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A collisional kinetic model of the polar wind 

V. Pierrard and J. Lemaire 

Institut d'A•ronomie Spatiale de Belgique, Brussels, Belgium 

Abstract. The effects of Coulomb collisions in the transition region between the 
collision-dominated regime at low altitudes and the collisionless regime at high 
altitudes have been taken into account to study the escape of H + ions in the polar 
wind. A specialized spectral method is used to solve the steady state Fokker-Planck 
equation describing the diffusion and upward bulk motion of H + ions through a 
background of O + ions. The H + ion velocity distribution function is determined 
as a function of altitude for realistic initial conditions in the whole velocity space. 
We emphasize the importance for a correct choice of the boundary conditions 
at v - 0 to obtain regular mathematical solutions. The results of this kinetic 
model are compared with results of earlier polar wind models based on different 
approximations of the plasma transport equations. 

1. Introduction 

Near the poles, H + and He + ions drift outward along 
the magnetic field lines connected to the tail of the mag- 
netosphere and escape from the Earth's high-altitude 
ionosphere with supersonic speeds. This continuous 
outflow is called the polar wind. The polar wind has 
been studied for approximately 25 years with different 
theoretical models and to lesser extent with satellite 

measurements (cf. the review article of Ganguli [1996]). 
In the present paper, we investigate the polar wind 

H + ion distribution as a function of altitude by solv- 
ing the Fokker-Planck (FP) transport equation. We 
are concerned with the velocity distribution function 
(VDF) of H + moving in a background plasma composed 
of electrons and oxygen ions. The background plasma 
is assumed to be isothermal and Maxwellian in the 

exobase transition region wherein the H + ions change 
from collision-dominated at the bottom of this transi- 

tion layer to collisionless at the top. The H + velocity 
distribution function is given as a boundary condition 
at the top of the transition region where the Coulomb 
collisions between the thermal ions can be neglected. At 
this altitude and higher, the velocity distribution func- 
tion (VDF) of the light ions is highly anisotropic since 
most of the ions are accelerated upward by the am- 
bipolar diffusion electric field (see Lemaire and Scherer 
[1973] for a discussion of the role of the ambipolar elec- 
tric field in the polar wind), and due to the absence of 
collisions in the exosphere above this altitude no par- 
ticle are backscattered toward the Earth. We have de- 

veloped a formalism based on an expansion in "speed" 
polynomials to solve the kinetic FP equation which is 
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explained in the third section. The regularity condi- 
tions that the solution must satisfy everywhere even at 
the boundaries of the transition region are described in 
the fourth section. Additional boundary conditions are 
imposed in the fifth section. The aim of this study is to 
investigate the transformation of the H + velocity dis- 
tribution function in this transition region between the 
low-altitude collision-dominated regime and the colli- 
sionless regime at high altitudes. 

2. Fokker-Planck Equation 

In the absence of inelastic collisions, source, and loss 
terms, the kinetic transport equation of the ath particle 
species is 

Of•(r,v,t) 
+ (V.Vr)fa (r, v, t) 

+(a. Vv)fa (r, v, t) -- • c (1) 

where f•(r, v, t) is the velocity distribution function of 
the particles, r and v are the position and velocity vec- 
tors respectively, a is the acceleration due to external 
forces and t is the time. The term on the right-hand 
side (df/dt)c represents the effects of the Coulomb col- 
lisions. It can be written [Spitzer, 1956, Hinton, 1983] 

c = 2 0v (Df (r, v, t)) 
(2) 

where A is the dynamic friction vector 

A 

(s) 

11,701 
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and D is the velocity diffusion tensor 

D = 47rZ Z•Z•e41nA • m• (4) 
(v- v')(v- v')) v - v' (v - v'•S ' 

In (3) and (4), ln A is the usual Coulomb parameter 
containing the screening of the Coulomb field: In A -• 
15. Each term of the sum represents the effects of the 
collisions of the particle species a with the/• particles 
(a included). 

Without losing generality, one can reduce as usual the 
number of phase space dimensions from six to three, 
by assuming azimuthal symmetry around the vertical 
axis which is parallel to the magnetic field direction, to 
the gravitational force, and to the electric force. This 
simplifies the numerical problem without adulteration 
of the main physical aspects. No perpendicular electric 
field is assumed. The velocity distribution is a function 
of the radial distance r, the velocity v, and p - cost), 
where 19 is the angle between the velocity vector and the 
magnetic field direction. 

The acceleration of the particles of mass ma and 
charge Za depends on the electric force ZaeE, on the 
gravitational force mag and on the Lorentz force: 

ZaeE ) Zae a= +g +--(vxB). (5) 
mc• mc• 

Expressed in the (r, v, p) coordinates, the acceleration 
term in (1) becomes 

Using multiple scattering due to cumulative binary 
Coulomb collisions [Hinton, 1983], the collision term be- 
tween the incident ions (c•) and the target ions (/•) can 
also be written 

(dr) Za2Z•e 41hA • - y•.q•r ½ • rn• 

x • f•(r, v, t) + - 

20v•Ov• f.(r.v •) ø•g• (•o) ' OviOvj 

where 

(ma)/f•(r'v')dv' (11, 1 + m/• [v - v'[ 

f f•(r, v')[v - v'ldv' (12) 
We restrict this first study to the transport equa- 

tion of the H + ions, considered as a minor species in 
a background composed of oxygen ions and electrons. 
We assume that the background plasma is in isothermal 
hydrostatic equilibrium. Indeed, their thermal velocity 
is much smaller than their escape velocities and their 
escape flux is relatively small. 

Therefore the O + ions have a Maxwellian velocity 
distribution characterized by zero bulk velocity u - 0 
and a temperature T• which is independent of r: 

( ) f•(r. v') = .• 2•• 
3/2 

exp(-x '2) exp[-q•(r)] (13) 

a. Vvf = 

a(r) (I •Of 
(6) 

(1 -/•2) Of) 3 v (1 - p2) Of v 
where we have considered that the cross section of the 

vertical magnetic flux tubes varies like r s with the ra- 
dial distance, i.e. like the inverse of the magnetic field 
intensity for a dipole. 

In spherical coordinates, the advection term of (1) 
becomes 

of 
v(r).Vrf -- VP•rr (7) 

Defining a dimensionless velocity y by 

y - v/m•/2kT•v - v/c, (s) 

the left hand side of the Fokker-Planck equation be- 
comes 

Df = Of Of a(r) ( Of o• +CY• + • + 
• of 

+• •-(1 - f) r •-•' 

- y 

(•) 

where x'= v/m•3/(2kT•3)v ' and exp[-qB(r)] determines 
the hydrostatic distribution of the O + ion density versus 
altitude, n s is the number density at the bottom of the 
transition layer where qB -0. 

Since H + ions remain minor constituent in the tran- 

sition region we consider only the H + -O + collisions 
and assume that the velocity distribution function of 
the background O + ions is almost unperturbed by the 
outflow of the minor H + ions. The collisions H + - H + 

can be neglected in a first approximation. In a future 
study, this assumption will be relaxed. The collisions 
of H + ions with the thermal electrons can also be ne- 

glected since the rate of change of H + ions momentum 
as a result of collisions with electrons is V/too+/m e- 
time smaller than for O + - H + collisions. 

The quasi-neutrality condition for a plasma in static 
equilibrium in the gravitational field mainly composed 
by O + ions implies that the electric field is close to the 
Pannekoek-Rosseland field 

E(r) = (too+ - m•-) g(r). (14) 2e 

When f•(v •) is a Maxwellian distribution, the inte- 
grals (11) and (12) can be calculated analytically: 
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•/m• exp(-q•(r))x h•(•) = n• 2•T• 

(ma) erf(x) (15) l + m/3 x 

/2kT• [(1) g•(•) = •V • e•p(-q•(.) e•(•) ß + • 

I _•)] (lC) +•e•p( 
•ke•e e•(•) i• tke e•o• •unaion •na ß = ••/(••)v. 

Defining 

f(•) = e•(•) • ß • e•p(- • •) (lt) 
the collision term (2) can be written 

m2 a exp(-q•(r)) 2kT• 
1 0 m. xf + 

I Og• 0 (1-/•2)0f] !x30x 01• (18) 

,-•2 ,-•2 4 

with co = ••e ln^. 
With the definitions of y and x, it can be verified that 

roll+To+ Wo+ 
- z - z, (19) Y w.+ 

Using these variables the Fokker-Planck, (1) becomes 

tain steady state solutions for the H + ion velocity dis- 
tribution function. 

First, we expand the solution in Legendre polynomi- 
als with respect to/• or cos0 [Canuto et al., 1988]: 

n--1 

f(r, y, I•) = • fl(r, y)Pl(l•). (21) 
/--0 

Calculating 

and taking into account the orthogonality properties of 
the Legendre polynomials: 

Pt(Iz)P•'(Iz)dlz = •6u, (23) 1 2/+1 ' 

the equation is decomposed into n partial differential 
equations where the n unknowns are ft(r, y)' 

( Ofl-1 Ofl+l) 
a(r) ( Ofl-1 Ofl+l ) wn+ Oy Oy 

(a(r) 3wH+y) ( + q •(t)I•-i + •4(t)I•+l ywn+ 2 r 

[1 0 {(2yf, T.+ Of,) (w.+ )} 2 k Wo+ 21 + 1 

+• • 21 + 1 ft (24) 

Of Of a(r) ( Of (1-/•2) 0f) o-r + w.+ y• + • + WH+ Y • 

3 •2 Of +•wn+Y(1- ) 
c0 too+ 

m•+ no+ exp(-qo+ (r)) 2kTo+ 

[10 
I Og o (l_•)oz] • ya Oy Ob • ' 

wo+ 4 WH+ ) 

(20) 

This equation is similar to that derived in the article 
of Shizgal et al. [1986]. It can also be reduced to the 
Fokker-Planck equation used in Lie-Svendsen and Rees 
[19961 . 

3. Method of Resolution 

We have used a specialized spectral method to solve 
the partial differential equation (20) in (r, y,/•) and ob- 

with C0 = m 2 exp[-qo+(r)] too+ 2kTo+ H+ k. WH+ 

21 

/•1(/) -- (2/ q- 1)(2/- 1) (25) 
2(/+ 1) (26) /•2(/) = (21 + •)(2/+ 3) 

-2(1- 1)/ (27) /•a(1) = (21+ 1)(2/- 1) 
2(1 + 1)(/+ 2) 

/•4(/) = (2/+ 1)(2/+ 3)' (28) 
The unknowns f0, ..., fn-1 are functions of the alti- 

tude (r) and of the velocity of the particles (y). To 
determine the dependence of fl on y, we introduce an- 
other spectral decomposition. The partial derivatives 
with respect to the y variable are expanded using the 
quadrature differential method (QDM) or discrete or- 
dinate (DO) method outlined by Shizgal [1981], Shizgal 
and Blackmore [1984], Mansell et al. [1993], and Shizgal 
and Chen [1996; 1997]. 
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The integral of a function G(y) continuous on an in- 
terval [a, b] where it has a weight function W(y) can be 
evaluated rather accurately by a weighted sum of values 
of G(y) at a series of discrete points Yi: 

b N-1 

f W(y)G(y)dy -• • wiG(yi) (29) i--O 

where yi are the N roots of the polynomial QN(Y) of 
degree N associated to the weight function W(y) de- 
fined on [a, b]; G'(yi) are the values of the function for 
the points yi and wi are corresponding weights [Canufo 
et al., 1988; Press et al., 1992]. 

In this discrete ordinate basis, the derivatives of any 
continuous function G(y) can be approximated by the 
following expansion: 

N-1 

where Dij are the matrix elements of the derivative op- 
erator in the polynomial basis [Shizgal and Blackmore, 
•S4]. 

This discretisation method has been used in sev- 

eral applications in kinetic theory of nonuniform gases. 
Equations describing the velocity distribution function 
in the Milne problem or the transport of neutral hy- 
drogen in the neutral atmosphere-exosphere and in- 
volving integrodifferential operators have been success- 
fully solved by Blackmore and Shizgal [1985] and Shizgal 
and Blackmore [1985] using this quadrature differential 
method and "speed polynomials" Q• = S•(y) whose 
weight function is W(y) = y• exp(-y•). The Coulomb 
Milne problem [Lindenreid and Shizgal, 1983; Barrett et 
al., 1992] involves the Fokker-Planck operator of (20). 

The Maxwellian function with the same temperature 
and the same bulk velocity as the background ions is 
a steady state solution of the Fokker-Planck equation, 
when the escape flux of H + ions is strictly equal to zero. 
However, since in the polar wind the upward flux of H + 
is not equal to zero, the isotropic Maxwellian velocity 
distribution function is not a solution corresponding to 
the polar wind case. 

To absorb the exponential variation of f for VDFs 
near thermal equilibrium, it is convenient to introduce 
the function f• = f exp(y •) and to solve the equation 
for the f• function. At thermal equilibrium, f• is a 
constant in the whole velocity space. 

The transport equation as well as its solution is ex- 
panded in n = 10 Legendre polynomials Pt(•) for the 
variable •. The coe•cients fi(r,y)in (21) are devel- 
oped in linear combination of N = 10 speed polynomi- 
als 

) y, - exp(-y . 
k/=0 

where the matrix elements als(r) are the coefficients of 
the expansion whose dependence on altitude is sought. 
The speed polynomials form a basis of orthonormal 
functions: 

o • y2 exp(_y2)Ss(y)Sr(y)dy _ 5s•. (32) 
The dependence of al8 on r is determined by an iter- 
ative Runge-Kutta method based on an algorithm de- 
scribed by Brankin et al. [1991]. Boundary conditions 
are needed. They will be imposed at the top of the 
transition layer and not at the bottom of the transi- 
tion region as it is common practice. Before we discuss 
these boundary conditions, we must first introduce reg- 
ularity conditions that any solution of (20) must satisfy 
everywhere included at r0. 

4. Regularity Conditions 

A study of the behavior of the Fokker-Planck equa- 
tion (20) for y -• 0 and p -• 0 shows that the velocity 
distribution function of the H + ions must satisfy the 
following regularity conditions: 

log [0 (1_• 20f(••y,l•)] yOy • ) . -•0 
when y -• 0 for any • values 

(33) 

0 

k Oy Y' 
(34) 

when y -• 0 for any • values 

a(r) I Of 3 y Of 
WH+ Y(• ]- •WH+---- r 0• 

+ xwo+ 

]Og O (l_•)Of} Oy o 
when • • 0 for any y values. 

If these conditions are not satisfied, the collision term 
on the right-hand side of (20) diverges and tends to • in 
the limit of y • 0 for any value of • = cos •. It diverges 
also for any non-zero value of y when • • 0, i.e., when 
the velocity vector of the particles is in the horizontal 
direction. When we impose a function f(r0, y, •) which 
does not satisfy (33), (34), and at the boundary 
r0, the numerical integration code does not converge 
toward a stable numerical solution of the Fokker-Planck 

equation. 
Therefore these regularity conditions are essential to 

obtain numerically stable solutions of the time indepen- 
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dent Fokker-Planck equation. They are consequences of 
the divergence of the classical Coulomb collision cross 
section when the relative velocity of the interacting par- 
ticles tends to zero, i.e., when y -• 0. In the limit of 
y -• 0, the acceleration and convection terms in the 
left-hand side of (20) cannot be balanced by the colli- 
sion term of the right-hand side, unless (33) and (34) 
are satisfied. 

The conditions (33) and (34) imply that the VDF 
is locally isotropic and Maxwellian for small veloci- 
ties, while the condition (35) implies that it is also 
Maxwellian for all horizontal velocities, i.e., for 0 - 90 ø 
orp=0. 

The condition (35) implies •ha• •he distribution of 
horizontal velocities (i.e. for • = 0) is a non-displaced 
Maxwellian function like •ha• of •he background O + 
ions. No•e tha• •he dispersion of •he H + ions velocities 
can be characterized by a temperature Tu+, which is 
differen• from tha• of •he O + ions. 

In •he limi• y • 0, •he condition (33) implies •ha• 
•he VDF is isotropic around •he origin in •he velocity 
space, i.e., •ha• i•s symmetry abou• the origin is similar 
•o •ha• of •he O + ion VDF. Indeed, we have assumed 
•ha• •he bulk velocity of the background particles is 
equal •o zero (Uo+ = 0) and tha• i• has no temperature 
anisogropy, i.e., To+ II - To+ñ. 

The condition (34) implies •hat the VD¾ tends to 
a Maxwellian when y • 0. Note •ha• •hese regularity 
conditions have not been taken into account in the polar 
wind model of Lie-$vendsen and Rees [1996]. This may 
be •he reason why their velocity distribution function 
is no• determined in the vicinity of the origin in the 
velocity space for •ll -• 0 and vñ • 0. 

To determine a velocity distribution function at r0 
wi•h •he required properties for • • 0 and y -• 0, we 
expand •his function in polynomials of • and y [Pier- 
rard, 1997]: 

f(ro, y, t •) -- exp(-y 2) y•. y• bnm•my n (36) 
n=0 m=0 

where b,•m are constant to be determined by the regu- 
larity and the boundary conditions. The values of the 
H + density nn+ (r0), escape flux Fn+ (r0) and of higher- 
order moments of the VDF at r0 determine additional 
relations that the set {b•m} must satisfy. These ad- 
ditional relations will be discussed in more details in 

the next section. It can be verified that the conditions 

(aa), (34), and (35) require that b,•m = 0 for n < 3 and 
m<3. 

It should be pointed out that the truncated Maxwel- 
lian VDF assumed at the exobase of Lemaire and Scherer 

[1970, 1971, 1974] and Pierrard and Lemaire's [1996] 
exospheric models satisfy the regularity conditions in 
the whole exosphere when the escape velocity is posi- 
tive. However, the displaced Maxwellian velocity distri- 
bution function implicitely assumed in hydrodynamical 
models of the polar wind do not satisfy these regularity 
conditions. 

5. Additional Boundary Conditions 

As indicated above, the coefficients bnm of the polyno- 
mial expansion (36) of f(ro, y, t•) must satisfy algebraic 
relations which are obtained by replacing (36) in the 
Fokker-Planck equation (20) and by matching terms of 
the same powers of/• and y in the right- and left-hand 
sides. Additional relations are imposed on the set of 
bnm coefficients by forcing a given number of moments 
of the VDF f(ro, y, t•) to be equal to certain fixed values 
at the upper boundary of the integration domain, i.e., 
at r = r0. 

The moments of the VDF can be calculated by using 
the polynomial expansion (37): 

f(r, y, p) - exp(-y 2) y• als(r)Pl(p)Sm(y) ß 
\/=0 s=0 

(37) 

For instance the density at any altitude r (i.e., the 
moment of zeroth order of this VDF) is given by 

1 oo n--1 

27r/_ dp f 0 y'exp(-y') Z f[(r,y)Pl(p)dy 1 /--0 

4•r f•(r, y)y2 exp(-y2)dy (38) 

since fl I Po(•)Pl(•)d• - 2•/0 by orthogonality of the 
Legendre polynomials and since P0(p) - 1. 

Using the expansion in speed polynomials introduced 
by Shizgal and Blackmore [1984], one obtains 

= 47rfo • aøs(r)Ss(y)Y2 exp(-y2)dY s--O 

= 2•r ½/r•aoo (r) (39) 

since f• So(y)S,(y)y 2 exp(-y2)dy - 5•o by orthonor- 
mality of the speed polynomials and since So(y) = 
2/•/•. Assuming n(ro), the H q density at r0 is for 
instance equal to 100cm -3, the value of aoo(ro) is then 
determined by (39). 

Additional relations are obtained by fixing the value 
of the polar wind escape flux F}•+(ro) which is a first 
order moment of the VDF. According Hoffman [1968] 
and Moore et al. [1997], the polar wind flux of H + is of 
the order of l0 s cm-2s -1 or larger. Let us assume for 
instance this value as the boundary condition at 2000 
km altitude. This boundary condition determines one 
more algebraic relation between the 10 x 10 coefficients 
bnm(r) and the same number of at•(r): 

Fll (r) - -•- • f• (r, y)y3 exp(_y2)dy (40) 

8 V//2_.•o (• 4 • ) = 3v/-• • • (-• -- l) all(r) + -•-a10(r) 
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since 

$1(Y)- •gr•(•- 1)(-••y- 1) (41) 
and PI(P) - P. 

The parallel and perpendicular temperatures at r0 
can be used to obtain two additional linear algebraic 
relationships between the (al8 ]. In this first study case, 
we assume that Tiis+(r0 ) -- 2400 K and Tñ$+(r0) 
1500 K. 

The value of higher moments of the H + velocity dis- 
tribution function are used to complete this set of lin- 
ear equations which enables to determine the values 
of the same number of coefficients (bnm) and 
Indeed, by expanding the Legendre polynomials P•(p) 
and speed polynomials $m(Y) in powers of p and y, 
one obtains an expansion similar to (36) where the co- 
efficient of the term ynl•m is a linear combination of 
the coefficients (a•s). The value of bnm(r) is equal to 
Snm({als}). Additional relations between the {bnm} 
come from the regularity conditions. 

This procedure shows that there is a great flexibil- 
ity and freedom in the choice of the f(ro, y,p). The 
number of coefficients (bnm) or (a•s) which can be de- 
termined this way depends on the number of moments 
of the VDF imposed at the boundary r0 of the tran- 
sition region. This number can be increased by using 
a larger number of moments of the VDF to define the 
boundary conditions at r0. 

All other coefficients bnm which cannot be determined 
by this limited set of equations can be set equal to zero: 
bnm- 0 for n > nm•x and m > remix. Similar trunca- 
tions are adopted in Chapman-Enskogg or Grad expan- 
sions [Grad, 1949; Chapman and Cowling, 1970] of the 
VDF based on the expectation that the series of coeffi- 
cients b•m tend to zero when n and m become large. 

Since we have determined the values of b•m which 
correspond to that of the functions B•m ({at, }) at r0, 
we can determine the values of a minimum number of 

coefficients al,(ro) at the reference altitude r0, by re- 
solving the set of linear equations: 

Snm({als})-bnm. (42) 

Because of the limited number of boundary condition, 
only a limited number of coefficient bnm and at8 can be 
determined uniquely. 

Once all the values of at,(ro) are known for I < n and 
s < N, the set of differential equations 

df[(r, yi) = œ[f•(r, yj)] (43) dr 

can be integrated between r0 and r l by a Runge-Kutta 
numerical method to obtain the values of at,(r) above 
or below r0. 

Appropriate initial values for at,(ro) or for bnm(rO) 
are those which give physically realistic VDFs at high 
altitudes. We chose to fix the regularity and boundary 
conditions at the top of the transition region where we 
know that most of the particles escape. Above this al- 
titude, in the exosphere, the collisions are of minor im- 
portance and the well-developed asymmetrical "halo" 
component of the VDF predominates in the velocity 
space over the isotropic and Maxwellian "core" compo- 
nent close to y -0. 

Our choice of the VDF at r0 was guided by the re- 
sults obtained by the Monte Carlo simulations of the 
polar wind by Barakat et al. [1995]. The velocity dis- 
tribution that we adopted at the top of the integration 
interval was also inspired by those usually adopted in 
exospheric models [Lemaire and $cherer, 1970, 1973; 
Pierrard and Lemaire, 1996]. In these models, the VDF 
generally have (1) an isotropic Maxwellian core around 
the origin in the velocity space and (2) a highly asym- 
metrical halo population of suprathermal escaping par- 
ticles. The high-altitude boundary conditions are es- 
sential in the resolution of the Fokker-Planck equation. 
They determine how much particles can escape out of 
the transition region. The flux of particle at the top of 
the transition region will be maximum if the magnetic 
flux tubes are "open" and when nonlocal collisions in 
the exosphere may be completely neglected. However, 
when magnetic flux tubes are not opened and/or if dis- 
tant collisions contribute to backscatter a fraction of 

the "escaping" particles, the net upward flux is reduced. 
Whatever value we assume for the flux of escaping par- 

Table 1. Values of the Moments of the VDF of H + 
Ions at Different Altitudes in the Transition Region. 

1 ooo 
Altitude, km 

1500 2OOO 

-3 
Density nil+ , cm 
Flux FH+, cm-2s - • 
Bulk velocity lz H+, km s- • 
Parallel temperature TliH+ , K 
Perpendicular temperature TñH+ , K 
Parallel energy flux elIH+, ergs cm-2s -• 
Perpendicular energy flux eñH+, ergs cm-2s -• 
Knudsen number/H+/Ho+ 
Oxygen density no+ 

1590 

1.5 x 108 
0.9 

1120 

1014 

3.65 x 10 -8 
7.1 x 10 -8 

5 

104 

350 

1.2 x 108 
3.4 

1348 

1060 

2.55 x 10 -8 
3.88 x 10 -9 

0.5 

2.7 x 103 

100 

108 
10 

2400 

1500 

1.70 x 10 -•ø 
4.75 x 10 -9 

0.1 

2x 102 
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ticles at the top of the transition region, the solution of 
the Fokker-Planck equation tends to an almost isotropic 
maxwellian at low altitude where the collisions become 

more and more important. 
The results presented below are obtained for the VDF 

illustrated in of Figure la at the altitude 2000 km corre- 
sponding to the top of the interval of integration. Col- 
umn 2 in Table 1 shows the density, flux, bulk velocity, 
parallel and perpendicular temperatures, and flux of en- 
ergies carried by the H + ions at the top of the transition 
region, taken as reference altitude to. 

Once the coefficients alsO*) of the polynomial expan- 
sion (36) are obtained at all altitudes by solving (43), 
one has an analytic representation of the VDF at the 
quadrature points in the velocity space. The moments 
of the VDF can then also be calculated anywhere be- 
low r0 by expressions similar to (39) and (41). All other 
moments of the VDF are determined by linear combi- 
nations of the als(r) coefficients and can be calculated 
at any altitude below r0. A study of the positivity and 
convergence of the velocity distribution function similar 
to that of Leblanc and Hubert [1997] will be presented 
in a separate article. 

The solutions of the Fokker Planck equation in the 
transition region between 2000 and 1000 km is presented 
in the following section. 

6. Results and Discussion 

The values of the moments of the VDF are given in 
Table i at 2000, 1500, and at the bottom of the in- 
tegration interval, i.e., 1000 km. The moments of the 
velocity distribution function are not very affected by 
the number of polynomials taken in the expansion ex- 
cept if n < 8 or N < 8. The differences of the value of 
the moments for Simulations with 10, 16, and 20 poly- 
nomials are lower than 5%. The oxygen density is also 
given in Table 1. These ions are everywhere more abun- 
dant than the H + ions diffusing through the transition 
layer, i.e., that the H+H + collisions could be neglected 
compared to the H+O + collisions at least in a first ap- 
proximation. The Knudsen number for H + ions is also 
given. It can be seen that it changes from a small value 
at the bottom of the transition region to a large one at 
the top. 

Figure 1 illustrates isocontours of the VDF in the 
plane vii, vñ at these same altitudes for these boundary 
conditions. The Figure la illustrates the VDF adopted 
as boundary condition at the top where the collision 
frequency of H + ions with the O + ions is significantly 
reduced and where the Knudsen number of a thermal 

H + ion is equal to 5. 
This velocity distribution function which is similar to 

that obtained by Barakat et al. [1995] using a Monte 
Carlo simulation, has a "lima-bean" shape. It is also 
similar to VDF obtained by Lie-Svendsen and Rees 
[1996] at 2500 km altitude by using a finite difference 

method to solve the Fokker-Planck equation (1). Lie- 
Svendsen and Rees [1996] used boundary conditions at 
the top as well as at the bottom of the transition re- 
gion where they assumed that the VDF is a displaced 
Maxwellian for all upward moving particles. A similar 
displacement of the VDF is assumed in standard hydro- 
dynamical polar wind models [Banks and Holzer, 1969; 
Schunk, 1975]. At the top of the transition region, they 
assumed that the VDF is empty for all downward mov- 
ing particles, This low-altitude boundary condition im- 
plies that the tail of the distribution is not enriched with 
suprathermal particles, i.e., that the VDF decreases ex- 
ponentially. 

Although not apparent in Figure la, the VDF that 
we assume at the top has a small nondisplaced isotropic 
Maxwellian component centred around the origin (vii = 
0, vñ = 0, i.e., for y = 0). This core component cor- 
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Figure 1. Contour levels of the H + velocity distribu- 
tion function at (a) the top (2000 kin), (b) 1500 kin, and 
(c) at the bottom (1000 kin) of the transition region. 
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responds to a population of particles which does not 
contribute to the net upward flux of the polar wind 
ions. It can be seen from Figure 1 that it is only the 
halo population of particles with a velocity vector in 
the lima-bean shaped area that contribute to the polar 
wind ionization flow of H + ions as well as to the flow 

of energy. Note, however, that the core population con- 
tributes to the exospheric density and pressure tensor 
while it do not contribute to the net field-aligned flux 
of particle parallel to the magnetic field direction, 

Figure lb shows that at intermediate altitudes in the 
transition region, the asymmetry of the VDF becomes 
smaller as one penetrates deeper into the collision- 
dominated region. The almost isotropic and almost 
Maxwellian core component becomes more prominant 
at the expense of the highly asymmetric halo compo- 
nent formed of suprathermal particles populating the 
tail of the VDF. 

This figure also shows that the dispersion of the H + 
ions velocities becomes highly anisotropic in the transi- 
tion region and in the exosphere where the thermalizing 
effect of collisions becomes less and less effective. 

Note also that the field-aligned energy flux eiiH+ is 
mainly contributed by the halo particles. The flux of 
energy is directed upward, i.e., the energy is transported 
from the collision-dominated region to the topside ex- 
ospheric region where the spread of the particles ve- 
locities (i.e., their temperatures) is larger than at the 
bottom of the transition. Indeed, it can be seen in Ta- 
ble I that the parallel and perpendicular temperatures 
increase with the altitude. It may seem paradoxical 
that energy may be transported from a cooler region to 
a hotter one, but it should be noted that the tempera- 
ture parameter defined above based on the law of per- 
fect gas should not be compared to the temperatures of 
classical thermodynamics where the system is collision- 
dominated and the VDF close to displaced Maxwellian 
distributions. 

The field-aligned heat flux qll is defined as the flux 
energy in a frame of reference moving with the bulk 
velocity or mean velocity particles: 

mu 2 

q- e- F-•--. (44) 
The heat flux decreases with the altitude as in the 

Monte-Carlo simulation of Barakat et al. [1995]. 
At the bottom of the transition region the Knudsen 

number is equal to 0.1 for H + ions with velocities equal 
to the average thermal velocity. It can be seen from Fig- 
ure 1 that the secondary peak in the VDF correspond- 
ing to the halo population has vanished at the expense 
of the core population centred at the origin in velocity 
space. At the location of this secondary peak, the slope 
of the VDF is just slightly smaller. This slight asym- 
roetry determines the upward polar wind flux imposed 
by the continuity equation. The VDF tends more and 
more toward an isotropic MaxwellJan as one penetrates 
deeper into the collision-dominated region. Figure 1 

nicely illustrates the secondary peak of halo particles 
emerging from the almost isotropic Maxwellian VDF 
which is close to that of a barometric equilibrium VDF. 

7. Conclusions 

The kinetic model presented in this article describes 
the transformation of the H + velocity distribution func- 
tion in the transition region. At high altitudes, the dis- 
tribution is highly anisotropic and asymmetric. The 
light ions are accelerated upward by the polarization 
electric field produced by the gravitation charge sepa- 
ration of O + and e-. The tips of their velocity vectors 
are located in a "lima-bean-shaped" region of veloc- 
ity space. A population of core particles scattered by 
Coulomb collisions form an isotropic and Maxwellian 
peak in the VDF which is centered around the origin at 
(vii - 0, vñ - 0). 

At lower altitudes, the distribution becomes more 
and more isotropic due to the increasing effects of the 
Coulomb collisions. The halo population gradually dis- 
appears into the main peak forming the core popula- 
tion. This is the consequence of the strong dependence 
of the Coulomb collision cross section on the relative 

velocity of the colliding particles. Since this interac- 
tion is stronger for small velocities, one expects the 
VDF to be isotropic and Maxwellian around v = 0 (or 
y = 0), while for larger values of v (or y), the asymme- 
tries which develop in the VDF due to their acceleration 
by the upward directed ambipolar electric field, is not 
so efficiently destroyed by Coulomb collisions than for 
particles with subthermal velocities. 

The escape flux is due to these suprathermal particles 
forming the halo population. This implies that in the 
transition region between the collision-dominated and 
collisionless region the VDF changes from a singly peak 
almost isotropic and almost Maxwellian centred around 
the origin (v - 0), into a double-hump distribution 
with a second lima-bean-shaped maximum. Drifting 
Maxwellians and bi-Maxwellians generally used to de- 
scribe the polar wind moment approximation or in hy- 
drodynamic models are quite different from this type of 
velocity distribution functions. In particular, the drift- 
ing Maxwellian is not centered around zero and in this 
case the low-energy particles contribute to the flux as 
well as the suprathermal particles. On the contrary, in 
the case of the new distribution, the flux is mainly con- 
tributed by suprathermal particles but not by the core 
population. The low-energy particles are more affected 
by collisions with the background plasma which has no 
bulk velocity by assumption in the present model study. 

Our model is based on the resolution of the Fokker- 

Planck equation and is quite similar to the kinetic model 
of Lie-Svendsen and Rees [1996]. However, they solved 
the Fokker-Planck equation using a finite difference nu- 
merical method, which is different from the spectral de- 
scribed in this paper. In our study, regularity condi- 
tions are imposed on the velocity distribution function 
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to obtain a fast convergence toward a stable stationary 
numerical solution of the Fokker-Planck equation. Re- 
sults of these both kinetic models are in good agreen/ent 
with those of the Monte Carlo simulations [Barghouthi 
et al., 1990; Barakat et al., 1995]. 
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