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ABSTRACT

A key problem in atmospheric aerosol research is to obtain the particle size density 
distribution from the optical extinction spectrum. This amounts to solving a Fredholm integral 
equation of the first kind, but with a very complicated kernel. The kernel represents the 
electromagnetic scattering function of a single particle (which for simplicity is usually taken 
to be a homogeneous sphere). This scattering kernel is known analytically, but in the form of 
an infinite series of complicated terms, involving spherical Bessel functions.

 There are two approaches to solve this inverse problem. Numerically, by applying 
some discretization to the integral equation and then solving the resulting linear system. The 
other option is to substitute a simple approximation for the scattering kernel, in order to be 
able to perform the inversion analytically. Neither approach is really straightforward. The 
numerical route suffers from problems with ill-conditioned linear systems, while the 
analytical route is hampered by the fact that, the construction of a sufficiently accurate but 
still analytical tractable approximation, seems not to be easily derivable. Both problems are 
due to the complexity of the exact kernel. The form in which it  is known makes it very hard to 
infer its mathematical properties. This prevents the construction of stable numerical methods 
as well as to find suitable approximations. However, despite the shortcomings of both routes, 
practical useful results have been obtained in several real-world applications.

The paper starts with the mathematical formulation of the problem. Then an example 
is given of a typical method for each of the above approaches: (i) Twomey’s numerical 
method and (ii) the analytic inversion in the case of the Anomalous Diffraction 
Approximation (ADA) to the scattering kernel. Both methods are discussed and the synergy 
between both attempts is illustrated. In particular, the importance of the mathematical insight, 
yielded by the ADA model, with respect to the posed-ness of the continuous inverse problem 
and for constructing stable numerical methods, is emphasized. Finally, some comments are 
given to stimulate the search for a more complete mathematical understanding of this 
challenging problem.

1. INTRODUCTION

Atmospheric aerosols are microscopic dust particles or droplets suspended in the air. It 
is the prime and most noticeable constituent of air pollution. Aerosols have a variety of effects 
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on the environment, such as reduced visibility, health hazards, affection of ozone 
concentrations, they  are catalysts of chemical reactions and cause changes in the radiative 
fluxes and temperature distributions in the atmosphere, thus making them an important issue 
in the global warming of our planet. 

A practical way to estimate on a global scale aerosol concentrations and sizes is by 
remote sensing the optical extinction of sunlight  when it passes through a cloud of aerosols. 
When measured as a function of wavelength, one obtains an optical extinction spectrum that 
has a direct relationship with the particles size density distribution and their composition.

Deriving the aerosol size density distribution from the forward spectral extinction 
measurements requires the inversion of a Fredholm integral equation of the first kind. This 
equation gives the extinction spectrum as an integral over the number density distribution, 
with a kernel determined by scattering theory.

Mie and Debye independently  developed an exact description of the scattering of light 
by spherical particles (Born and Wolf 1987, van de Hulst 1981). The mathematical expression 
they  obtained for the scattered field has the form of an infinite series of complicated terms, 
containing spherical Bessel functions. This complexity  is reflected in the scattering kernel, 
which occurs in the integral equation, and so prevents a direct analytic inversion of this 
equation.

 There are two approaches to solve this inverse problem. Numerically, by applying 
some discretization to the integral equation and then solving the resulting linear system. The 
other option is to substitute a simple approximation for the scattering kernel, in order to be 
able to perform the inversion analytically. Neither approach is really straightforward. The 
numerical route suffers from problems with ill-conditioned linear systems, while the 
analytical route requires the construction of a sufficiently accurate but still analytical tractable 
approximation. Both approaches are hindered by the complexity  of the exact kernel. However, 
despite the shortcomings of both routes, practical results have been obtained in several real-
world applications (e.g. Franssens 2000b,d).

An interesting existing approximation is the Anomalous Diffraction Approximation 
(ADA), introduced by van de Hulst, (van de Hulst 1981). It is valid for particles which are 
large as compared to the wavelength and which have a small refractive index contrast relative 
to their surroundings. Under these circumstances, optical ray  tracing can be used to describe 
the interaction of light with the particle and reflection and refraction effects can be neglected. 
The presence of a particle then only  produces a change in the complex phase front of an 
incident monochromatic wave over its geometrical shadow area. As a result of these 
simplifications a much simpler scattering kernel is obtained, which makes it  possible to solve 
the integral equation analytically  (Franssens 2000a). The inverse problem in the ADA can be 
given an elegant mathematical formulation and at the same time has practical value for 
retrieving the larger particles. Unfortunately, the ADA is not sufficiently accurate to be used 
as a substitute for Mie theory in general, but it is an instructive model to gain insight in the 
physical properties of the problem. 

The paper starts with the mathematical formulation of the problem. Then an example 
is given of a typical method for each of the above approaches: (i) Twomey’s numerical 
method and (ii) the analytic inversion in the case of the Anomalous Diffraction 
Approximation (ADA) to the scattering kernel. Both methods are discussed and the synergy 
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between both attempts is illustrated. In particular, the importance of the mathematical insight, 
yielded by the ADA model, with respect to the posed-ness of the continuous inverse problem 
and for constructing stable numerical methods, is emphasized. Finally, some comments are 
given to motivate the search for a more complete mathematical understanding of this 
challenging problem.

2. THE INVERSE PROBLEM

Let , with  the wavelength of the light, and  the particle radius. The 
extinction spectrum  [1/m], caused by  a cloud of spherical particles with number density 

distribution [1/(µm cm3)], is given by (van de Hulst 1981)

 ,        (1)

where  [µm2] is the scattering cross-section kernel determined by the scattering model.

The exact scattering cross-section kernel, for a spherical particle with complex refractive 
index  immersed in air, was derived by Mie and is given by  the infinite series (van de 

Hulst 1981, Born and Wolf 1987)

 ,     (2)

with terms

 ,

,

containing the modified spherical Bessel and Hankel functions

 , ,
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,

and where , .

The inverse problem consists in solving the Fredholm equation of the first kind (1) for , 

given .

3. ANALYTIC INVERSION USING AN APPROXIMATE KERNEL

On physical grounds one can derive a, crude but sometimes practical, approximation 
to the exact Mie kernel (2), called the Anomalous Diffraction Approximation (ADA) kernel 
(van de Hulst 1981). The ADA scattering cross-section kernel has the much simpler 
expression

 ,     (3)

where . It describes both scattering and absorption of light by 

spherical particles with radius  and complex refractive index , under the 

conditions that .

Figs. 1a,b show a plot of both kernels and their difference for transparent ( ) 

and absorbing ( ) particles respectively, tabulated over wavelength and for a fixed 

particle radius  µm. A constant refractive index was used over the whole wavelength 
region, in order to better visualize the differences in scattering properties between both 
models, without them being obscured by the absorption peaks present in a more physical 
refractive index spectrum .
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Fig. 1. Comparison ADA-MIE kernel for transparent 
water drops, (r = 1.0 µm, n = 1.33).

Fig. 2. Comparison ADA-MIE kernel for absorbing 
water drops, (r = 1.0 µm, n = 1.33 + i0.1).

From Figs. 1 and 2 one sees that the ADA contains the correct geometrical limit (value 
2, for ). In addition, it also reproduces with good accuracy  the positions of the extrema 
of the MIE kernel. It systematically  under estimates the values at these extrema, amounting to 
a maximum error of about 20% at the largest peak.  Another serious defect of the ADA is that 
it does not  contain the Rayleigh limit of the extinction curve at large wavelengths (i.e. 

), but instead falls off with the square of the wavelength ( ). The fine 

structure, present in the MIE kernel is obviously missing in the ADA. However, this fine 
structure is never transferred into the extinction spectrum, because it is averaged out by the 
integration with any smooth number density distribution in (1).

A more detailed numerical comparison between the ADA and MIE kernels can be 
found in (van de Hulst 1981, Kerker 1969, Sharma 1992).

Because the ADA correctly contains the geometrical limit, an inversion based on the 
ADA will correctly reproduce the particles total surface area density  (because 

).  Also, the good approximation of the position of the overall maximum in 

the extinction curve by the ADA will result in a reasonable good estimate of the main particle 
size, at least for not too wide distributions .

Under the ADA the inverse problem can be solved analytically. To this end we need to 
extend the kernel  in (3) to a complex analytic function of  and this produces a 

complex extinction spectrum . The complex equivalent of relation (1), relating  and 
 with kernel (3), can now be written as (Franssens 2000a):

 .        (4)

Herein we defined:

,         (5a)

 ,       (5b)

 ,         (5c)

 ,         (5d)

 .         (5e)
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The real (measurable) extinction spectrum  is related to the complex extinction function 

 as . The spectral function  gives the phase advance of a plane 

wave when passing through a cloud of particles under incoherent scattering and is related to 
 by causality  (see Franssens 2000a). Finally,  represents the (total) surface 

area density. The relation (4) is called the forward complex ADA transform. It relates the 
modified complex extinction function  with the perimeter density function , which 

turn out to be the canonical variables of the problem in the ADA.

The complex inverse of (4) is (Franssens 2000a)

.      (6)

The inverse complex ADA transform (6) contains the complex extinction function of which 
only the part  is measured. So to be of any practical use, one has to eliminate  

from  in (6). This is possible because light propagation is a causal process. 

Mathematically, this is equivalent to the fact  that  is complex analytic over . 

On the real  axis, the real and imaginary parts of  therefore form a Hilbert  transform 

pair. This argument allows us to eliminate  from  in (6) and this yields the 

following equivalent real form of (6). It now contains only  the measured real spectrum  

and its small wavelength limit , (Franssens 2000a):

 .    (7)

A direct numerical integration of (7) is only feasible when  is sufficiently dense 
measured over a sufficiently  broad wavelength interval and when the measurement errors are 
small. 

In (Franssens 2000a) it is shown that the forward and inverse ADA transforms (4) and 
(6) are well-posed. The real valued inverse formula (7) was found to be well-posed, provided 
the correct physical limit behavior of the refractive index spectrum  is used. 

4. NUMERICAL SOLUTION BY TWOMEY’S KERNEL COVARIANCE METHOD

Twomey’s kernel covariance method (Twomey 1967) is a numerical method to 
retrieve the size distribution from the extinction spectrum, which is widely used in 
atmospheric aerosol research. It  is not  to be confused with Phillips’ method with added 
regularization (Phillips 1962), an approach that was also addressed by Twomey, a few years 
earlier (Twomey 1963).
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Twomey’s kernel covariance method can be summarized as follows. Recall the 
forward transform (1), but now evaluated only at  measured wavelengths:

,    (8)

and for a truncated interval of integration. We replaced the scattering cross-section kernel 
 in terms of the scattering efficiency kernel .

Twomey represents the unknown  as a linear combination of basis functions, formed by 

the spectrally fixed efficiency kernels , as

.        (9)

Substituting (9) in (8) leads to the following linear system for the expansion coefficients :

.     (10)

The system matrix is just the (efficiency) kernel covariance matrix, with elements

.        (11)

There are two problems with this method, which are inherent to the way  the integral equation 
is discretized and which are independent of the scattering model used or the extinction data 
fed into.

(1) The matrix elements diverge when the integration limit  tends to ∞:

.        (12)

This is due to the fact that  the scattering efficiency  kernel  tends to the geometrical 

limit for  (i.e. ). It  could be avoided by introducing an 

additional weighting function to make the integral converge or, perhaps more meaningful, by 
extracting the geometrical limit from the efficiency kernel.

(2) The condition number of the linear system tends to infinity when the number of 
measurement points  increases:

 .      (13)
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This is caused by  the fact that  the basis is not ortho-normal. When the separation of the 
measurement wavelengths tends to zero, adjacent columns tend to become linear dependent. 
Consequently, Twomey’s method is a bad discretization of the continuous integral equation, 
because the obtained discrete solution fails to converge to the continuous solution with 
increasing measurement resolution.

Surprisingly however, although the method is conceptually wrong, it can be made to 
numerically work for certain combinations of the number of measurements  and upper 
limit of integration . It appears that for these combinations both problems tend to cancel 
each other out. This fact has not been noticed in the literature, until recently (Franssens 
2000c).

In practice, one usually resorts to regularization methods to make the method work for 
a given  and often arbitrarily chosen . Regularization however should not become a 
standard practice, but a means of last resort to extract some ‘inspired’ solution out of a bad 
quality data set. It  cannot be justified to use regularization, as a means of repair for a 
diverging solution method.

The problems associated with Twomey’s method can easily be avoided, at least in the 
ADA, as the following reformulation shows. For clarity, only the case of transparent particles 
is considered.

Starting over again, but now with the forward ADA transform in its new formulation 
as given in (Franssens 2000a), we get the equations

 ,     (14)

and we used the transparent ADA kernel 

.       (15)

Represent the unknown  as the linear combination:

 .        (16)

Substituting (16) in (14) gives the linear system for the expansion coefficients

 .   (17)

Because of the ortho-normality of the basis  (Franssens 2000a), the 

kernel covariance matrix is now proportional to the unit  matrix and we can explicitly  solve 
the linear system, yielding
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 .        (18)

Back substitution of (18) in (16) gives the explicit expression for  and hence,

 .      (19)

This is just a staircase approximation to the inverse ADA transform integral (7) in the case of 
transparent particles (Franssens 2000a). 

This shows that, Twomey’s kernel covariance method, when implemented properly, is 
equivalent to a staircase discretization of the inverse solution. This result therefore shows that, 
when used with an ortho-normal basis, Twomey’s method becomes a good discretization of 
the continuous integral equation, because the staircase approximation (19) indeed converges 
to the inverse integral when the spacing between the wavelengths tends to zero.

5. REMARKS

The considered inverse problem originated with the theoretical work of Mie and 
Debye on light scattering by spheres and thus dates back to 1908 (Born and Wolf 1987). 
Almost a century later, one is still in need for a satisfactory  solution method. Attempts to 
formulate a stable numerical method or attempts to solve it  (approximately) by analytical 
means are hindered by the complexity of the exact scattering kernel. 

The solution methods discussed above, reveal a synergy between the analytic and 
numerical approach. On one hand, mathematical insight proves helpful to formulate a stable 
and converging numerical solution method. On the other hand, having an explicit analytic 
inversion formula can turn out to be pretty useless in case the practical data set to be fed into 
is scarce (spectrum measured with poor resolution or over a too limited spectral interval) and/
or of bad quality (large measurement errors). No matter in what way the problem is attacked, 
both approaches would benefit from a better understanding of the mathematical properties of 
the Mie scattering kernel.

It is unlikely that an analytical route can be found to solve this problem exactly. An 
approximate solution, based on an approximate kernel (as the ADA kernel), seems to be the 
way to go. The ADA is an interesting simplification, but is too crude to be generally 
applicable. The quest is therefore still open for a less approximate kernel than the ADA 
kernel, but which still allows analytic inversion of the Fredholm integral equation. This 
approximation should at least contain the correct geometrical and Rayleigh spectral limits to 
be acceptable. The insight gained from such a model would no doubt be also helpful to 
formulate practical inversion algorithms for low quality spectral data.

The complex ADA yielded valuable mathematical insight into the spectral inversion 
problem. It  resulted in a new formulation of the forward and inverse problem that is well-
posed. The posed-ness of the inverse problem (1) with the exact kernel (2) is still unclear. The 
ADA example showed that a mathematical (complex analytic) reformulation was necessary  to 
obtain a well-posed problem.
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Twomey’s discretization of the integral equation (1) is an example of a numerical 
method, which convergence depends on a proper formulation of the problem in terms of an 
ortho-normal kernel. At present, it is not clear how the exact Mie kernel (2) could be turned 
into an ortho-normal equivalent (as could be done in the ADA).

The author hopes that  the above examples may  have created an interest  in advancing 
the mathematical understanding of this challenging problem and he remains available for 
further discussions.
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