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Abstract Volcanoes release large amounts of halogen species such as HCl and HBr, which can be
converted into reactive halogens by heterogeneous photochemical reactions that are currently not fully
characterized. Here we report on the first satellite detection of volcanic chlorine dioxide (OCIO).
Measurements were performed using the Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography instrument for the ash-laden plume emitted after the 2011 eruption of Puyehue-Cordén Caulle
in Chile. We also identified volcanic BrO using the Ozone Monitoring Instrument, as well as enhanced HCl in
data of the Microwave Limb Sounder instrument. These observations suggest that OCIO was formed in the
plume by the CIO + BrO reaction in presence of a large excess of ClO. The present satellite data set could help
better understand reactive halogen chemistry in volcanic plumes and its impact on

atmospheric composition.

1. Introduction

Volcanic degassing produces large amounts of H,0, CO,, SO,, H,S, and halogens (HCI, HBr, HF). The study of
these volatiles provides key information on magmatic processes and eruptive styles [Symonds et al., 1994].
Halogen species are believed to play an important role in magmatic systems [Aiuppa et al., 2009] and once
emitted, they are known to affect the atmospheric chemistry [von Glasow et al., 2009]. A key chemical process
is arguably the conversion of HBr and HCl into reactive species via a series of fast heterogeneous catalytic
reactions on the surface of volcanic aerosols [Oppenheimer et al., 2006; Bobrowski et al., 2007]. While this
mechanism can strongly affect ozone budgets locally, its relevance on the global scale is not known because
total volcanic halogen source strengths are only poorly constrained [Halmer et al., 2002; Aiuppa et al., 2009;
Pyle and Mather, 2009].

Atmospheric measurements of reactive halogen species in volcanic plumes (see references, e.g., in Saiz-Lopez
and von Glasow [2012]) have focused a lot on the detection of BrO, from ground-based [Bobrowski et al., 2003,
2007; Oppenheimer et al., 2006], aircraft [Heue et al., 2011], and satellite platforms [Theys et al., 2009; H6rmann
et al.,, 2013]. Conversely, there has been only a handful of papers dealing with measurements of volcanic
chlorine oxides as CIO and OCIO (a species formed by the reaction of BrO and ClO) or molecular chlorine and
these were all obtained using ground-based instruments [Lee et al., 2005; Bobrowski et al., 2007; Zelenski and
Taran, 2012]. From space, HCl has been identified in volcanic plumes from several explosive eruptions [Prata
et al., 2007; Read et al., 2009] but there has not been a single detection of reactive chlorine of volcanic origin
that could help better understand plume composition and chemistry.

Ultraviolet satellite nadir observations of OCIO have been used extensively to study stratospheric chlorine
activation in polar winters [e.g., Kiihl et al., 2004; Oetjen et al., 2011]. Here we report the first satellite detection
of OCIO in a volcanic plume, complemented by simultaneous measurements of BrO and HCl. The observa-
tions were performed after the explosive eruption of the Puyehue-Cordén Caulle (PCC) volcano in Chile
(40.59°S, 72.12°W; 2236 m above sea level) which started on 4 June 2011 around 19:15 UTC. The volcano
emitted about 200 kT of SO, [Theys et al., 2013] and copious amount of ash [Clarisse et al.,, 2013] in the at-
mosphere. The plume was injected at tropopause levels (12-14 km) and then transported by strong westerly
winds. It circled around the globe for several days close to the terminator, providing favorable conditions to
measure OCIO (the formation of OCIO is mitigated at high sun due to rapid photolysis).
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2. Data

This work is based on satellite observations from the polar sun-synchronous EOS Aura/Microwave Limb
Sounder (MLS), Envisat/Scanning Imaging Absorption Spectrometer for Atmospheric Chartography
(SCIAMACHY), and EOS Aura/Ozone Monitoring Instrument (OMI).

We used version 3.3 Level 2 MLS HCl retrievals [Froidevaux et al., 2008] at 146.7 mb (~14 km) and for latitudes
southward of 20°S. The HCl data were extracted using a fixed threshold of 1.35 ppbv, which corresponds to
values above the background plus noise at the 30 level. The estimated accuracy of HCI mixing ratios from
MLS is about 0.3 ppbv.

OCIO and BrO slant columns were retrieved using differential optical absorption spectroscopy (DOAS)
[Platt and Stutz, 2008] from SCIAMACHY and OMI nadir spectra, respectively. The retrieval of OCIO was
performed in the wavelength interval from 365 to 389 nm, using similar settings as described by Oetjen
et al. [2011]. In addition to the cross-section of OCIO, the DOAS fit includes spectral signatures for NO,,
SO,, Og4 the Ring effect and corrections for the undersampling and polarization sensitivity of the instru-
ment. As the PCC volcano is located in the region of the South Atlantic Anomaly (SAA), we have also
applied a procedure to remove spikes in the spectra [Richter et al., 2011]. The analysis of BrO was made in
the fitting window 328.5-359 nm [De Smedt et al., 2012; Theys et al., 2011] and includes spectra for BrO,
H,CO, O3, NO,, OCIO; the Ring effect; and a spike correction as well. The OMI BrO retrieval also includes
reference radiance spectrum selection and accurate wavelength calibration separately for each of the 60
detector rows of OMI.

To convert the retrieved slant columns of OCIO and BrO into vertical columns, we have used geometrical
air mass factors adequate for a stratospheric absorber. To isolate the signal from nonvolcanic back-
ground, we applied two different kinds of offset corrections to the measurements. For OCIO, the slant
columns are normalized to the daily values as a function of solar zenith angle (SZA). The offset correc-
tion for BrO removes the total atmospheric (troposphere and stratosphere) BrO background. It applies to
the vertical columns and depends on latitude and cross-track position (to reduce stripes in the re-
trievals). The OMI data affected by the so-called row anomaly issue and exhibiting high fitting residuals
are filtered out.

From the data scatter, we evaluate the lower detection limit for the retrieved vertical columns of OCIO and
BrO to be about 2 x 10'* molecules/cm? for individual pixels. We estimate the typical accuracy of the OCIO
and BrO columns to be around 35% and 25%, respectively.

To help identify and characterize the volcanic plume, we have also used SO, column and aerosol/ash index
products from satellite nadir instruments, available at http://sacs.aeronomie.be [Brenot et al., 2013].

3. Results and Discussion

Figure 1 (top) shows MLS HCl mixing ratios at 146.7 mb for June 2011. Several data points are located at high
latitudes and are probably due to the presence of the Antarctic polar vortex, but elevated HCl values (up to
2.5 ppbv) are also detected at midlatitudes and are distributed as a ring-like structure collocated with the

volcanic ash cloud from PCC detected by Infrared Atmospheric Sounding Interferometer (IASI) [Clarisse et al.,
2013]. This suggests a volcanic origin. Our hypothesis is further strengthened by the statistics of HCl values
above the background (as defined above) at mid-latitudes in austral winter for 2010-2012 (Figure 1, bottom),
which show a sharp increase in the number of HCl detections only in June 2011. Note that the first sounding
of the volcanic plume by MLS was on 7 June 2011, i.e., about 60 h after the emission peak of the PCC eruption
[Theys et al., 2013]. Hence, the MLS HCl values are not representative of the young plume of PCC. Investigation
of MLS data also reveals SO, (not shown) from the PCC eruption up to 77 ppbv (with a detection limit of

~15 ppbv). By considering the data for which both HCl and SO, mixing ratios are above their respective limits
of detection, we estimate a range of values for the ratio HCI:SO, of 0.03 to 0.11 which is similar to that found
for the eruptions of Soufriere Hills [Prata et al., 2007] and Hekla [Rose et al., 2006]. It should be stressed that the
MLS HCI mixing ratios underestimate the volcanic cloud concentrations, because the plume vertical extent is
smaller by about a factor of 3 than the vertical resolution of the MLS HCl product [Froidevaux et al., 2008].

Taking this feature into account, we can estimate the concentration of HCl in the young portion of the vol-
canic plume (not sampled by MLS) by applying a factor for the atmospheric dispersion that is the ratio of the
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Figure 1. (top) Southern Hemisphere MLS measurements of HCl (ppbv) at 146.7 mb overlay on volcanic ash detection by
IASIin percentages per grid cell, for June 2011. (bottom) Weekly number of MLS HCl values above the background (see text)
at 146.7 mb for the austral winters of 2010, 2011, and 2012 (latitudes: 30-60°S). The dashed line indicates the start of the
PCC eruption on 4 June 2011. The numbers (in red) are the maximum HCI values (ppbv) measured in June 2011.

maximum SO, columns measured by IASI on 5 June (the closest overpass after the start of the eruption) to
the columns measured on 7 June 2011. The range of deduced values for HCl in the young plume is about
30-50 ppbv, which is similar to in-situ measurements of HCl by Rose et al. [2006] for the 2000 Hekla plume
(comparable in terms of total SO, released to PCC).

Retrieval results of OCIO and BrO are presented in Figure 2 for the period 5-9 June, corresponding to
near-twilight conditions (60-85° SZA range). For five consecutive days, a plume of elevated OCIO and
BrO was detected after the eruption of PCC with column values well above or close to the detection
limits. An excellent correlation was found between the spatial extent of the plume and the corre-
sponding ash plume (white lines) measured by SCIAMACHY and Atmospheric Infrared Sounder (AIRS)—
which is used here because the sensor has a better sensitivity to ash and similar overpass time than
OMI. Note that the enhanced OCIO columns outside the volcanic plume contours are artifacts due to
the SAA.

To demonstrate the unambiguous detection of volcanic OCIO, an exemplary fitting result for an averaged
spectrum of the five SCIAMACHY measurements with the highest OCIO slant columns is given in Figure 3,
showing clear OCIO absorption signatures for the PCC eruption plume. In order to consolidate the ob-
servations presented here, we have conducted a series of tests to retrieve OCIO from spectra acquired by
OMI and GOME-2 (onboard MetOp-A) and we also inspected the SCIAMACHY and GOME-2 BrO column
data [Theys et al., 2011]. In general, the data quality was found to be lower than in Figure 2; notably, the
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Figure 2. Vertical column measurements of (top) OCIO by SCIAMACHY and (bottom) BrO by OMI after the eruption of the
PCC volcano (marked by a black triangle) during the period of 5-9 June 2011. Note that the color scales have been chosen
in a way that the OCIO and BrO plumes can be best visualized. The volcanic plume is identified with the white line contour
based on the aerosol index products from SCIAMACHY and AIRS (onboard EOS Aura), respectively. The numbers inset are
indicative of the solar zenith angle in degree for a selection of satellite hotspots.

scatter of data is larger. It is believed to reflect differences in instrumental performances (e.g., in terms of
signal-to-noise ratio and spectral resolution), fitting windows used, and overpass times-SZA. Nevertheless,
signals of volcanic OCIO and BrO from PCC could be identified in all these data sets (see Figures S1 and S2
in the supporting information).
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Figure 3. Example of a fit of OCIO for a spectrum obtained by averaging five SCCAMACHY measurements of the PCC plume
with the highest OCIO slant columns (6 June 2011).

Generally speaking, BrO was only measured for scenes with modest SZA (60-75°) while OCIO could be
detected for SZA up to 82° (Figure 2). This behavior is consistent with the expected photochemical tie be-
tween BrO and OCIO:

BrO + CIO—0CIO + Br (RT)
OCIO + hv—ClIO + 0O (R2)

Interestingly, the OCIO and BrO vertical columns in Figure 2 vary in similar ranges with maximum values of 10
and 7 x 10" molecules/cm?, respectively, which correspond to mixing ratios of ~ 170 and 120 parts per
trillion by volume for a 1 km thick plume. Our understanding of this feature is that the OCIO and BrO abun-
dances reflect a photostationary state ([OCIO] = k;[BrO][ClO]/Jocio) and that the CIO mixing ratio in the PCC
plume should have been typically in excess, i.e., about 1 ppbv or larger (=Jocio/ks).

From Figure 2, one can also see differences in the measured patterns of OCIO and BrO. They are due—to
some extent—to differences between SCIAMACHY and OMI instruments in terms of spatial coverage and
overpass time. However, the heterogeneous photochemical processes releasing halogen oxides, and leading
to the steady state between BrO and OCIO, rely on many parameters that are very variable and depend on the
age of the volcanic plume and its composition [Bobrowski et al., 2007]. Therefore, it is likely that differences
between OCIO and BrO in Figure 2 (see also the supporting information) reflect local changes in the con-
centration of halogens in the aerosol and gas phases, the particle surface areas available for the recycling of
halogen oxides, and the solar radiation extinction by volcanic aerosols (e.g., affecting Jocio).

A striking feature in Figure 2 is the low abundances of BrO and OCIO in the early plume of the PCC eruption,
which conversely was the most rich in SO, [e.g., Theys et al., 2013]. This is most apparent on 5 June 2011 on
the eastern part of the volcanic plume. One explanation is that the scavenging of halogen halides (HCl and
HBr) by water, ice, or ash [Textor et al., 2003] was very efficient in the early stage of the eruption so that the
production of BrO and OCIO was limited. Another possibility that cannot be ruled out is a time shift in the
initial volcanic emissions of halogens compared to SO,, resulting, e.g., from differences in magmatic solubility
[see, e.g., Aiuppa et al., 2009].

4, Conclusions

We have reported the first space-based measurement of a large volcanic OCIO plume, with vertical columns
up to 1 x 10" molecules/cm? that could be tracked for 5 days after the 2011 eruption of Puyehue-Cordén
Caulle. This was complemented by simultaneous observations of BrO and HCl enhancements in the plume. As
the main production channel of OCIO is the reaction of CIO with BrO, the latter measurements support the
positive detection of volcanic OCIO. These observations suggest that ozone has likely been depleted in the
volcanic cloud through the CIO/BrO catalytic cycle [McElroy et al., 1986].

The evidence for volcanic halogens activation for many days points to a very efficient recycling mechanism of
halogen oxides on the surface of volcanic aerosols. The satellite observations presented here, combined with
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measurements of volcanic aerosol parameters (composition, size distribution, and concentration), offer the
opportunity to further study and model reactive halogen chemistry in volcanic plumes and help to better
characterize the potential of such volcanic emissions to deplete ozone, especially for large explosive volcanic
eruptions [Kutterolf et al., 2013].

The potential for observing volcanic OCIO in the future is important as forthcoming space nadir ultraviolet
instruments will have improved spectral performances and improved spatial and temporal resolution.
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