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ABSTRACT
The transverse drift wave, which is unstable due to purely kinetic effects, and driven by the
density and magnetic field gradients, is discussed in context of its application to the solar
corona. The gradients of the two quantities are opposite to each other, as required by the
equilibrium pressure balance, and they are in the plane perpendicular to the magnetic field
vector. The transverse drift wave has such properties that it propagates strictly perpendicularly
to both the magnetic field vector and the mentioned gradients. It is electromagnetic, with the
perturbed electric field in the direction of the equilibrium magnetic field, while the perturbed
magnetic field vector is in the direction of the equilibrium gradients. Such an orientation of
the electric field implies a possibility of acceleration of coronal plasma particles along the
background magnetic field, in both directions, outward and inward. In the case of locally
open magnetic structures, the outwardly moving particles should contribute to the solar wind.
Those moving inwards eventually arrive in the lower solar atmosphere where the mean free
path is short and, due to collisions, they should disperse their energy to the surrounding
plasma and contribute to heating. It is also shown that accelerated particles can additionally be
stochastically heated by the wave. This completely new stochastic heating mechanism is found
here for the first time. It takes place provided that the particles are simultaneously accelerated
by the wave to large enough velocities in the parallel direction. The model is applicable to
any inhomogeneous coronal environment, like magnetic loops, coronal holes and the so-called
EIT waves, named after the Extreme-ultraviolet Imaging Telescope (EIT) used for their first
detection.
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1 IN T RO D U C T I O N

Electric fields in the solar atmosphere have been in the focus of
researchers for many decades. This is mainly because of their pos-
sible role in the acceleration and heating of plasma particles in the
corona and solar wind; see Fletcher & Hudson (2008) and references
cited therein. Numerous models dealing with the coronal heating
are nicely described in the review papers of Klimtchuk (2006), and
Narain & Ulmschneider (1990). In many situations it is in fact the
parallel (to the magnetic field) electric field that is of major impor-
tance. Electric fields in the solar atmosphere have been reported in
a large number of studies in the past; to mention just a few of those
who observed very strong fields, Davis (1977) and Zhang & Smartt
(1986) and references cited therein.

However, predicting the (parallel) electric field by appropriate
physical models has turned out to be a great challenge, partly due
to the fact that the most common description of the solar atmo-
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sphere is based on the one-fluid magnetohydrodynamics (MHD)
model. The MHD theory ignores the electron mass and, as a re-
sult, in the low-frequency limit, ω � �i, the basic equation for the
parallel component of the electric field amplitude, εzzEz = 0, has
only trivial solutions. On the other hand, within the two-component
(or in general multicomponent) description, regardless of whether
it is fluid or kinetic, the parallel electric field appears naturally, and
various plasma modes in multicomponent plasma theory predict its
presence.

As an example, in our recent papers dealing with drift waves
in inhomogeneous solar corona (Vranjes & Poedts 2009a,b,c,d,
2010a,b), and where a new paradigm for the coronal heating has
been put forward, the electric field appears due to growing elec-
trostatic drift modes that propagate obliquely to the magnetic field
vector. Typical scales for those instabilities are such that k⊥ �
k‖, where k⊥, k‖ are, respectively, the perpendicular and paral-
lel wavenumber components with respect to the magnetic field.
The drift wave instabilities were shown to be able to produce the
electric field in the perpendicular direction that was measured in tens
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of kV m−1. This was accompanied by strong stochastic heating of
ions. Details are available in the references given above. Although,
in view of k⊥ � k‖, this implies relatively weak simultaneous elec-
tric fields along the magnetic field vector, a considerable particle
acceleration in the parallel direction was demonstrated (Vranjes &
Poedts 2009a).

Except for in Vranjes & Poedts (2009b), in all these works the
driving source for the instability was the density gradient. Hence,
the mode requires no external driver, and it develops primarily in
the area with the strongest density gradient. So the energy stored
in such plasma inhomogeneities is released through the growing
drift-wave mode, resulting eventually in the particle heating and
acceleration. On the other hand, in Vranjes & Poedts (2009b) all the
three background plasma quantities (density, temperature, magnetic
field) were inhomogeneous, resulting in even stronger instability.

A basic common feature of these studies is that the drift wave is
essentially longitudinal electrostatic mode [though in principle cou-
pled to the Alfvén wave (Vranjes & Poedts 2010a)]. In a geometry
with the magnetic field given by B0 = B0ez, and the equilibrium
gradients in the x-direction, the mode was propagating nearly per-
pendicularly to both the magnetic field vector and the density gra-
dient vector, i.e. predominantly in the y-direction, hence the wave
electric field was E = Ey ey+Ezez, |Ey|� |Ez|. This further implies
predominantly perpendicular displacements of the plasma particles,
due to the leading-order E × B drift, that is in the x-direction.

However, there exists yet another type of drift waves, called
the transverse drift wave, which also includes the gradient of the
magnetic field (e.g. in the x-direction). A remarkable though unusual
feature of the mode is that its perturbed electric field is in fact in the
direction of the background magnetic field vector, while the mode
propagates strictly perpendicular to it, in the y-direction. These
features make it similar to the so-called ordinary wave (O-wave)
known from basic plasma theory. However, in comparison with
all other plasma waves, including the O-wave, generally speaking,
the drift waves are unique in the sense that their existence implies
the presence of free energy in the system (already the real part
of the frequency contains the equilibrium plasma gradients). This
free energy is then released through the instability of the drift wave
in accordance with the mode growth rate. On the other hand, in
the particular case of the transverse drift wave and the O-wave,
the frequency of the former is low, and this feature appears to
be essential for the acceleration and heating, as will be shown
further in the text [see equation (6)]. To avoid any confusion in
the terminology, we stress again that in the forthcoming text the
term ‘transverse’ is used with respect to the wavenumber k ≡ ky ey ,
while the terms ‘perpendicular’ and ‘parallel’ are used with respect
to the magnetic field vector B0 = B0ez.

The transverse drift mode has been predicted long ago in Krall &
Rosenbluth (1963), and also described in detail in Krall (1968) and
Mikhailovskii (1992). Yet, the impression is that it is not enough
exploited in the laboratory plasmas. It has been used in just a few
applications to space plasmas (Chamberlain 1963; Krall & Tidman
1969), but definitely never mentioned in the context of the solar
plasma. Interestingly enough, a similar model has been success-
fully used in Griv & Peter (1996) and in Griv, Yuan & Gedalin
(1999), in a completely different physical environment, in the in-
vestigation of small-amplitude density waves in galactic discs with
radial gradients.

The mode that we are going to study here is usually called in
the literature the magnetic drift mode, which is a bit misleading
as this puts stress on the magnetic nature of the mode. In fact it is
more appropriate to call it the electromagnetic (EM) drift mode as it

naturally involves both the magnetic and electric field perturbations:
in the case of the equilibrium field B0 = B0ez, the perturbed field
components are E1 = Ez1ez and B1 = (kEz1/ω)ex . Hence, the term
transverse here describes the essential fact that both, the perturbed
electric field (that is parallel to B0) and the perturbed magnetic field
B1 are perpendicular to the wavenumber k = ky ey .

This plasma mode should not be confused with a mode obtained
in the multicomponent fluid theory, which is usually called the mag-
netic (electron) drift mode (the alternative names are electron-MHD
mode and magnetic electron drift vortex mode) which, however,
essentially involves the equilibrium temperature gradient too. Re-
ferring to our mode, further in the text we shall use either the term
EM-drift mode, or the term transverse drift mode.

2 BASI CS O F THE KI NETI C TRANSVERS E
DRI FT WAVE

In order to describe the mode, one starts with the geometry as
explained above, with inhomogeneous magnetic field and density
B0 = B0(1 + εbx)ez, n0 = n0(x), and with small electromagnetic
perturbations propagating strictly perpendicularly to the magnetic
field, that are of the form f (x) exp(−iωt + ikyy). The plasma-β is
in principle arbitrary (i.e. finite), the wave frequency satisfies the
condition ω/�i � 1, where �i = qiB0/mi is the ion gyrofrequency,
and small terms of the order (kyρ i)2(�i/ω) are retained. Here, ρ i =
vTi/�i is the ion Larmor radius, and v2

T i = κTi/mi . The assumed
linear profile of the magnetic field in the x-direction can in fact
be generalized to an arbitrary B0(x), as long as ρ i/LB < 1, where
LB = [(dB0/dx)/B0]−1 ≡ 1/εb is the characteristic scalelength for
the magnetic field inhomogeneity. In the equilibrium the distribution
function reads

fj0 = N0

(
mj

2πκTj

)3/2

exp

{
−mjv

2

2κTj

[
1 − εn

(
x + vy

�j

)]}
. (1)

The parameters εb and εn = 1/Ln = [(dn0/dx)/n0] are related
through the plasma-β, i.e. εb/εn = β/2. This can be more directly
seen from the two-fluid equilibrium set of equations, i.e. first by
applying the vector product ×B0 on to the Ampère law, and then
using the equilibrium momentum equation

qjvj0 × B0 + ∇(nj0Tj0)/nj0 = 0,

to express the Lorentz force in the modified Ampère law through
the density gradient. Here, vj0 is the equilibrium diamagnetic drift
velocity. It is worth noting that in the theory of standard (oblique)
electrostatic drift waves this same relation between εb, εn justi-
fies the commonly used description (Weiland 2000) in which the
magnetic field inhomogeneity is simply ignored as being small in
comparison to the density inhomogeneity, εb ∼ βεn, β � 1.

In Krall & Rosenbluth (1963), the kinetic collisionless
Boltzmann–Maxwell set of equations is used in a completely gen-
eral case for the perturbed EM field, i.e. E1 = Ex + Ey + Ez,
B1 = Bx + By + Bz. This procedure yielded three equations for E1;
two of them described two mixed longitudinal–transverse modes
comprising of the components Ex, Ey. The third was an equation for
the purely transverse (with respect to the wave direction) component
Ez parallel to the magnetic field B0, thus propagating perpendicular
to B0. After using the assumptions k2

yc
2 � ω2 and k2

yv
2
T e � ω2

pe,
ω2

pe = e2ne0/(ε0me), and kyρ i < 1, the third equation for Ez yielded
the following frequency and the growth rate, respectively (Krall &
Rosenbluth 1963; Weiland 2000):

ωr = − kyκTe

en0B0

dn0

dx

1

1 + k2
yc

2/ω2
pe

, (2)
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γ

ωr
= π
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× exp
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}
. (3)

In the derivation of equations (2) and (3) the usual local approxi-
mation is used, implying that kyLn, kyLb > 1.

It is interesting to stress that in the derivation of the Cauchy
principal value integral, the ion contribution to the real part of equa-
tion (2) was negligible as compared to the electron part because it
was smaller by a factor of me/mi, while at the same time the imagi-
nary part in equation (3) was completely due to the ion contribution.
Observe that the unstable case implies a geometry in which the gra-
dients of the density and the magnetic field have opposite signs,
i.e.

1

n0

dn0

dx

1

B0

dB0

dx
< 0. (4)

Such a situation is in fact expected to be typical in inhomogeneous
coronal plasma because it implies a correct balance between the
gas and magnetic pressures in a plasma with spatially changing
parameters.

The normalized growth rate (3) is plotted in Fig. 1 in terms
of the plasma-β for the electron–proton coronal plasma with the
parameters: n0 = 5 × 1014 m−3, T0 = 106 K. Here, we used the fact
that Ln/LB = β/2 so the fixed values for the density and temperature
still imply a large span of possible values for Ln and LB, and this at
the same time determines B0. For example, the maximum of γ /ωr

in Fig. 1 is at the magnetic field of the order of a few Gauss; on the
other hand, the ratio is very low for the strong magnetic field (the
left-hand side of the graph).

The plot is not sensitive for changes in ky, yet we keep it in the
range that would satisfy the applicability of equations (2) and (3),
i.e. kyρ i < 1. For the given parameters and the magnetic field of a few
Gauss, this implies wavelengths above 30–40 m and consequently
the graph is valid for any value of Ln satisfying the local analysis
used above, kyLn � 1. To get some feeling about wave frequencies,
if we take λy = 100 m (implying that kyρ i = 0.3) and assume Ln =
105 m, we have ωr = 0.27 Hz, while for Ln = 106 m we have ωr =
0.027 Hz. Note that, for example, in the latter case and for B0 = 2 ×
10−4 T we have β = 0.43 and consequently LB = 4.6 × 106 m.

Figure 1. The ratio of the growth rate (3) and the wave frequency (2) of the
transverse drift wave in terms of the plasma-β for fixed values of the plasma
density and the temperature.

Compared to the standard oblique (k · B0 
= 0) drift-wave insta-
bilities which imply longitudinal electric field perturbations k‖E1

(Vranjes & Poedts 2009a,b,c, 2010a,b), the presented growth for
the transverse drift-wave instability (E1‖B0, E1⊥k) is rather small.
Note that in Wu, Shi & Zhou (1986) it was shown that under certain
conditions the instability may become influenced by electrons and
in fact be much stronger. In their example this was due to a weak
electron temperature anisotropy, T⊥ < T‖, where ⊥ and ‖ denote,
respectively, directions perpendicular to the magnetic field and par-
allel to it. In addition to this, the growth rate was shown to be huge,
i.e. comparable to the ion gyrofrequency, when the scalelength of
the density gradient Ln was comparable to the ion gyroradius.

The transverse drift-wave instability can also become stronger
with the simultaneous presence of the temperature gradient. This
may be found in Mikhailovskii (1992), where a similar set of equa-
tions for the transverse drift wave is derived, but in the limit of a
small plasma-β. The frequency is similar to above, though it in-
cludes the pressure gradient ωr = ω∗pe, while the growth rate is

γ = π
me

mi

(
1 + 2

β

η

1 + η

)
ω2

∗pe

|ωDi | exp

(
−2Te

βTi

)
,

η = 1

T0

dT0

dx

/
1

n0

dn0

dx
, ω∗pe = ky

en0B0

∂pe

∂x
,

ωDi = kyκT0

qiB0

∂ log B0

∂x
. (5)

The contribution of the additional temperature gradient through the
factor η/(1 + η) is obviously stronger for a smaller β.

The drift instability is also frequently called ‘universal’. The term
describes its capability to develop due to various mechanisms in any
plasma description, fluid or kinetic, collisional or collisionless. This
is understandable in view of the fact that the mode implies a free
energy in the system, which is already seen in the real part of the
frequency (2) in the form of the density or magnetic field gradient.
The release of the energy through those numerous instabilities is just
a natural tendency of the system to relax towards a lower energy
state. It is worth mentioning that even in the case when linear
instabilities of the mode are absent or suppressed, this relaxation
and instability may develop non-linearly. One nice example of that
kind may be found in Drake, Zeiler & Biskamp (1995), where the
linear collisional drift mode, although linearly stabilized by the
magnetic shear, still develops some strong non-linear turbulence.

3 ACCELERATI ON O F PARTI CLES

In view of the geometry of the mode, having a strong electric field is
not so essential. Even a very small electric field due to the (weakly)
growing transverse drift mode described by equations (2) and (3)
can, within one half-period of the wave, easily accelerate plasma
particles to velocities of the solar wind magnitude. This is easily
understood because both the wave front and the electric field are
parallel to the magnetic field line. A particle is continuously accel-
erated during one half-period of the wave because the electric field
is directed along the magnetic line. This may be tested by assuming
the wave E0 sin (ωrt), which yields the ion velocity achieved within
one half-period T /2 = π/ωr as

v = (eE0/mi)
∫ T /2

0
sin(ωrt) = 2eE0/(miωr). (6)

Hence, the lower the wave frequency the more time for the accel-
eration, and the larger the particle velocity. For the earlier obtained
frequency ωr = 0.27 Hz and a very weak electric field E0 = 0.001
V m−1, the velocity after the time π/ωr is over 700 km s−1. The
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actual velocity of the particle may be somewhat different, yet the
general picture remains.

Further, particularly in the case of locally open magnetic field
lines, like in the coronal holes, the outward-moving particles will
eventually become a part of the solar wind. On the other hand, the
inward-moving particles will propagate towards lower layers of the
solar atmosphere, where their mean free path is considerably re-
duced. This is due to higher density from one side, and due to lower
temperature from the other (note that the mean free path of the
particles j for Coulomb interaction is proportional to v4

j /n0). Con-
sequently, the inward-moving particles will collide with particles in
the lower layers, and they will consequently disperse their energy
obtained previously by the wave. At the end this will result in an
increased temperature at a certain height, possibly at the transition
layer (TL). Hence, the proposed scenario implies a TL that is in fact
heated from above.

4 D E TAILS OF PA RTICLE MOTION
IN THE TRANSVERSE DRIFT WAVE

For the wave electric field of the form

Ez1 = E0 exp(γ t) sin(kyy − ωrt),

where ωr and γ are determined by equations (2) and (3) and E0

is a constant, and expressing the perturbed magnetic field through
Faraday law B1 � exkyEz1/ωr, the displacement of a particle due
to the wave is described by

x ′′ = �y ′, (7)

y ′′ = −�x ′ + ky�E0 exp(γ t)

ωB0
sin(kyy − ωrt), (8)

z′′ = eE0 exp(γ t)

m

(
1 − kyy

′

ωr

)
sin(kyy − ωrt). (9)

Here, the prime denotes derivative in time d/dt.
Equation (7) can be integrated and the resulting integration con-

stant in

x ′ = �y + C

can without loss of generality be set to zero. Using this in equa-
tions (8) and (9) and after introducing the normalization t → �t, x,
y, z → kyx, kyy, kyz, one obtains the following set of equations:

y ′′ + y − a(t)z′ sin(y − bt) = 0, (10)

z′′ − a(t)(b − y ′) sin(y − bt) = 0, (11)

b = ω

�
, a(t) = kyE0 exp(γ t)

bB0�
.

Similar to Vranjes & Poedts (2010b), equation (10) can be further
transformed by introducing the new variable τ = bt/2, yielding

d2y

dτ 2
+

[
4

b2
− α(τ )

2

b2
cos(2τ )

]
y = 2

b2
α(τ ) sin(2τ ). (12)

Here, α(τ ) = kyE0(dz/dτ ) exp (2γ τ )/(B0�). Equation (12), derived
in the limit ϕ = |y − bt| � 1 and using sin (ϕ) � −sin (bt) +
y cos(bt), is a driven Mathieu equation with a possibility of unstable
solutions for b = 2/n, where n is integer (Chen, Lin & White 2001;
White, Chen & Lin 2002). It is particularly interesting to observe
that the unstable solutions in the perpendicular y-direction (which
here essentially imply a stochastic heating of particles) are in fact

determined by the parallel velocity dz/dτ which is within the term
α(τ ).

This same conclusion may be deduced also by a slightly different
approach (Bellan 2006) as follows. Assume two adjacent particles
in the wave field, at positions r1, r2 such that r2 = r1 + δr , and in
general having different velocities v1, v2 determined by

dv1

dt
= q

m
[E(r1, t) + v1 × B(r1, t)] ,

dv2

dt
= q

m
[E(r2, t) + v2 × B(r2, t)] .

We may now investigate how the distance between the particles
will change in time due to the presence of the wave. In an ordinary
situation the two particles will perform a similar motion in the wave
field. Otherwise the distance between them may grow in time and
this is equivalent to stochastic heating (Bellan 2006). Subtracting
the equations yields

d2δr
dt2

= q

m

[
(δr · ∇)E(r1, t) + δr

dt
× B0 + δr

dt
× B1(r1, t)

− v2 × (δr · ∇)B(r1, t)
]
.

Here, we used the following notation:

B(r1, t) = B0 + B1(r1, t),

B(r2, t) = B0 + B1(r1, t) + (δr · ∇)B(r1, t),

E(r2, t) = E1(r1, t) + (δr · ∇)E1(r1, t).

Bearing in mind that for the given mode in general E1 = E1ez,
B1 = B1ex , we may write the following two equations for the
displacement in the perpendicular (x, y) plane:

d2δx

dt2
= �

dδy

dt
, (13)

d2δy

dt2
= − �

dδx

dt
+ q

m

dδz

dt
B1(r1, t)

− v2,z

q

m
(δr · ∇)B1(r1, t). (14)

Integrating the first equation and setting the resulting expression
into the second equation, one obtains

d2δy

dt2
+

[
�2− �v2,z

∂B1(r1, t)/B0

∂y

]
δy = �

dδz

dt

B1(r1, t)

B0
. (15)

Equation (15) is equivalent to equation (12). If ξ ≡ �−v2,z∂B1/∂y

is positive, equation (15) describes forced harmonic oscillations
due to the term on the right-hand side. Here v2,z is determined by
equation (9) or equation (11), and both v2,z and B1 periodically
change sign due to the wave propagation, therefore ξ may become
negative. This implies solutions for δy that grow exponentially in
time. Hence, the distance between the two starting particles grows
as if the medium is heated, and this is the essence of the stochastic
heating by the wave, but here determined by a completely new
mechanism.

Details of the particle motion in the presence of a drift wave
which causes stochastic heating can be found in Vranjes & Poedts
(2010b), where the drift wave in question had a completely different
nature (i.e. k · B0 
= 0). The heating in that case was entirely due to
the polarization drift, and it required the perpendicular wavelength
to be comparable to the gyroradius. The following condition was to
be satisfied:

k2
yρ

2
i eφ1(t)/(κTi) ≥ 1. (16)
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Here, φ1(t) is the potential of the electrostatic drift wave that is
growing due to any kind of the drift wave instability. Because of the
great mass difference, the heating by a single mode naturally cannot
act in the same time on both electrons and ions. The coupling with
the Alfvén wave, which takes place for relatively larger values of
the plasma-β, does not affect the heating considerably (Vranjes &
Poedts 2010a).

On the other hand, the threshold for the stochastic heating that
follows from equation (15),

|vz| > vc = B0

B1

�

ky

, (17)

has completely different properties. Implicitly, it still contains the
magnitude of the electric field (that is however not electrostatic in
the present case) because v2,z is determined by it (cf. equation 9).
However, no relation appears between the wavelength and the gy-
roradius, and it does not exclude a possibility for a simultaneous
heating of both electrons and ions.

However, a more peculiar feature that follows from equa-
tions (15, 17) is that only those particles that are already accelerated
in the parallel direction by the wave to the velocity vz exceed-
ing vc will, in addition to acceleration, be stochastically heated.
This is completely different as compared to ‘standard’ stochastic
heating by oblique drift waves (which yields equation 16) and it
follows from the non-linear Lorentz force terms in equations (13)
and (14).

Typically, B0/B1 > 1 (or �1), so in order to remain below the
speed of light, for electrons it would require very short wavelengths.
Hence, the electrons should only be subject to acceleration by this
mode, and no stochastic heating is expected. For ions, the condi-
tion is more easily satisfied. Using B0 = 2 × 10−4 T and assum-
ing B0/B1 = 102, the threshold velocity for ions becomes vc =
305 × 103λy m s−1. In the case of meter-size perpendicular wave-
lengths, the acceleration of ions along the magnetic field lines should
develop simultaneously with the stochastic heating. However, in
principle the analytical model used above is not well satisfied for
this limit, which implies kyρ i < 1. In this case the kinetic deriva-
tions for ions are performed differently (Krall & Rosenbluth 1963)
and the resulting growth rate of the mode is lower, proportional to
(me/mi)3/2:

ωr = −2κTekyεb(kyρe)−2

me�e(1 + Ti/Te)
, (18)

γ

ωr
= π

k2
yρ

2
e

Ti

Te

(
me

mi

)3/2 (
2 + 2Ti

Te

)−1/2

× exp

[
− 2Te/Ti

k2
yρ

2
e (1 + Ti/Te)

]
. (19)

In this case the (sub)meter size of the wavelength are formally
analytically allowed and simultaneous acceleration and stochastic
heating of ions is very likely.

5 A PPLICABILITY OF THE R ESULTS
A N D S U M M A RY

The growth rate and frequency of the mode discussed here are de-
rived in Krall & Rosenbluth (1963) without too many restrictions:
the plasma-β is arbitrary, and the local analysis is easily satisfied in
realistic coronal situations. The solar corona is highly structured and
inhomogeneous, both vertically and horizontally. Those structures
imply gradients of the plasma parameters (density, temperature,

magnetic field) in the direction perpendicular to the magnetic field,
and this is practically all that is needed for the development of
drift instabilities. Much more about the properties of these mag-
netic structures can be found in Vranjes & Poedts (2009a), where
they are discussed in relation with the heating by ordinary (oblique)
drift waves. The instability discussed in the present paper is indeed
unique between all the drift instabilities as it implies the electric
field along the magnetic field lines. The scalelengths Ln, LB for
the density and the magnetic field inhomogeneity are limitless re-
garding the present mode, which makes it applicable throughout the
corona. In view of the values for the frequency obtained in Section 2
and the estimate of the velocity (6), it is obvious that for rather real-
istic plasma parameters, which also include the density scalelength
Ln = 106 m, the proton energy of the order of MeV is expected for
the wave electric field as small as 0.02 V m−1. Measurements of
strong proton fluxes from the Sun in the past several decades show
that in most cases they may be associated with flares, whatever the
real nature of these flares is. Analytical modelling associated with
such acceleration mechanism may be found in Dalla & Browning
(2008). However, such measurements also show that some proton
events are not at all related to flares, i.e. they appear also when
flares are completely absent. Examples of that kind, presented in
Reeves et al. (1992), are assumed to be due to shock acceleration.
In the present work it is shown that yet another powerful mecha-
nism based on the transverse (electromagnetic) drift wave, which
has never been discussed in this context, may in fact be behind such
proton fluxes.

Very recent observations (published after the present manuscript
was submitted) related to solar spicules (De Pontieu et al. 2011)
revealed strong plasma flows with typical velocities of up to
100 km s−1, and with bulk plasma heated up to 0.1 MK. In addition,
a small fraction of the plasma in such flows appears to be heated
to the coronal temperature, above 1 MK. The disturbances were
also roughly quasi-periodic. These observations were presented in
media as the solution for the coronal heating puzzle, although no
explanation was offered for what drives and heats those flows. It
was claimed that no currently available models could explain these
features. However, in our previous work (Saleem, Vranjes & Poedts
2007) dealing with spicules, it was shown that the standard oblique
drift wave can grow due to inhomogeneity of these flows. Such a
growing mode will consequently heat the plasma in spicules due
to stochastic effects described in Vranjes & Poedts (2009a,b,c,d,
2010a,b). In addition to this, the model described in the present
work clearly has potential to explain such observations because
it implies both acceleration and heating and, being based on the
(transverse drift) wave model, it also naturally includes periodicity.

One additional particular example, where both the standard drift
theory and the theory of the transverse drift wave may also work, are
the so-called Extreme-ultraviolet Imaging Telescope (EIT) waves,
large-scale structures propagating radially throughout the solar disc.
Physically, in most cases these structures are explained in terms of
magneto-acoustic waves, linear and/or non-linear. As such, they im-
ply the density and magnetic field inhomogeneities in the direction
perpendicular to the magnetic field. There are evidences of heating
within the wavefront of such propagating structures (Wills-Davey
& Attrill 2009). They propagate through the space, yet an observer
‘surfing’ on the wave peak would see a bell-shaped density profile
(say in the x-direction) accompanied by a variation in the magnetic
field in the same direction. This, together with the vertical mag-
netic field (in the z-direction) is an example of a perfect geometry
for the drift wave which would then propagate in the y-direction,
that is along the wave front of an EIT wave. The present transverse
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drift wave would have the electric field directed vertically and the
‘surfer’ would see streams of electrons and ions accelerated verti-
cally in opposite directions. As the wave passes by the ‘surfer’ along
density hump in the y-direction, the accelerated beams of electrons
and ions reverse their directions. Note that even enormously large
values of Ln of the order of Mm, which are expected in such density
inhomogeneities associated with the EIT waves, from equation (2)
may yield waves with the period of around 10 min, that are short
enough for the developments of the transverse drift wave on the
front of an EIT wave. As mentioned earlier, long periods imply
large time-scales for the particle acceleration.

The transverse drift wave may easily develop also in coronal
magnetic structures in active regions, as well as in coronal holes,
and in any other area that contains the plasma inhomogeneities, and
that is practically most of the solar plasma. Particles accelerated in
coronal loops should contribute to heating in two ways. First, this
should be due to collisions and a consequent dispersion of energy
as they approach lower, more collisional layers by moving along a
loop, and, second, by the new stochastic heating mechanism that is
discovered here for the first time, provided that they are accelerated
to high enough energies. Particles in coronal holes should behave in
the same manner, yet, as the magnetic field lines are locally open,
they should consequently end up in the solar wind.
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