Study of Ion/Molecule Reactions for Detection of Atmospheric Trace Gases by Chemical Ionization Mass Spectrometry: Reactions of CF₃O and CF₃O with Atmospheric Acids. C. Amelynck, N. Schoon and E. Arijs Belgian Institute for Space Aeronomy, Brussels, Belgium # Introduction Since recent laboratory measurements¹ have shown that CF₃O⁻ is a promising precursor ion for atmospheric trace gas measurements by CIMS (Chemical Ionization Mass Spectrometry), we have incorporated a CF₃O⁻ ion source in our balloon-borne CIMS instrument² for the measurement of stratospheric HNO₃, HCl and ClONO₂. At stratospheric conditions, however, rapid hydration of CF₃O⁻ complicates the reaction schemes to derive trace gas concentrations. The analysis of the flight data required additional laboratory measurements of gas phase reactions of CF₃O⁻ and CF₃O⁻H₂O ions with HNO₃. The results of this study are presented here. With the aim of elaborating new reaction schemes for trace gases of tropospheric importance, the reactions of the same ions with formic (HCOOH) and acetic acid (CH_3COOH) have also been studied and the results are also reported hereafter. # **Experiment** The gas phase ion/molecule reactions were studied at room temperature in a flowing afterglow apparatus. A plate with a central aperture (4 mm diameter) separates the flow tube into a low-pressure reaction zone (0.53-1.33 mb) and a high-pressure zone (20 mb) to which an ion source is connected. CF₃O ions are produced by dissociative electron attachment to CF₃OOF₃C. When cooling the walls of the high-pressure zone at 197 K, hydrated CF₃O ions were produced in the high-pressure zone by a three-body reaction with residual water vapour in the helium buffer gas³. It was checked experimentally that no further hydration of CF₃O takes place in the low-pressure reaction zone. The nitric acid concentration in the flow tube was determined by UV-absorption measurements at 186 nm in a 50 cm cell through which the HNO₃/argon mixture flows in the instrument. For the study of reactions with formic and acetic acid, dilute mixtures of these substances in nitrogen were prepared manometrically and were introduced into the reactor by a commercial mass flow meter. The existence of carboxylic acid dimers was taken into account by using the formula of Büttner and Maurer⁴. # Results The reactions of bare CF₃O with HNO₃, HCOOH and CH₃COOH were studied at pressures ranging from 0.53 to 1.33 mb. Their rate constants were found to be pressure-independent and are respectively $(2.3 \pm 0.2) \times 10^{-9}$, $(1.7 \pm 0.2) \times 10^{-9}$ and $(1.5 \pm 0.2) \times 10^{-9}$ cm³ molecule⁻¹ s⁻¹. The rate constant of CF₃O with HNO₃ is in excellent agreement with the value reported by Huey et al¹. As was also reported by this author, this reaction is observed to proceed through fluoride transfer and proton transfer, resulting in NO₃ HF and NO₃ product ions. The proton transfer channel was found to account for 7 to 8 % of the primary product ions. The main reaction mechanism (> 90 %) of CF₃O with HCOOH and CH₃COOH was fluoride transfer, resulting in HCOOHF and CH₃COOHF product ions. The reactions of CF_3OH_2O with HNO_3 , HCOOH and CH_3COOH were studied at 0.53 mb and rate constants of respectively $(2.1 \pm 0.2) \times 10^9$, $(1.8 \pm 0.2) \times 10^9$ and $(1.6 \pm 0.2) \times 10^{-9}$ cm³ molecule⁻¹ s⁻¹ have been inferred. Apart from a small ligand switching channel (at most 20 %), the reaction of CF_3OH_2O with HNO_3 was observed to result in NO_3 HF product ions. This is consistent with what is observed in the stratospheric mass spectra⁶. Ligand switching is the major mechanism for the reactions of CF_3OH_2O with HCOOH and CH_3COOH . Other reaction products such as HF_2 ⁻ and $F(HF)_2$ ⁻ are also emerging in small quantities. However, because of the simultaneous presence of CF_3O and CF_3OH_2O (and also CF_3OH_5 , CF_3OF_2 and $F^*CF_3OOF_3C$ which are present in small concentrations), an unambiguous determination of the product ion distribution of CF_3OH_2O with HCOOH and CH_3COOH is not possible. The global error on the rate constant measurements is estimated to be 30 %. A more detailed description of the experiments and the results, together with a more extended discussion will be published elsewhere⁵. # References - 1. Huey, LG et al., J. Phys. Chem. 1996; 100: 190. - 2. Arijs, E et al., Int. J. Mass Spectrom. 1998; 181: 99. - 3. Amelynck, C et al., Int. J. Mass Spectrom. 2000; in press. - 4. Büttner, R and Maurer, G, Ber. Bunsenges. Phys. Chem. 1983; 87: 877. - 5. Amelynck, C et al., Int. J. Mass Spectrom. 2000; submitted. - Schoon, N et al., in "5th European Workshop on Stratospheric Ozone", St. Jean de Luz, France (27 Sept.-1 Oct. 1999), Air Pollution report XX, European Commission.