Gao et al. 2014), and AWs decay
rapidly as the beam-induced oblique KAWs appear (Nariyuki
et al. 2012). Simulations by Matteini et al. (2010) have shown
that the ions can be accelerated by the magnetic-field-aligned
electric field of the product SWs and can form the ion beams.

In the present paper, we keep leading-order nonlinear terms
proportional to the scalar product (k0⊥ · k1⊥) of the pump and
product wave vectors k0⊥ and k1⊥. These terms are responsible
for the so-called “scalar” nonlinear interaction. In terms of the
pump wave magnetic field B these terms are proportional to
(B × k1⊥) · ẑ. The relevant nonlinear equations describing the
scalar nonlinear interaction are derived below (Equations (26)
and (27)). Some of these nonlinear terms, not accounted for
in previous analytical studies, allowed us to capture a nonlocal
MHD/kinetic decay of MHD AWs into kinetic-scale AWs and
SWs. We show that in the low-β plasmas the MHD AWs can
effectively excite KAWs and kinetic slow waves (KSWs) at
small kinetic scales of about ion gyroradius ρi . In some cases, the
MHD/kinetic decay can be more efficient than the MHD/MHD
decay by Galeev & Oraevskii (1963) and generate dissipative
KAWs and KSWs thus providing plasma heating and decreasing
MHD AW amplitudes in the solar corona and solar wind. For
example, it may contribute to the observed decrease of the wave
amplitudes as the waves propagate from 1.1 R� to 1.4 R�
in polar coronal holes (Bemporad & Abbo 2012; Hahn et al.
2012), and to KAW and KSW spectra observed in the solar
wind turbulence (Howes et al. 2012; Klein et al. 2012) and in
the terrestrial auroral zones (Wygant et al. 2002).

The outline of the paper is as follows. Section 2 presents
a detailed derivation for the nonlinear coupling among low-
frequency waves in the two-fluid plasma model. We then obtain
the growth rate for KAWs and KSWs participating in the
nonlinear decay MHD AW = KAW+KSW, where KAW can
propagate either in the same direction as MHD AW or against
it. In Section 3, a preliminary analysis is presented for these
two decay channels in the non-dissipative case. It is shown that
KAWs propagating against the MHD AW are generated at about

the same rate as the co-propagating KAWs. We further describe
the model for the collisionless dissipation of KAWs and KSWs
in Section 4, and investigate the nonlinear decay of MHD AWs
into dissipative KAWs and KSWs in Section 5. In Section 6, we
discuss our results in comparison to other studies, and present
our conclusions in the final section, stressing the importance of
the studied decay for the nonlocal spectral transport from MHD
to kinetic scales in the solar wind.

2. TWO-FLUID MODEL

We start from the basic two-fluid and Maxwell equations,
expanding all variables into the sum of background part plus
perturbation: A0 + A. Then the equations for the perturbations
are

∂tvα − qα

mα

(E + vα × B0) +
1

n0mα

∇Pα = NLvelα, (2)

∂tnα + ∇ · (n0vα) = NLdenα, (3)

∇ × B = μ0J, (4)

∇ × E = −∂tB, (5)

where we account for the nonlinear terms:

NLvelα = − vα · ∇vα +
qα

mα

vα × B +
1

n0mα

nα

n0
∇Pα,

NLdenα = − ∇ · (nαvα) ,

and vα , nα , E, B, and J are perturbations of the plasma velocity,
number density, electric field, magnetic field, and current
density, respectively; qα , mα , Tα , and Pα = Tα (n0 + nα)γ

are particle charge, mass, temperature, and thermal pressure,
respectively, for particle species α, i.e., α = i for the ions and
α = e for the electrons; n0 and B0 are the background number
density and magnetic field, respectively.

2.1. Derivation of General Nonlinear Equation

From the momentum equation (Equation (2)), the fluid
velocity perturbation for the low-frequency waves where the
wave frequency is much smaller than the ion cyclotron frequency
can be expressed as

vα⊥ = 1

B0ωcα

∂tE⊥ +
1

B0
E⊥ × ẑ − γ Tα

mαω2
cα

∂t∇⊥
nα

n0

− γ Tα

mαωcα

∇⊥
nα

n0
× ẑ

+
1

ω2
cα

∂tNLvelα⊥ +
1

ωcα

NLvelα⊥ × ẑ, (6)

∂tvα‖ = qα

mα

Ez − γ Tα

mα

∂z

nα

n0
+ NLvelα · ẑ, (7)

where ωcα ≡ qαB0/mα is the particle cyclotron frequency, and
subscripts “‖” and “⊥” represent the perturbation parallel and
perpendicular to the direction of the background magnetic field
B0 = B0ẑ.

By substituting Equations (6) and (7) into the following
expression of the current density,

J = n0e (vi − ve) + en (vi − ve)

= n0e (vi − ve) +
n

n0
J, (8)
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we obtain the perpendicular and parallel currents as

J⊥ = n0mi

B2
0

∂tE⊥ − γ Ti

B0ωci

∂t∇⊥n

− γ (Ti + Te)

B0
∇⊥n × ẑ + NLcur⊥, (9)

∂tJ‖ = n0e
2

me

Ez +
eγ Te

me

∂zn + NLcur‖, (10)

with the nonlinear terms

NLcur⊥ ≡ n0mi

B0

[(
NLveli⊥ +

me

mi

NLvele⊥

)
× ẑ

+
1

ωci

∂t

(
NLveli⊥ − m2

e

m2
i

NLvele⊥

)]
+

n

n0
J⊥,

NLcur‖ ≡ n0e (NLveli − NLvele) · ẑ + ∂t

(
n

n0
J‖

)
,

where the quasi-neutral condition has been used, ni = ne ≡ n.
The same currents can also be expressed in terms of the electric
field from Equations (3) and (4):

μ0∂tJ⊥ = ∇2E⊥ − ∇⊥ (∇ · E) , (11)

μ0∂tJ‖ = ∇2
⊥Ez − ∂z∇⊥ · E⊥. (12)

By combining Equations (9)–(12), we get the coupled
equations for electric field components:

(
∂2
t − V 2

A∇2
)

E⊥ + V 2
A∇⊥∇ · E = γ Ti

e
∂2
t ∇⊥

n

n0
+

γ (Ti + Te)

e

× ωci∂t∇⊥
n

n0
× ẑ

− μ0V
2
A∂tNLcur⊥, (13)

(
1 − λ2

e∇2
⊥
)
Ez + λ2

e∂z∇⊥ · E⊥ = − γ Te

e
∂z

n

n0

− μ0λ
2
eNLcur‖, (14)

where VA is the Alfvén speed and λe is the electron inertial
length.

It is convenient to define a local coordinate system with three
orthogonal unit vectors êp ≡ ∇⊥ × ẑ/ |∇⊥|, êt ≡ ∇⊥/ |∇⊥|, and
ẑ. The corresponding electric field components Ep Et and Ez can
be expressed in terms of the normalized density perturbation
n/n0:

(
∂2
t − V 2

A∂2
)
Ep = γ (Ti + Te)

e
ωci∂⊥∂t

n

n0

− μ0V
2
A∂tNLcur⊥ · êp, (15)

[(
1 − λ2

e∂
2
⊥
)
∂2
t − V 2

A∂2
z

]
Et

=
[
γ Te

e
V 2

A∂2
z +

γ Ti

e

(
1 − λ2

e∂
2
⊥
)
∂2
t

]
∂⊥

n

n0

− μ0V
2
A

(
1 − λ2

e∂
2
⊥
)
∂tNLcur⊥ · êt

+ μ0λ
2
eV

2
A∂⊥∂zNLcur‖, (16)

[(
1 − λ2

e∂
2
⊥
)
∂2
t − V 2

A∂2
z

]
Ez

= −
[
γ Te

e

(
∂2
t − V 2

A∂2
z

)
+

γ Ti

e
λ2

e∂
2
⊥∂2

t

]
∂z

n

n0

+ μ0V
2
Aλ2

e∂⊥∂z∂tNLcur⊥ · êt

− μ0λ
2
e

(
∂2
t − V 2

A∂2
z

)
NLcur‖. (17)

The fourth complementing equation connecting n/n0 to Ep, Et,
and Ez is derived from Equations (3), (6), and (7):

[(
1 − ρ2

i ∂
2
⊥
)
∂2
t − V 2

T i∂
2
z

] n

n0
= 1

B0
∂⊥∂tEp − 1

B0ωci

∂⊥∂2
t Et

− e

mi

∂zEz + NLdent , (18)

where ρi = (VT i/ωci)1/2 is the ion gyroradius, VTi and TTe are,
respectively, the ion and electron thermal velocities, and the
nonlinear term is defined as

NLdent = − 1

ωci

∂t∇ ·
(

1

ωci

∂tNLveli⊥ + NLveli⊥ × ẑ
)

− ∂zNLveli · ẑ +
1

n0
∂tNLdeni .

Using Equations (15)–(17), we can eliminate from
Equation (18) all three components of the electric field, thus
arriving to the general nonlinear equation for the low-frequency
wave coupling in terms of n/n0:

(
∂2
t − V 2

A∂2
) [(

1 − λ2
e∂

2
⊥
)
∂4
t − V 2

A

(
1 +

β

2
− ρ2∂2

⊥

)
∂2
z ∂2

t + V 2
AV 2

T ∂4
z

]
n

n0

−V 2
T

[(
1 − λ2

e∂
2
⊥
)
∂2
t − V 2

A∂2
z

]
∂2
⊥∂2

t

n

n0
=

−μ0V
2
A

B0

[(
1 − λ2

e∂
2
⊥
)
∂2
t − V 2

A∂2
z

]
∂⊥∂2

t NLcur⊥ · êp

+
μ0eV

2
A

mi

(
∂2
t − V 2

A∂2
) [

1

ω2
ci

(
1 − λ2

e∂
2
⊥
)
∂2
t − λ2

e∂
2
z

]
∂⊥∂t NLcur⊥ · êt

+
μ0eλ

2
e

mi

(
∂2
t − V 2

A∂2
) [

∂2
t − V 2

A

(
∂2
z +

1

ω2
ci

∂2
t ∂2

⊥

)]
∂zNLcur‖

+
(
∂2
t − V 2

A∂2
) [(

1 − λ2
e∂

2
⊥
)
∂2
t − V 2

A∂2
z

]
NLdent . (19)

The definitions here are as follows :

V 2
T = γ (Ti + Te)

mi

, β = 2V 2
T

V 2
A

,

ρ2 = ρ2
i + ρ2

s = γ Ti

miω
2
ci

+
γ Te

miω
2
ci

.

2.2. Linear and Nonlinear Responses of KAWs
and KSWs in the Intermediate-β Plasmas

The general nonlinear equation (Equation (19)) describes
the nonlinear dynamics of low-frequency wave modes: fast,
slow, and Alfvén. In a specific plasma environment and for
particular wave modes, the expression (Equation (19)) can be
significantly simplified. Here we consider the nonlinear evo-
lution of two plane waves, KAW1 and KSW2, with ampli-
tudes ∝ exp

(
ik1,2·r − iω1,2t

)
in the low-β plasmas where both

these waves are highly oblique, k⊥ � kz. The wave properties
of these two modes have previously been discussed in detail
(see, e.g., Chen & Wu 2011a, 2011b, and references therein).
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The fast wave decouples in this case and we retain only KAWs
and KSWs.

Let us first consider the nonlinear equation (Equation (19))
for KAWs with ω ∝ VAkz. After the small terms of the order of
k2
z /k2

⊥ and V 2
T i/V 2

A are neglected, the nonlinear equation reduces
to[
∂2
t − V 2

A

(
1 − ρ2∂2

⊥
)
∂2
z

]
∂⊥∂2

t

n

n0

= μ0

B0

(
∂2
t − V 2

A∂2
z

)
∂2
t NLcur⊥ · êp +

μ0V
2
A

B0ωci

∂2
⊥∂3

t NLcur⊥ · êt

+
μ0eλ

2
e

mi

[(
1 − λ2

i ∂
2
⊥
)
∂2
t − V 2

A∂2
z

]
∂⊥∂zNLcur‖

+
(
∂2
t − V 2

A∂2
z

)
∂⊥NLdent . (20)

If we discard the nonlinear terms on the right-hand side of the
last equation, the linear dispersion relation of KAWs is obtained:

ω2 = V 2
Ak2

z

(
1 + ρ2k2

⊥
)
. (21)

Then we can derive explicit expressions for the linear KAW
response:

vi = iωci

1

k⊥

n

n0
êp +

ω

k⊥

n

n0
êt + V 2

T

skz

ω

n

n0
ẑ,

ve = iωci

ω2

V 2
Ak2

z

1

k⊥

n

n0
êp − β

2

ω

k⊥

n

n0
êt +

sω

kz

n

n0
ẑ,

B = − i
B0ωci

V 2
A

ω

k⊥skz

n

n0
êp +

βB0

2

skz

k⊥

n

n0
êt − βB0

2

n

n0
ẑ, (22)

where s = kz/ |kz| denotes the propagation direction of the
wave, such that s = 1 for the wave propagating in the direction
of B0, and s = −1 for the waves propagating against B0.

For KSWs with ω ∝ VT kz, the nonlinear equation
(Equation (19)) reduces to

[(
1 − ρ2∂2

⊥
)
∂2
t − V 2

T ∂2
z

]
∂2
z ∂⊥

n

n0

= μ0

B0
∂2
z ∂2

t NLcur⊥ · êp − μ0

B0ωci

∂2
⊥∂3

t NLcur⊥ · êt

+
μ0eλ

2
e

mi

(
∂2
z +

1

ω2
ci

∂2
⊥∂2

t

)
∂⊥∂zNLcur‖ + ∂⊥∂2

z NLdent .

(23)

Hence the linear dispersion relation for KSWs is

ω2 = V 2
T k2

z

1 + ρ2k2
⊥

, (24)

and the linear response is given as follows:

vi = − i
V 2

T

ωci

k⊥
n

n0
êp −

(
ρ2k2

⊥ +
β

2

)
ω

k⊥

n

n0
êt + V 2

T

skz

ω

n

n0
ẑ,

ve = − i
V 2

T

ωci

ω2

V 2
Ak2

z

k⊥
n

n0
êp − β

2

ω

k⊥

n

n0
êt

+ V 2
T

(
1 − ρ2k2

⊥
ω2

V 2
T k2

z

)
skz

ω

n

n0
ẑ,

B = i
βB0

2ωci

sk⊥ω

kz

n

n0
êp +

β

2
B0

skz

k⊥

n

n0
êt − β

2
B0

n

n0
ẑ. (25)

2.3. Nonlinear Growth Rate of the Nonlocal
Decay AW = KAW1 + KSW2

Here we study the nonlinear decay of MHD AWs into KAWs
and KSWs. In what follows, the pump AW’s parameters are
without indices, KAW’s parameters are with index “1,” and
KSW’s parameters are with index “2.” It is convenient to use
the normalized magnetic B1⊥/B0 and density n2/n0 amplitudes
as independent variables for KAWs and KSWs, respectively.
The pump MHD AW is described by B⊥/B0 and propagates in
the direction of B0. Within approximations made in our study,
the decay properties of the pump MHD AW propagating in the
opposite direction are the same.

Then, using Equations (20)–(25) with scalar nonlinearities
proportional to [B⊥ × k1⊥]·ẑ, the nonlinear dispersion equations
are obtained for KAWs,

[
ω2

1 − V 2
Ak2

1z

(
1 + ρ2k2

1⊥
)] B1⊥

B0
= s1

ω1ω

2

(
1 + ρ2k2

1⊥
)1/2

× [B⊥ × k2⊥] · ẑ
k1⊥B0

n∗
2

n0
, (26)

and for KSW,(
ω2

2 − V 2
T k2

2z

1 + ρ2k2
2⊥

)
n2

n0
= s2

ω2ω

2

VA

VT

1 − s1
(
1 + ρ2k2

1⊥
)1/2

ω1/ω0(
1 + ρ2k2

1⊥
) (

1 + ρ2k2
2⊥

)1/2

× [B⊥ × k1⊥] · ẑ
k1⊥B0

B∗
1⊥

B0
. (27)

Noting that k2⊥ ≈ −k1⊥for the nonlocal interaction and
combining the above equations, we obtain the growth rate of
nonlinearly driven KAWs and KSWs:

γ 2
NL = s2

ω2

16

VA

VT

(
1 + ρ2k2

1⊥
)1/2 − s1

1 + ρ2k2
1⊥

|[B⊥ × k1⊥] · ẑ|2
k2

1⊥B2
0

, (28)

where s1 and s2 are the propagation directions of the product
waves KAW1 and KSW2 with respect to the propagation
direction of the pump wave AW (sα = −1 for the αth wave
propagating against the pump and vice versa).

From dispersion relations (Equations (21) and (24)), one can
see that the resonant conditions k = k1 +k2 and ω = ω1 +ω2 can
be satisfied with forward KSW (s2 = 1), but not with backward
KSW (s2 = −1). On the contrary, two decay channels involving
forward (s1 = 1) and backward (s1 = −1) KAWs are allowed.
Therefore, there are two possible decay channels for the MHD
AW pump: (1) into forward KAW and KSW (s1 = s2 = 1),
and (2) into backward KAW (s1 = −1) and forward KSW
(s2 = 1). The corresponding parallelograms reflecting resonant
conditions in the (ω, kz) plane are presented in Figure 1.

3. PRELIMINARY ANALYSIS: DECAY INTO
NON-DISSIPATIVE WAVES

The growth rate dependence on the perpendicular wavenum-
bers of the product kinetic waves is axially asymmetric because
of the factor

γ 2
NL ∝ |k1⊥ × B⊥|2 = k2

1⊥B2
⊥ sin2 θ1, (29)

where θ1 is the angle between k1⊥ and B⊥. Therefore, the
wave vectors of KAWs and KSWs generated by the scalar
nonlinearities are elongated along the normal to the pump
magnetic field, k1,2⊥ ⊥ B⊥.
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Figure 1. Two possible decay channels for the pump MHD AW: (1) into co-
propagating KAW (s1 = 1) and KSW (s2 = 1), and (2) into counter-propagating
KAW (s1 = −1) and co-propagating KSW (s2 = 1).

(A color version of this figure is available in the online journal.)

Substituting Equation (29) in Equation (28), we obtain the
normalized nonlinear pumping rate

γNL

ω
= γ̄ (s1, μ1)

4β1/4

∣∣∣∣B⊥
B0

∣∣∣∣ , (30)

where μ1 = ρk1⊥ � ρk2⊥ is the normalized perpendicular
wavenumber of the kinetic-scale waves, and

γ̄ (s1, μ1) =
((

1 + μ2
1

)1/2 − s1

1 + μ2
1

)1/2

,

is the profile function showing the wavenumber dependence of
γNL. The growth rate (Equation (30)) is already maximized with
respect to the azimuthal angle θ1 (the θ1-dependence attains a
maximum at θ1 � π/2).

The profile function γ̄ (s1, μ1) has a maximum γ̄m− =
γ̄ (−1, 0) = √

2 at μ1 = μm− = 0 for counter-propagating
KAWs, which is actually a MHD limit where our results are
consistent with the results by Galeev & Oraevskii (1963). For
co-propagating AWs, the maximum γ̄m+ = γ̄ (1,

√
3) = 1/2

is attained at μ1 = μm+ = √
3. The pumping rate tends to

zero in the limit μ1 → ∞, where γ̄ → 0 for both co- and
counter-propagating product KAWs, s1 = ±1.

The normalized pumping rate γNL/ω as function of μi1 =
ρik1⊥ (= μ1/

√
1 + Te/Ti) is shown in Figure 2 for particular

plasma and pump wave parameters. As is seen from Figure 2,
at small μi1 the nonlinear pumping rate for co-propagating
KAWs first increases with increasing μi1, attains a maximum
γNL/ω � 0.075 at μi1 � 1.2, and then gradually decays as μi1
grows further. The pumping rate into counter-propagating KAW
monotonously decreases starting from the maximum γNL/ω �
0.22 at μi1 = 0. The scaling at large μi1 � 1 is the same in
both cases, γNL/ω ∝ μ

−1/2
i1 , and γNL(s1 = −1) > γNL(s1 = 1)

everywhere. Te/Ti = 1 was assumed for the above estimations,
and the behavior is similar to other values of Te/Ti . The maximal
pumping rate is decreased and shifted to lower μi1 at the larger
temperature ratio Te/Ti = 3. For all values of Te/Ti , the
nonlinear pumping of energy into counter-propagating KAWs
is somehow stronger than that into the co-propagating KAWs.

Summarizing the above results, in the case of weak or no
dissipation, the pump AW will mainly generate resonant KAWs
and KSWs in the vicinity of the above maxima. The resulting

Figure 2. Relative nonlinear pumping rate of energy into KAWs and KSWs,
γNL/ω, as function of the normalized wavenumber ρik1⊥. The nonlinear
pumping rate into co-propagating KAWs (s1 = 1) is shown by solid line, and
into counter-propagating KAWs (s1 = −1) is shown by the dashed line. The
temperature ratio Te/Ti = 1 and 3; the ion plasma beta βi = 0.06. The nonlinear
pumping into counter-propagating KAWs is two to three times stronger.

pumping rates per one wave period are

γNL max ±
ω

� γ̄m±
4β1/4

B⊥
B0

. (31)

These fastest growing KAWs and KSWs determine the effective
decay rate for the pump AW. At larger μi1 > μm±, the pumping
rate γNL max ± gradually decreases. Obviously, the nonlinear
pumping rates are not very affected by β that comes with the
power index 1/4, such that the coefficient β1/4 ∼ 1 in the wide
range 0.1 < β < 1, in which case

γNL max ∼ ω

4

B⊥
B0

.

Therefore, the most significant explicit influence of the pump
wave parameters comes from the linear γNL max dependence
of the pump magnetic amplitude B⊥. With the pump wave
amplitude B⊥/B0 = 0.4, we obtain a high growth rate γNL max ∼
0.1ω. Although the above relation indicates that the nonlinear
decay of the MHD AW can occur even for very small B⊥, the
actual dissipation of kinetic waves imposes a decay condition
B⊥ > Bthr with a finite threshold amplitude Bthr, as is shown
below. There are also implicit restrictions imposed by the small
wave frequencies, which will be discussed below.

The total decay rate accounting for the damping of product
waves γL1 and γL2 is

γtot = γL1 + γL2

2
±

√(
γL1 − γL2

2

)2

+ γ 2
NL, (32)

where γNL is given by Equation (30). To study nonlinear
decay in weakly collisional plasmas, such as solar wind and
magnetosphere, we must obtain expressions for damping rates
of KAWs (γL1) and KSWs (γL2) in the kinetic plasma model.
The analysis of the decay accounting for dissipative processes
is given in the following sections.

4. COLLISIONLESS DISSIPATION OF KAWs AND KSWs

In the low-frequency domain, ω2 � ω2
ci , the dissipation is

dominated by the Landau damping. The corresponding damping
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rates for KAWs and KSWs can be presented as γLα = ωαgα ,
where α = 1 for KAW, α = 2 for KSW, and gα = gα(μi)
depend only on the perpendicular wavenumber μi = ρik⊥
but do not depend on other wave parameters. In Maxwellian
plasmas, KAWs dissipate with the rate (see, e.g., Voitenko &
Goossens 2006)

g1 (μ) = −
√

π

8

μ2
i

K

Te

Ti

VA

VT i

(
Te

Ti

Λ0 exp

(
−V 2

AK2

2V 2
T i

)

+
VT i

VT e

exp

(
−V 2

AK2

2V 2
T i

V 2
T i

V 2
T e

) )
, (33)

where Λ0 = I0(μ2
i ) exp(−μ2

i ), I0(μ2
i ) is the zero-order Bessel

function, μ2
i = (1 + Te/Ti)−1μ2, and the KAW dispersion

function K �
√

1 + μ2. The first term in g1(μi) is due to ion
Landau damping and the second term is due to electron Landau
damping (effects of finite electron gyroradius are neglected).

For KSWs, we will use the low-frequency kinetic dispersion
equation

1 + σeZe +
Te

Ti

(1 − Λ0) +
Te

Ti

Λ0 (1 + σiZi) = 0, (34)

obtained from the electrostatic approximation (right-hand
side of Equation (5) by Voitenko & Goossens 2003). In
Equation (34), σα = ω/(

√
2kzVT α), and Zα = Z (σα) is the

plasma dispersion function of the αth species. In order to find
useful analytical expressions for KSW, it is customary to assume
a non-isothermal plasma with Te/Ti � 1 and expand Ze (Zi) in
small σe (large σi) series, keeping first terms.

Unfortunately, there is no simple analytical solution g2 (μi)
for KSWs in isothermal plasmas with Te ∼ Ti , which is the
most interesting case. This is because the KSW phase velocity
in this case is close to the ion thermal speed (σi ∼ 1),
and hence the plasma dispersion function Z (σi) cannot be
expanded in the large argument series. We therefore solved
Equation (34) numerically and found the following fit to the
numerical solution:

g2 (μi) = 0.14 − 0.61

√(
1 +

Ti

Te

)
0.42 + 0.58μ2

i

0.42 + 0.038μ2
i

− 1 + 0.05

×
[(

1 +
Ti

Te

)
0.42 + 0.58μ2

i

0.42 + 0.038μ2
i

− 1

]
. (35)

Figure 3 presents the exact numerical solution of
Equation (34) and its parametric fit (Equation (35)) for three
values of the temperature ratio Te/Ti = 1/3, 1, and 3. In the
wide range of μi2 = ρik2⊥ from 0 to about 4, the fit and the
numerical solution remain close to each other for the cases
Te/Ti = 1 and 3; they are closer with larger Te/Ti . For the low-
temperature ratio Te/Ti = 1/3, the fit declines and the damping
rate is underestimated at μi2 > 2.5. In general, with increasing
ρ2

i k
2
1⊥, the KAW1 Landau damping |γL1| increases. Also, the

KSW2 phase velocity Vph2 decreases toward the thermal proton
velocity making |γL2| larger.

5. NONLINEAR GENERATION OF DISSIPATIVE KINETIC
WAVES BY THE PARAMETRIC DECAY OF MHD AWs

For the co-propagating KAW decay, the collisionless damping
of KAWs and KSWs suppresses the wave growth at large
ρ2

i k
2
1⊥ � 1 and small ρ2

i k
2
1⊥ � 1, where the nonlinear pumping

Figure 3. Numerical solution (dashed lines) of the kinetic dispersion equation
for KSWs (Equation (34)) and the parametric fit (Equation (35)) (solid line) for
the temperature ratios Te/Ti = 1/3, 1, and 3.

drops faster than the linear damping. As a result, the nonlinear
pumping can overcome the linear damping only in a limited
region of perpendicular wavenumbers around ρ2

i k
2
1⊥ ∼ 1. For

the counter-propagating KAW decay, the collisionless damping
exceeds the wave growth only at large ρ2

i k
2
1⊥ � 1. To find the

perpendicular wavenumbers favorable for the wave growth, and
the corresponding total growth rate, we rewrite Equation (32) in
terms of g1, g2, and γNL:

γtot

ω
= f1g1 + f2g2

2
±

√(
f1g1 − f2g2

2

)2

+
γ 2

NL

ω2
. (36)

In low-β plasmas, conditions of the spatio-temporal resonance
fix frequencies of nonlinearly driven waves at

f1 = ω1

ω
� 1 − VT

VA

(
1 − s1

K

) 1

K
,

f2 = ω2

ω
� VT

VA

(
1 − s1

K

) 1

K
,

where s1 is the sign of k1z: s1 = 1 for k1z > 0 (co-propagating
product KAW), s1 = −1 for k1z < 0 (counter-propagating
KAW).

Expression (36) provides a basis for our further analysis of
the total growth rate for the nonlocal decay AW = KAW +
KSW, including collisionless dissipative effects. In what follows
we will focus on the co-propagating KAW decay found in the
present study.

In Figure 4, we first show the perpendicular wavenumber
dependence γtot = γtot (s1 = 1, ρik1⊥) in comparison to the
nonlinear pumping rate γNL. The linear damping rates for KAWs
(γL1) and for KSWs (γL2) are also shown for comparison. Note
that all these rates are normalized by the pump wave frequency
ω. It appears that the linear damping not only reduces the growth
rate, but also shifts its maximum toward lower perpendicular
wavenumbers ρik1⊥ � ρik2⊥ of the nonlinearly driven waves.
The KSW damping is stronger near the maximum of the decay
rate, but γL1 becomes dominant at larger μi1, where γL2 saturates
(not shown). Another consequence of the wave dissipation is a
significantly smaller wavenumber spectrum of the instability,
γtot, compared to the wide spectrum of pumping γNL. In
accordance with Equation (31), the MHD wave should generate
kinetic-scale KAWs and KSWs at the rate γNL max ≈ 0.04ω.
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Figure 4. Total growth rate of the co-propagating KAWs, γtot/ω, as function of
normalized perpendicular wavenumber ρik1⊥ in the isothermal low-β plasma
with βi = 0.06 and Te = Ti . The magnetic amplitude of the pump MHD AW
is B⊥/B0 = 0.3. The nonlinear pumping rate γNL and Landau damping rates
γKAW = γL1 and γKSW = γL2 of the nonlinearly generated KAWs and KSWs
are also shown for reference.

Figure 5. Total growth rate γtot of the co-propagating (s1 = 1) product KAWs
and KSWs as function of the normalized perpendicular wavenumber ρik1⊥. The
plasma is low-β with βi = 0.06 and isotropic, but Te/Ti assumes three different
values Te/Ti = 1/3, 1, and 3. The MHD wave amplitude B⊥/B = 0.3.

Next, we compare the growth rates of co-propagating KAWs
for three different values of Te/Ti (see Figure 5). The growth
rate is larger for lower Te/Ti , which results from the competition
between stronger pumping and stronger damping at lower Te/Ti .
Again, the wavenumber spectra of the decay is significantly
smaller because the damping suppresses the driving everywhere
except for maximum.

Finally, we analyze behavior of the maximum growth rate
γmax = γmax (B⊥/B0, ω, βi, Te/Ti), which is given by

γmax = min [γm, γMD] . (37)

Here
γm = max

μ
[γtot (μ)] (38)

is the maximum attained by the growth rate γtot (μ) of the
ordinary parametric decay, and

γMD � 1.1

(
ω2

γm

)1/3

γm (39)

Figure 6. Maximum relative growth rates γmax/ω of the co-propagating KAWs
as functions of βi at two MHD AW amplitudes B⊥/B0 = 0.2 and 0.5. The
temperature ratio Te/Ti = 1. In the bifurcation points, the decay switches to the
regime of modified decay. The ordinary decay is shown for comparison by the
dashed lines.

is the maximum growth rate of the modified parametric decay. In
expressions (37)–(39), a modified decay formalism is taken into
account. As explained by Oraevsky (1983), the modified decay
formalism and the corresponding growth rate (Equation (39))
should be applied once the ordinary decay rate overcomes the
lowest frequency participating in the decay. Since the lowest
frequency in our case is the frequency of the product KSW, at
γm > ω2 the actual growth rate becomes Equation (39).

It is convenient to normalize all γ ’s by the MHD AW
frequency ω. The relative growth rate γmax/ω is shown in
Figure 6 as function of the ion plasma beta βi = 2V 2

T i/V 2
A. It

is seen that the process enhances toward lower βi and weakens
toward higher βi , but the overall difference is not very large.

As shown in Figure 6, there is a transition to the modified
decay at low βi where the dependence becomes more complex.
The transition occurs when the ordinary growth rate becomes
equal to the KSW frequency. The modified parametric decay
operates in the pump frequency range below the transition
frequency and causes the decay rate to decrease (the ordinary
growth rate in this frequency range would be faster, as shown for
comparison by the dashed lines). The ordinary decay operates
at larger βi .

Formally, one can find the decay threshold by setting γmax = 0
and solving for Bthr/B0. However, given the limited time
of the MHD AW existence, as well as various decorrelation
mechanisms, we decided to use a more realistic conventional
threshold calculated at γmax = 0.01ω. This choice means that
the process should be faster than 100 periods of the pump
MHD AW. We consider how this threshold behaves by solving
γmax = 0.01ω for Bthr/B0 and varying the ion plasma beta βi .
The result is shown in Figure 7. The electron/ion temperature
ratio Te/Ti reduces the threshold (hence enforce the decay) at
Te/Ti > 1, which is explained by the weakening of Landau
damping.

6. DISCUSSION

It is instructive to compare our nonlocal MHD-kinetic decay
(Equation (31)) into backward KAW and forward KSW with the
local MHD decay (Equation (1)) involving backward AW and
forward SW (Galeev & Oraevskii 1963). By taking the MHD
limit ρik1⊥ → 0 in the kinetic growth rate (Equation (31)), we
recover the MHD result (Equation (1)) by Galeev & Oraevskii
(1963). The maximum is attained at ρik1⊥ = 0, but the peak is
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Figure 7. Conventional threshold of the co-propagating decay Bthr/B0
calculated from the condition γmax (Bthr/B0) = 0.01ω, as function of the ion
plasma beta βi . The threshold at lower Te/Ti = 1 (solid lines) is lower than at
Te/Ti = 3.

not sharp and the growth rate of kinetic-scale waves at ρik1⊥ = 1
is only by factor 0.7 smaller than at maximum.

On the contrary, the co-propagating decay develops fastest
at ρik1⊥ ∼ 1, whereas its MHD counterpart does not exist.
The co-propagating decay of MHD AWs is therefore intrin-
sically nonlocal and only generates kinetic waves. Although
the (kinetic) co-propagating growth rate is formally almost
three times smaller than the counter-propagating MHD one,
the actual generation of kinetic waves is not necessarily weaker.
For example, AWs in the solar wind usually have finite cor-
relation lengths lz ∼ λz ∼ 2π/kz, which limits their linear
correlation time and hence the time available for the waves
to interact nonlinearly. In particular, the correlation time for
counter-propagating AWs is at least two times shorter than for
co-propagating AWs, which favors the co-propagating decay
and can make it dominant. These effects related to linear decor-
relation need further investigation (e.g., using the random phase
approach).

The nonlinear generation of KAWs and KSWs by the Alfvénic
pump wave has been previously studied by Hasegawa & Chen
(1976). However, the pump AW considered by Hasegawa &
Chen (1976) was already in the kinetic regime, i.e., it was
a KAW. It is clear that the growth rate found by Hasegawa
& Chen (1976) vanishes in the limit k⊥ ⇀ 0, which means
that only a local nonlinear interaction was captured. The same
approximation has been used by many other authors (see, e.g.,
Brodin et al. 2006; Kryshtal’ et al. 2007; Kumar & Sharma
2011), which did not allow them to capture the nonlocal
interaction. We kept the nonlinear terms neglected by previous
authors, which dominate at large k⊥ of product waves and lead
to the essentially nonlocal interactions.

Decay of parallel-propagating AWs into oblique Alfvén and
density waves was recently observed in the two-dimensional
hybrid simulations by Gao et al. (2013). We believe that Gao
et al. have captured another decay, which is much slower than
the nonlocal decay we study here. Indeed, with parameters used
by Gao et al. in their run 1, our nonlocal decay would generate
oblique product waves within the time scale tωci < 1000, well
before the oblique waves appear in Figure 2 by Gao et al.
(2013). Also, the perpendicular wavenumbers generated by
our decay, ρik1⊥ ∼ 1, are much larger than those observed

in the simulations, ρik1⊥ ∼ 0.01. Waves with such large
wavenumbers as ours (ρik1⊥ ∼ 1) could not be captured by
these hybrid simulations because of their insufficient spatial
resolution, limited by the ion inertial length.

In the present study, we are focused on the initial stage of
the three-wave parametric decay where the parallel transport
appears to be inefficient. Since this process cannot contribute
to the small-scale parallel component observed by He et al.
(2011) and Podesta & Gary (2011), other mechanism(s) should
be involved. Recent simulations by Gao et al. (2014) suggest
that this parallel component can be generated at the later stages
when the modulation instability develops due to four-wave
interactions.

The close analog of the process we study here is the
nonlocal decay AW = KAW + KAW studied by Voitenko
& Goossens (2005) at very low β < me/mi . Similar to our
decay, the decay considered by Voitenko & Goossens (2005)
is efficient for parallel-propagating MHD AWs (k⊥ = 0) and
is essentially nonlocal, generating highly oblique kinetic waves.
There is, however, a principal difference: Voitenko & Goossens
considered nonlinearities proportional to k1⊥·B⊥, whereas we
kept the terms ∝ k1⊥×B⊥. As a consequence, our decay
generates k1⊥⊥ B⊥, which is opposite to the case k1⊥‖ B⊥ by
Voitenko & Goossens. Magnetic polarization is also different:
B1⊥‖ B⊥ in our case, and B1⊥⊥ B⊥ in the case by Voitenko &
Goossens. In the near future, we plan to extend our investigation
to include the nonlinearities ∝ k1⊥·B⊥.

Regardless of which decay dominates, the MHD AW spec-
trum with a preferred polarization direction should generate
a spectrum of KAWs that are also polarized. The MHD AW
anisotropy is indeed observed in the solar wind (Belcher &
Davis 1971), and can either be a consequence of the sampling
effect, or an inherent property of the MHD turbulence (Turner
et al. 2012). However, we do not know of any correlation stud-
ies comparing simultaneously measured wave polarizations at
MHD and kinetic scales, which would allow us to check if one
of the above trends exists.

The fraction of the MHD wave energy that will be deposited
into KAWs and KSWs via nonlocal coupling depends on the
correlation times of MHD AWs. If the MHD pump waves
keep their identity for a sufficiently long time, comparable to
the nonlinear growth time of the kinetic waves, the nonlocal
decay can be fulfilled in one single step and the related spectral
transport is very efficient. This situation can be compared with
the strong turbulence cascade but even more efficient because,
in a single step, it transports energy over a much wider interval
of scales. In the opposite situation, when the pump wave
decorrelates faster than the kinetic waves grow, the nonlocal
transport proceeds in many uncorrelated steps as in the weak
turbulence. The more intermittent are local interactions among
MHD AWs, the longer they exist, and hence the stronger is the
direct nonlinear coupling of the MHD wave energy into kinetic
scales.

Recent observations of the solar wind have revealed
“standalone” AWs co-existent with the regular background
MHD turbulence (Ghosh et al. 2009). These “standalone” AWs
keep their coherency longer than the regular turbulent fluctu-
ation because their spatio-temporal and amplitude proportions
do not fit those of regular turbulent fluctuations and hence their
nonlinear interaction with the background turbulence is inef-
ficient. Simultaneous observations of such elevated AWs and
KAWs at the proton gyroscale could help distinguishing the
nonlocal transport we discuss here.
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7. CONCLUSIONS

In the framework of parametric decay formalism, we inves-
tigated a nonlinear generation of small-scale KAWs and KSWs
by large-scale MHD AWs. A new decay channel for MHD AW
is found into forward kinetic-scale KAW and KSW. The previ-
ously known decay of MHD AW into backward MHD AW and
forward MHD SW is extended to include the oblique kinetic
regime. KAWs propagating against the pump MHD AW are
generated at about the same rate as co-propagating KAWs and
can contribute to the increasing fraction of the sunward waves
as k1⊥ approaches the ion gyroscale in the solar wind. The
MHD decay by Galeev & Oraevskii (1963) is recovered by our
counter-propagating kinetic decay in the MHD limit ρik1⊥ → 0.
The collisionless dissipation (Landau damping) of the product
KAWs and KSWs is strong and reduces their growth rate. Nev-
ertheless, the MHD AWs with the parameters representative for
the solar wind are efficient in generating small-scale KAWs and
KSWs at ρik2⊥ ∼ ρik1⊥ ∼ 1. With reasonable MHD wave am-
plitudes B ∼ 0.3B0, the growth rate of co-propagating kinetic
waves can be quite high, γ ∼ 0.1ω, and can provide an efficient
mechanism for the nonlocal spectral transport from MHD to
kinetic scales.

The main features of the nonlocal MHD/kinetic decay into
co-propagating waves and related spectral transport are as
follows.

1. The nonlocal transport occurs in the cross-field direction
such that the perpendicular wavenumbers of excited ki-
netic waves are much larger than the original wavenum-
bers of MHD AWs: k2⊥ � k1⊥ � k⊥. There is no non-
local transport of the AW power in the parallel direction,
k1‖ ∼ k‖.

2. The kinetic-scale KAWs and KSWs are most efficiently
excited at the wavenumber ρik2⊥ � ρik1⊥ � 1 defined by
competition between the nonlinear pumping γNL and the
counter-acting dissipation γL1,2.

3. Perpendicular wave vectors of nonlinearly generated kinetic
waves tend to be normal to the pump magnetic field,
k1⊥ ⊥ B⊥.

4. The process is not sensitive to the pump perpendicular
wavenumber k⊥ and is efficient for the parallel-propagating
MHD AWs, k⊥ = 0.

5. The high-frequency/high-amplitude MHD AWs are more
efficient generators of kinetic waves than the low-
frequency/low-amplitude ones. This property makes the
process feasible for intermittent fluctuations arising in the
solar wind turbulence at higher (but still MHD) frequencies.

6. The decay strengthens toward lower β, which could make
it more efficient within 1 AU closer to the Sun where β is
rapidly decreasing.

We believe that vectorial nonlinearities proportional to
[k1⊥ × k⊥] · ẑ can contribute to the nonlocal interaction as well
and we are going to study them in the near future. One should
note that the scalar and vectorial decays occupy different do-
mains in the wave vector space, which makes their separate
investigations possible.
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