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Abstract in this study, we provide a new perspective on the current state of the ozone layer using a
comprehensive long-term total ozone data record which has been recently released within the framework
of the European Space Agency’s Climate Change Initiative. Based on a multivariate regression analysis, we
disentangle various aspects of ozone change and variability on global and regional scales, thus enabling the
monitoring of the effectiveness of the Montreal Protocol. Given dominant natural variability the expected
midlatitude onset of ozone recovery is still not significant and would need additional 5 years of observations
to be unequivocally detectable. A regional increase in the tropics is a likely manifestation of a long-term
change in El Nifo-Southern Oscillation intensity over the last two decades induced by strong El Nifio in
1997/1998 and strong La Nifa in 2010/2011.

1. Introduction

The stratospheric ozone layer protects organisms and ecosystems on Earth from harmful effects of solar
ultraviolet radiation. A strong decline in ozone amounts has been observed, that is, mainly attributable

to anthropogenic emissions of ozone-depleting substances (ODSs), e.g., chlorofluorocarbons [World
Meteorological Organization (WMO), 2011]. Since 1987 the Montreal Protocol [United Nations Environment
Programme, 1986] and its subsequent amendments and adjustments control the production and release
of ODSs, thereby starting the process of ozone layer protection. Measurements indicate that stratospheric
concentrations of ODSs peaked in the late 1990s and have begun to decrease since the turn of the century
[WMO, 2011].

Hence, now a key issue is the monitoring of the effectiveness of the Montreal Protocol, i.e., the detection of
the expected onset of ozone recovery and its spatial fingerprint. First signs of a turnaround in zonal mean
ozone have been reported using satellite as well as ground-based observations [e.g., Mdder et al., 2010;
Salby et al., 2011; Ziemke and Chandra, 2012; Kuttippurath et al., 2013; Kyréld et al., 2013; Chehade et al.,
2013; Bourassa et al., 2014]. However, statistically significant results are still greatly restricted to very few
latitude bands. Large annual and interannual variabilities due to complex feedback mechanisms between
chemical and dynamical atmospheric processes hamper the unambiguous detection of ozone recovery.
Additionally, the observed increase in the Northern Hemisphere shows also some significant dynamical sig-
nature in addition to early signs of recovery [Dhomse et al., 2006; Wohltmann et al., 2007; Harris et al., 2008;
WMO, 20111.

In order to unravel and quantify the different aspects of ozone variability, high-quality and stable long-term
data sets are needed. Within the framework of the European Space Agency’s Climate Change Initiative
(ESA-CCI) [Hollmann et al., 2013] a coherent and consistent global data record of total ozone has been cre-
ated. The so-called Global Ozone Monitoring Experiment (GOME)-type total ozone-essential climate variable
(GTO-ECV) has been compiled from three European satellite sensors, which provide ozone measurements
for the last 18 years. We use this data record to demonstrate its potential to estimate spatially resolved total
ozone trends and to analyze decadal ozone variability. We disentangle various aspects of ozone change on
global and regional scales using multivariate linear regression. Furthermore, we discuss our ability to detect
ozone recovery now and in the near future, which is a central milestone of success for the Montreal Protocol.
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Table 1. European Total Ozone Satellite Instrument Characteristics

Parameter GOME
6/1995 to 7/20112

SCIAMACHY GOME-2
8/2002 to 4/2012 1/2007 to present

Data availability

Satellite ESA ERS-2° ESA ENVISATC EUMETSAT MetOp-Ad
Spectral coverage 240-790 nm 240-2380 nm 240-790 nm
Spectral resolution 0.2-0.4nm 0.2-1.5nm 0.2-0.4nm
PMD® coverage 3 p-PMD 6 p-PMD 15 p-PMD and
300-800 nm 320-2380 nm 15 s-PMD
310-790 nm
Viewing geometries nadir nadir, limb, occultation nadir
Ground pixel size 320 x 40 km? 60 X 30 km? 40 x 80 km?
Swath width 960 km 960 km 1920 km
Altitude 785 km 800 km 817 km
Equator crossing 10:30 AM. LTf 10:00 A.M. LT 09:30 AM. LT
Global coverage 3 days 6 days almost daily
Reference Burrows et al. [1999] Bovensmann et al. [1999]  Callies et al. [2000]

@No global coverage since June 2003.

bESA ERS-2: European Space Agency-Second European Remote Sensing Satellite.

CENVISAT: Environmental Satellite.

dEUMETSAT MetOp-A: European Organisation for the Exploitation of Meteorological
Satellites-Meteorological Operational Satellite-A.

€PMD: Polarization Measurement Device detecting polarized light perpendicular (p-) or
parallel (s-) to the optical plane.

fLT: local time.

2. Data

Three European passive remote sensing instruments GOME (Global Ozone Monitoring Experiment) on board
ERS-2 (Second European Remote Sensing Satellite), SCIAMACHY (Scanning imaging absorption spectrom-
eter for atmospheric chartography) on board ENVISAT (Environmental Satellite), and GOME-2 on board
MetOp-A (Meteorological Operational Satellite-A) provide global atmospheric composition data for the last
18 years [Burrows et al., 1999; Bovensmann et al., 1999; Callies et al., 2000]. An overview of the most impor-
tant instrument properties and viewing geometries is given in Table 1. Total ozone is retrieved using (1) the
GOME Data Processor (GDP) version 4.X [Van Roozendael et al., 2006; Lerot et al., 2009; Loyola et al., 2011; Hao
et al., 2014] and (2) the GOME-type direct fitting version 3 algorithm. The latter is based on the direct fit-
ting of simulated reflectances to the observations in the Huggins band [Van Roozendael et al., 2012; Lerot et
al., 2014]. It has been developed within the ESA-CCI, which aims to create long-term and consistent climate
data records for a number of essential climate variables (ECVs) including total ozone [Hollmann et al., 2013].
The complete total ozone data records have been reprocessed for the entire time series of all instruments.
Intersensor comparisons and ground-based validation indicated that these data records are of superior
quality regarding long-term stability and precision [Lerot et al., 2014].

These total ozone data products were the basis for two merged homogeneous data records GTO-ECV GDP
and GTO-ECV CCl combining the individual measurements following the approach described in Loyola

et al. [2009a] and Loyola and Coldewey-Egbers [2012]. GOME data are used as a reference standard, and
SCIAMACHY and GOME-2 are adjusted using latitudinal and time-dependent correction factors which were
determined during instrument overlap periods. These factors account and correct for the generally small
remaining intersensor differences [Lerot et al., 2014, Figure 16]. Both data records cover the period from July
1995 to June 2013.

A previous version of GTO-ECV GDP covered the period from July 1995 to December 2009 and was initially
used to evaluate atmospheric Chemistry-Climate Model simulations [Loyola et al., 2009a] and for preliminary
trend assessment [Loyola et al., 2009b]. Moreover, the data record was used in the last World Meteorological
Organization Scientific Assessment of Ozone Depletion [WMO, 2011]. An excellent agreement between

the GTO-ECV CCl data record and the recently released solar backscatter ultraviolet merged ozone data set
version 8.6, based on a comparison of zonal mean total ozone and total ozone anomalies, was found [Chiou
et al., 2014]. The mean difference in total ozone is between 0.2% (+0.6%) and 0.8% (+0.7%) depending on
the latitude band.
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3. Method

The monthly to decadal variability of total ozone is estimated using a multivariate linear regression model
that quantifies the relationship between ozone and several explanatory variables describing natural and/or
anthropogenic forcings. We adopted the form used in Vyushin et al. [2007]:

O;(m)=A+B,-m+ C-SF(m)+ D - QBO30(m)
+ E - QBO50(m) + F - MEI(m) + X(m). (1)

O;(m) is the monthly mean ozone column, m is the number of months after the initial time (July 1995),

and A-F are the model fit coefficients calculated using a standard least squares algorithm. In the case of
analyzing the temperature trend (see section 5), O;(m) is replaced with the monthly mean temperature
values T(m).

Seasonal variability is accounted for by expanding the coefficients as, for example,
Na
A=Ag+ Y Ay, sinQukm/12) + Ay cos2mkm/12), ®)
k=1
with N, accounting for annual, semiannual, 4 month, and if necessary 3 month variations. We used N, = 4,
Ng =0,Nc=1,Np=1,N; =1,and Ny = 0.

The quasi-biennial oscillation signal is represented by both 30 hPa and 50 hPa equatorial zonally averaged
monthly winds (QBO30(m) and QBO50(m)). SF(m) denotes the 10.7 cm radio flux and accounts for the
impact of the 11 year solar cycle. MEI(m) is the Multivariate El Nifio-Southern Oscillation (ENSO) Index. All
covariates have been detrended before the fit in order to ensure that B, represents the net trend induced by
the covariates and/or unknown processes [Bodeker et al., 1998]. A potential nonnegligible autocovariance of
the residuals X(m) is accounted for by applying a Cochrane-Orcutt transformation [Dhomse et al., 2006]. We
adopt the common rule that a fit coefficient is statistically significant when its absolute value is greater than
2 times its error (95% confidence interval).

The number of years n* that is required to detect a trend B, with a probability of 90% is calculated following
the method described in Weatherhead et al. [1998]:

3360 [1490]°
= . —_— . 3
! [ Bol 1—¢] ©

¢ is the autocorrelation of the noise term X and oy is its variance.

4, Ozone Variability and Trend

The annual mean linear trend coefficients are calculated for both GTO-ECV CCl and GTO-ECV GDP total
ozone data records for the period July 1995 to June 2013 from 60°N to 60°S (Figures 1a and 1b). Grey crosses
denote regions where the trends are not statistically significant. Estimated trends are positive (yellow and
red shading) in major parts of the globe. Small areas indicating nonsignificant negative trends are found

in the northern middle latitudes and in the southern Indian Ocean around 30°E-90°E. Statistically signifi-
cant positive trends around 1% per decade are found in the tropics. Largest positive trends of about 1.5-2%
per decade are found in the Northern Hemisphere in the European and North Atlantic region, but they are
statistically significant in limited small areas only. In southern middle latitudes significant trends of about
1.5% per decade are found around southern South America, Australia, and New Zealand. Thus, the expected
onset of ozone recovery in midlatitudes is still on the edge of detection. However, both GTO-ECV data
records show significant positive trends in large parts of the tropics and subtropics, which is discussed in
more detail in the subsequent section. The trends in the tropical region differ from those (nonsignificant

or just barely positive trends) obtained in other studies [e.g., Chehade et al., 2013], which might be related
to the different approaches in selecting the covariates. A sensitivity study yielded that changing the start
points of the regression would not have a significant impact on the spatial trend patterns. Concerning the
spatial patterns, there is very good agreement between both GTO-ECV versions, indicating that in both
cases an accurate ozone retrieval algorithm in combination with an adequate and robust merging approach
lead to stable and reliable long-term data records.
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(b) GTO-ECV GDP Total Ozone

(a) GTO-ECV CCI Total Ozone
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Figure 1. Linear total ozone trend estimates 1995-2013 from satellite data (a) GTO-ECV CCl and (b) GTO-ECV GDP. Note that the scales of the color bars are slightly

different. Bottom row

at (c) 30 hPa and at (d) 50 hPa, (e) the solar cycle, and (f) the Multivariate ENSO Index. Grey crosses denote that the coefficients are not significant at the 95%

confidence level.
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Figures 1c-1f show the estimated annual mean coefficients as a longitude-latitude map for the GTO-ECV
CCl data record for the covariates QBO30, QBO50, the solar flux, and MEI that are main contributors to total
ozone variability. QBO30 and QBO50, which are around 90° out of phase, are dominant not only equator-
ward of 15°N/S but also in the subtropics and midlatitudes. The amplitude is stronger for QBO30 than for
QBO50. Positive coefficient estimates (red) indicate an in-phase relation between ozone anomalies and
equatorial wind anomalies, i.e., high ozone during westerly winds and low ozone during easterly winds.
The increase in ozone in the first case is due to downward transport of ozone-rich air to altitudes where
ozone lifetimes are relatively long. Poleward of 20°N/S, the opposite relation is found (blue), i.e., ozone val-
ues below the mean during QBO30 westerly phases. These findings are in good agreement with Baldwin et
al. [2001], Steinbrecht et al. [2006] and Frossard et al. [2013].

The solar signal coefficients are plotted in Figure 1e. An accurate determination of the solar impact is difficult
as the time span of the data record covers only one and a half solar cycles. However, the most important fea-
tures are visible: (1) a positive correlation between solar activity and ozone in the tropics, i.e., higher ozone
levels during solar maxima and vice versa; (2) basically zonally symmetric patterns at low latitudes; and (3)
higher amplitudes at northern middle to high latitudes with distinct longitudinal variance due to transport
and dynamics [Steinbrecht et al., 2003].

Figure 1f shows the coefficients estimated for the MEL. They are negative and significant for almost the entire
tropical zone except the eastern Indian Ocean and Southeast Asia. Maximum values are found in the Pacific.
Negative correlations mean that ozone values are higher than the mean during La Nifa cold phases and
lower during El Nifio warm phases, which is in good agreement with earlier studies [Steinbrecht et al., 2006;
Pyle et al., 2005; Oman et al., 2013]. Five to 15 Dobson Units of ozone variability can be explained by this
phenomenon in those regions. The longitudinal structure in the tropics can be explained with a shift in the
convection pattern from east to west during warm El Nifio events. Over the eastern Pacific enhanced sea sur-
face temperature (SST) and convection lead to a reduction in tropospheric ozone, whereas toward Indonesia
lower SST and reduced convection lead to an increase in tropospheric ozone. Stratospheric columns are
more or less zonally invariant [Ziemke et al., 2010]. The area of significance becomes smaller in northern
midlatitudes and the correlation reverses, which indicates that during El Nifio warm phases meridional cir-
culation is strengthened and transport of ozone-rich air from the tropics to the extratropics is enhanced
[Rieder et al., 2013]. Furthermore, enhanced stratosphere-troposphere exchange following El Nifio events
coincides with an increase in extratropical ozone [Zeng and Pyle, 2005]. In southern midlatitudes coefficients
are not significant. The zonal distribution of all covariates discussed above is in very good agreement with
the results published by Chehade et al. [2013].

Next we discuss the measure R?, which is the ratio of the variance described by the regression to the total
variance [von Storch and Zwiers, 1999]. If R? is close to 1, a large part of the variance can be explained by the
regression, whereas R? close to zero denote that either random noise is dominating total variance or impor-
tant explanatory variables are missing in the model. R? values for the GTO-ECV CCl global fits are shown

in Figure 2a. They indicate that the regression works very well in the tropics, subtropics, and midlatitudes
as it explains more than 80% of the variance, which is, however, dominated by the seasonal cycle. Only

in southern midlatitudes R? values less than 70% occur. Furthermore, a few local minima in R?, e.g., in the
Euro-Atlantic sector and in the northernmost zone of Africa indicate that additional explanatory variables,
such as the North Atlantic Oscillation Index or the Antarctic Oscillation Index would have an overall small
positive impact on the fidelity of the statistical fit. A sensitivity study yielded a slight increase in R? of about
5% in the respective areas when these variables are included.

Figure 2b shows the year in which we can expect to detect a total ozone trend of a given magnitude (see
equation (3)). We use the variance and autocorrelation determined from the GTO-ECV CCl measurements,
and we use model projections for the first half of this century to obtain a zonal distribution of expected
ozone trends, which are smallest in the tropics (~0.5% per decade) and increase toward higher latitudes.
Values in middle latitudes of the Southern Hemisphere (1-2% per decade) are expected to be slightly larger
than in the Northern Hemisphere (0.7-1.7% per decade).

Figure 2b indicates that detection of changes in the tropics will not be possible before 2030, because the
expected trend itself is small and autocorrelation is not negligible. On the other hand, variability is low in
this region. Toward higher latitudes the number of years decreases. Early trend detection will be possible
from ~2015 onward in some regions in the Southern Hemisphere (20°S poleward), whereas in the Northern
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(a) GTO-ECV CClI Explained Variance
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Figure 2. (a) Explained variance R? of regression for GTO-ECV CCl total ozone data record. (b) Estimated year of expected ozone trend detection assuming a zonal
mean trend profile estimated from model predictions for the period 1995 through 2050.

Hemisphere stronger interannual and intraannual variabilities lead to longer periods needed to observe a
recovery of ozone (trend detection possible from 2020 onward).

As can be readily seen from the results the length of the current GTO-ECV data records covering 18 years
is still at the lower end for reliable recovery detection as natural variability still dominates the evolution
of total ozone in middle latitudes since the mid-1990s. Therefore, trend estimates presented in Figure 1a
are not significant in major parts of the extratropics. Moreover, we have to bear in mind (1) that uncer-
tainty in the regression method influences the determination of the year and (2) that numbers would
change if the real trend differs from the predicted one used here. This is the case for the tropics, where the
trend of ~1% per decade obtained from the satellite data is larger than the assumed and is thus already
statistically significant.

For the polar regions—which cannot be observed throughout the whole year by the satellite
measurements—a positive trend of 2% per decade in the Northern Hemisphere and 3% per decade in
the Southern Hemisphere is predicted [WMO, 2011]. This would imply that trend detection would not be
possible before 2020, because variability is also increasing toward the poles.

In the extratropics an anticorrelation between the year of trend detection and the R? values (see Figure 2a)
is found. In areas where R? is lower the number of years increases, as the fit error increases, too.

5. The Role of El Nino-Southern Oscillation

In order to explain the physical mechanisms that control interannual variability and thus small trends in
the tropics, we discuss now the link between the ENSO phenomenon and two other important meteoro-
logical parameters. Both, lower stratospheric temperature and tropopause pressure, are also known to be
correlated with total ozone via chemical and dynamical processes [Randel and Cobb, 1994; Hoinka et al.,
1996; Steinbrecht et al., 1998, 2003]. Figure 3 (top) illustrates an idealized latitude-pressure cross section of
ENSO-related temperature and pressure correlations. It is based on data from the global atmospheric reanal-
ysis project ERA-Interim [Dee et al., 2011] produced and archived by the European Centre for Medium Range
Weather Forecasts (ECMWF). Red ellipses indicate warming associated with ENSO warm events; blue areas
indicate cooling associated with ENSO warm events. The solid black line indicates a climatological mean
lapse-rate tropopause. The dashed arrows indicate the relative change in tropopause pressure (height) for
an ENSO warm event. Note that the 100 hPa level (dashed line) intersects the tropopause. The level is below
the tropopause in the tropics and above it in the extratropics. The coherent warm anomaly in the subtrop-
ics is well captured with a 100 hPa control level (as indicated with dotted lines). Depending on the details
only a very small temperature response is seen at the equator, because the transition region from negative
to positive temperature anomalies (at 150 hPa) is potentially close. This change in thermal structure relates
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10 well to increased changes in stratosphere-troposphere-
[th’Oa] S Z'Zeaizuere exchange during an ENSO warm event [Zeng and Pyle, 2005].
30— As for ozone and in addition to the idealized correlations dis-
50 cussed in the previous paragraph we now determine trends
from 1995 to 2013 for the ERA-Interim temperature (at the
100 100 hPa level) as well as tropopause pressure as a function of
latitude and longitude. The altitude of the tropopause can
200 be estimated using the potential temperature (6) minimum
S lapse rate. In the tropics the pressure of the § = 395 K layer
500 can be used as an applicable surrogate for the position of
1000 the tropopause.
Temperature trends were obtained in the same way as the
3 ozone trends (see section 3). Annual mean trend estimates
§21 are shown in Figure 4a and the corresponding annual mean
é 0 MEI coefficients in Figure 4b. Temperature trends are posi-
21 tive over the Pacific, southern South America, North Atlantic,

19% 2000 200: 2008 2012 and the northern Indian Ocean, the regions where also pos-
: . . itive ozone trends are found. The spatial patterns of the
Figure 3. (top) Idealized latitude-pressure cross | MEI fici f h f d
section of ENSO-related temperature correla- annual mean coefficients irom the temperature it an
tions. Red e"ipses indicate Warming associated the Coefﬁcients Obtalned from the ozone fit (Figure 1f) are
with ENSO warm events; blue areas indicate in good agreement. They are negative over the western
cooling associated with ENSO warm events. The  pacific, As for ozone, the correlation reverses toward the
solid black line indicates a climatological mean . . L N I
o eastern Pacific and Indonesia, where it is statistically signif-
lapse-rate tropopause. The dashed arrows indi- . . .
cate the relative change in tropopause pressure icant. Negative correlation between MEI and temperature
(height) for an ENSO warm event. (bottom) MEI means that temperature at 100 hPa is increasing during
time series from 1995 to 2013 (black solid line). ENSO cold events (when temperature in the lower tropical
;hehdaShehd Ir:ne,\;lr;::h'cates theresult fromalinear  ropnosphere is decreasing), and temperature at 100 hPa is
tthrough the time series. decreasing during ENSO warm events (when temperature in
the lower tropical troposphere is increasing). This anticorre-
lation between troposphere and stratosphere is related to enhanced tropical upwelling and a strengthened
Brewer-Dobson circulation during El Nifio events [Calvo et al., 2010]. Enhanced residual circulation during
warm ENSO events is also responsible for positive correlation between temperature and MEI in the middle
latitudes [Garcia-Herrera et al., 2006].

Figure 4c shows the linear trend coefficients for ERA-Interim pressure at 395 K potential temperatures.

In contrast to ozone and temperature we used a simple linear fit from 1995 to 2013 for pressure. The
latitudinal-longitudinal pattern is similar to the pattern for the temperature trend and shows some
agreement with the ozone trend over the Pacific, southern South America, and the North Atlantic region.
Positive pressure trends indicate that a descending tropopause is associated with an expanding strato-
sphere and hence increasing stratospheric ozone levels. In the tropics the changes in pressure are related to
ENSO as explained in Figure 3.

With regard to the detected ENSO-related correlations the observed regional trends in the tropics for ozone,
temperature, and pressure can now be explained having a look at the MEI time series itself for the period
1995 to 2013 (Figure 3, bottom). We conclude that the strong ENSO warm event 1997/1998 at the beginning
of the fit period and the strong ENSO cold event 2010/2011 at the end of the fit period, and hence the appar-
ent negative trend in ENSO toward cold events, induce the derived changes in the atmospheric parameters
in this region.

6. Summary and Conclusions

We used the recently released merged GTO-ECV total ozone data record covering the period from June 1995
to June 2013 to calculate spatially resolved total ozone trend and variability patterns. The global long-term
data set is based on combined spaceborne observations and enables us to disentangle the various sources
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(a) ERA-INTERIM Temperature at 100hPa (b) ERA-INTERIM MEI Coefficient

Trend [K per decade] K per unit MEI

: ) a0

0 1 2 -2 -1 0 1 2

Trend [hPa per decade]

| o

-2 -1 0 1 2

Figure 4. (a) Annual mean temperature trend at 100 hPa obtained from ECMWF ERA-Interim reanalysis data. (b) Corresponding annual mean regression coeffi-
cient estimates per grid point for the Multivariate ENSO index. (c) Linear trend coefficient for the pressure level of the 395 K potential temperature. Grey crosses
denote that the coefficients are not significant at the 95% confidence level.

of ozone variability and its drivers by multivariate linear regression. The QBO dominates ozone variability in
the tropics but has also an impact in the middle latitudes. In addition, the solar cycle and ENSO contribute
to decadal and interannual changes.

The linear trends in total ozone during this period are positive in major parts of the globe, but statistical
uncertainty is large, in particular in the middle latitudes. Largest positive trends of about 1.5-2.0% per
decade are found in the European and North Atlantic region. We conclude that given dominant natural vari-
ability over last two decades the expected midlatitude ODSs related onset of ozone recovery would need at
least additional 5 years of observations to be unequivocally detectable. Longer periods are required in high
latitudes, where approximately 10-20 additional years are needed to draw authoritative conclusions.

In the tropics expected ozone changes are smaller than in other regions, as the evolution of tropical ozone
depends on the balance between predicted upper stratospheric increases and lower stratospheric decreases
[WMO, 2011]. In this area we identify regional trend patterns for ozone (~1% per decade) and temperature,
which are mainly attributable to a long-term change in El Nifio-Southern Oscillation intensity and which are
linked to a changing position of the tropopause.

Our results clearly indicate a need for continuous monitoring of ozone and an extension of the current
data records using future missions in order to (1) detect the expected success of the Montreal Protocol
and (2) achieve a better understanding of the interaction and feedback mechanisms between ozone and
climate change.
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