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The Viasoy kinetic approach is used to study the stability of the magnetopause current layer 
(MCL) when a sheared flow velocity and a sheared magnetic field both exist simultaneously within 
it. A modified Harris-Sestero equilibrium where the magnetic field and bulk velocity are changing 
direction on the saxne spatial scale is suggested to illustrate the generation of a y component of 
the magnetic field in the center of the MCL. With this equilibrium it is shown that B•(0) can be 
of the order of Bz(oo) when the value of the shear flow (U) tends to the ion drift velocity (Ud). 
The modifications of the initial symmetrical Harris configuration, introduced by the presence of a 
shear flow, strongly influence the adiabatic interaction of the plasma with low-frequency tearing- 
type electromagnetic perturbations as well as the nonadiabatic response of the particles near the 
center of the MCL. This results in a reduction of the growth rate of the tearing mode. 

1. INTRODUCTION 

Studies of the structure of the magnetopause current layer 
(MCL) and of its stability with respect to the excitation 
of large-scale perturbations (for example, tearing mode or 
Kelvin-Helmholtz instability) play •n important role in un- 
derstanding mass and energy transfer from the solar wind 
to the m•gnetosphere. The conditions of spontaneous ex- 
citation of longwave perturbations (w•velength A• = 2•r/k 
much greater than the thickness of the layer L) depend not 
only on the local values of the plasma parameters near a 
given magnetic surface within the MCL but mainly on the 
•1obal distribution of magnetic and electric fields, paxticle 
number densities, •nd t•gential flow velocity profiles •cross 
the M CL, that is, on the initial equilibrium structure of the 
layer which determines the free energy of the perturbations. 
This circumstance significantly complicates the theoretical 
ß tudy of the glob&l •tability of the M CL. These difficulties 
•re reflected on two theoretical &pproaches •ener•ily consid- 
ered ia the abuadant literature devoted to this subject. 

The first approach, and the most fundamental one, is 
based on the kinetic Vlasov formalism (see, for example, 
Drake and Lee [1977], Galeev and Zelenyi [1977], Goppi et al. 
[1979], Que,t and Coroniti [1981], Kuznettova and Zelenyi 
[1985, 1990a], Galeev eta/. [1986], and references therein). 
In these papers the initial equilibrium structure is the well- 
known Harris configuration [Harris, 1962] generalized for 
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the case where the plasma is magnetized by the constant 
current-aligned magnetic field component By 

B = Bo tanh(z/L)ez q- Byey, By = const (1) 

This model describes the main property of the MCL, the ro- 
tation of the magnetic field vector across the layer. Galeev 
et al. [1986] have obtained the general stability thresholds 
for the destruction of all magnetic surfaces within the con- 
figuration (1) due to the excitation of drift tearing instabil- 
ities. In this study the marginal thickness L of the MCL is 
computed as a function of 00, the total angle of rotation of 
the magnetic field. The approach by Galeev et al. [1986] 
is, however, not appropriate for the case of nearly opposite 
directions of magnetosheath and magnetospheric magnetic 
fields (in the angulax interval: 120' < 00 < 180', By ,• 
B0) when configuration (1) tends to the one-dimensional 
"neutral sheet" limit. Indeed, in this case the drift the- 
ory breaks down, and the stability analysis based on model 
(1) gives very reduced values of the critical magnetopause 
thickness (L _< pi, where pi is the Larmor radius of the mag- 
netosheath ions). Although many magnetopause crossings 
axe characterized by a magnetic field rotation close to 180' 
[e.g., Berchem and Russell, 1982b], one-dimensional neutral 
sheets (B• --• 0) as well as layers with a constant or nearly 
constant value of By are seldom observed. What is actu- 
ally observed is a systematic variation of both B• and B, 
as the satellite passes through the magnetopause, while the 
quantity B• -F B• a remains approximately constant even for 
O0 --.180'. 

Another disadv&ntage of the model (1) is that it describes 
• •bsolutely symmetrical MCL composed of a population 
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of 'trapped • particles •isolated • from the magnetosheath 
and magnetosphere plasmas. The latter can only be intro- 
duced in the model in the form of a uniform background 
[Kuznctsova and Zelenyi, 1990b]. Observations show, how- 
ever, that the magnetopause is a mixture of plasmas of 
both magnetosheath and magnetospheric origins [Brpant 
and Riggs, ]989]. To understand how the magnetosheath 
parameters control the stability of the MCL, factors of asym- 
roetry should be introduced in the equilibrium model, which 
can be considered as a tangential discontinuity (TD). These 
factors of asymmetry should emphasize the difference be- 
tween magnetosheath parameters just outside the magne- 
topause (tangential flow velocity, number density, absolute 
value of magnetic field, and temperature) and those in the 
magnetosphere. They should finally appear as parameters 
in the formulation of the stability thresholds. 

Some kinetic studies of the Kelvin-Helmholtz (K-H) in- 
stability in layers with flow velocity asymmetry but without 
magnetic shear (magnetic field in the same direction on both 
sides of the layer) have also been performed [Ganguli et al., 
1988; Pu, 1989; C'ai et al., 1990; Wang et al., 1992]. These 
results can be applied for the case of northward orientation 
of the interplanetary magnetic field away from the stag- 
nation point. However, when the interplanetary magnetic 
field has a southward orientation, a sheared velocity and a 
sheared magnetic field both exist simultaneously within the 
MCL. 

Particle simulation of the formation and evolution of the 

MCL has been carried out by Berchem and Okuda [1990, 
and references therein]. Cargill and Eastman [1991] pre- 
sented results of hybrid simulations where electrons were 
treated as a massless fluid, and the ions were treated as par- 
ticles. A considerable amount of effort has been made after 

the pioneering work of Sestero [1966] to construct a self- 
consistent equilibrium Vlasov model of reMistic TDs with 
large magnetic shear (#0 > 90') and asymmetrical bound- 
ary conditions (see, for example, Kan [1972], Lemaire and 
Burlaga [1976], Roth [1978, 1979, 1984], Lee and Kan [1979], 
and references therein). However, none of these models were 
used for stability analysis of the M CL using the Vlasov for- 
realism. 

The second approach used in the study of the global sta- 
bility of the MCL is ba•ed on MHD simulations of the cou- 
pling between the tearing mode •nd the K-H instability [Liu 
and Hu, 1988; La Belle-Hamer et al., 1988; Hu et al., 1988; 
Pu and Yei, 1990; Pu et al., 1990a, b]. The influence of shear 
flow on the double teazing instability in the fra•ne of incom- 
pressible viscoresistive MHD was also considered by Ofman 
[1992, and references therein]. For the former case the ini- 
tial configuration is characterized by a one-dimensional Har- 
ris profile of the magnetic field which reverses direction to- 
gether with a similar antisymmetrical profile of the parallel 
bulk ilow 

B(z) = Bo tanh(z/L)ez, V(z) = -V0 tanh(z/L)ez (2) 

The problem of determining the velocity distribution 
functions corresponding to configuration (2) is not discussed 
within the framework of the MHD approach. It is assumed 
that the effect of the velocity shear on the structure of the 
equilibrium magnetic field can be neglected when the rela- 
tive flow velocity is much smaller than the thermal velocity 
of the plasma. Within the framework of this •sumption it 
is shown that the growth rate of the tearing mode is only 

slightly modified by the shear tiow up to the Mach number 
M• -- 1. It wa• also argued by Pu and Yei [1990] that the 
addition of a By magnetic field component does not influ- 
ence the stability properties of the M CL, as the coupling of 
that component with Vz and Bz was thought to be absent. 
We will, however, show in sections 3 and 5 that the pres- 
ence of a shear flow will modify the profile of By(z) and, 
consequently, the growth rate of the tearing mode. 

To study the influence of the shear flow on the tearing 
mode, attempts have also been made to combine the MHD 
and kinetic approaches by separating the plasma into two 
regions: an internal "kinetic region," where the Vlasov for- 
malism is used, and an external "MHD region" where the 
system of MHD equations is solved [Lakhina and Schindler, 
1983a, b; Zelenyi and Kuznetsova, 1984; Wang and Ashour. 
Abdalla, 1992]. 

The coupling between K-H and tearing modes was inves- 
tigated by Zelenyi and Kuznetsova [1984] for the magneto- 
tail configuration. In that work it was assumed that, in- 
side the tail (Izl < z*, where z* is the half-thickness of the 
magnetotail), the plasma configuration can be described by 
the plain Harris model without flow (configuration (1) with 
By = 0). For the external solar wind flow (Izl > z*) the 
incompressible MHD approximation was used. For this hy- 
brid model the error in the definition of the plasma distri- 
bution functions (in comparison with self-consistent ones) 
is found proportional to exp(-2z*/L), where L is the half- 
thickness of the plasma sheet. For the magnetotail configu- 
ration z* ), L, and, consequently, this error is very small. 

For the dayside magnetopause, configuration (2) has been 
used by Wang and Ashour. Abdalla [1992] as the initial un- 
perturbed equilibrium. The "boundary • between the exter- 
nal MHD region and the internal kinetic region is taken in- 
side the plasma sheet. Therefore the error in the definition 
of the equilibrium configuration could be rather large. In 
other words, the plasma and field distributions in the exter- 
nal region (for example, the asymmetry in the tlow velocity 
on both sides of the layer) may change the plasma and field 
distributions in the inner region and vice versa. It is real- 
istic to think that the plasma and field distributions inside 
the layer could be significantly modified when the relative 
flow velocity exceeds the drift velocity corresponding to the 
diamagnetic current which supports the magnetic field re- 
versal. It is clear that the uncertainties in determining the 
initial equilibrium configuration will result i• nonrealistic es- 
timates from the stability azialys/s (stability thresholds a•d 
growth rates). 

In this work we are investigating, uaing Viasoy formal- 
ism, the influence of the tiow asymmetry on the structure 
and stability of the M CL for the case of mearly oppositely di- 
rected asymptotic magnetic fields, that is, for large rotation 
ß ngles of the magnetic field (120' ( #0 _• 180'). 

In section 2 we discuss some problems that can arise in the 
kinetic formulation of the configuration (2) generally used 
in MHD simulations. 

To illustrate the modifications of the Harris neutral sheet 

(configuration (1) with By ,g[ Bo) by the tiow asymmetry we 
present, in section 3, an equilibrium model which is a com- 
bination of the models of Harris [1962] and Sestero [1966]. 
To illustrate this new model, we dimplay the numerical pro- 
files of the unperturbed magnetic field, electric potential, 
number density, and bulk flow velocity for different values 
of u, the flow asymmetry factor (u = IV• - V2I/2Ud, where 
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V• is the bulk flow velocity in the magnetosheath, V2 is the 
bulk velocity in the magnetosphere, and Ud is the ion drift 
velocity). This model is reduced to the Harris plane neutral 
sheet when the factor u tends to zero. 

In sections 4 and 5 we carry out the kinetic stability anal- 
ysis of this simplest self-consistent asymmetrical equilibrium 
model. In section 4 we obtain a generalized eigenmode equa- 
tion for the tearing mode, using the differential approxima- 
tion for the perturbed vector potential and integrating along 
the particle trajectory. In section 5 we make analytical es- 
timates to show some of the basic signatures of the tearing 
mode modified by the flow asymmetry and present a nu- 
merical solution of the generalized eigenmode equation. The 
paper ends in section 6 with a summary and the conclusions. 

2. KINETIC MODELING OF MAGNETIC FIELD REVERSAL IN 

THE PRESENCE OF SHEAR FLOW 

Let us consider a one-dimensional plane TD which is par- 
allel to the it-z plane and which is not necessarily charge 
neutral. All plasma and field variables are then assumed to 
depend only on the x coordinate, normal to the layer. Be- 
cause a TD has no normal component of the magnetic field, 
the latter lies entirely in the it-z plane, while the electric 
field E is parallel to the x axis. In this well-known config- 
uration a single plasma particle of the j species (j = e for 
the electrons, j -- i for the ions) is characterized by three 
constants of motion: the Hamiltoninn (Hi) 

Hj = mjv2/2 + ej•b (3) 

and the it and z components of the canonical momentum 
..d 

PJs - mjv, -[- ej,s/c , Pjs = mjvs -[- ejas/c (4) 

In these equations, c is the velocity of light in vacuum, e• is 
the charge of the particle of ma• mj and v is 
its velocity vector, while •b(x) is the electric potential, and 
(a s, as) are the it and z components of the vector potential. 

The simplest (and the most generally used) way to solve 
the Vlasov equation is to use single-valued velocity distribu- 
tion functions in the (H, Ps, Ps) space. Macroscopic plasma 
parameters like the partial number densities nj, the compo- 
nents of current densities JJs, Jjs, or the bulk flow velocity 
V can then be obtained from the velocity distribution func- 
tions f0j as functions of as, as, and •b. 

If we are now considering a charge neutral plane current 
layer (B s = 0, az and •b are constant values), then for single- 
valued f0j the x dependence of plasma parameters can only 
be introduced through the as(z ) component of the vector 
potential. If we assume that the magnetic field B = Bsez 
reverses direction across the sheet 

ß +oo (Sb) 

then the asymptotes of the function as(z ) on both sides 
of the M CL are symmetrical 

IlB0, ß ñoo 

and, consequently, all plasma parameters (including the flow 
velocity Vs(x)) which depend on x only through as(z) have 
equal values on both sides of the layer. For instance, 

= -oo)= +oo)= (v) 

For the odd Harris profile of the z component of the 
magnetic field lBs(x) = das(x)/dx ] the x dependence of 
all plasma parameters, expressed through the even function 
as(z), should be even. In other words, the "cutoff" fac- 
tor (see, for example, Lee and Kan [1979]) required in the 
distribution functions to separate the magnetosheath and 
magnetospheric particles (with different plasma parameters) 
cannot be introduced in the form of a single-valued depen- 
dence on Ps for the case of magnetic field reversal. This was 
also demonstrated in the paper by Sestero [1964] (see the 
discussion by Seste•o [1964] of Figure $). Note that for a 
one-dimensional magnetic tield reversal, any deviation from 
charge neutrality (•b(x) •couta•t) cannot help to "sega- 
rate" both the ion and electron components of two plasmas 
with distinct characteristics. Indeed, the electric potential 
"acts • differently on both components. This results from 
the fact that all moments of the electron velocity distri- 
bution function are proportional to exp[+eqb(x)/Te], while 
those of the ion velocity distribution function are propor- 
tional to exp[-e•(x)/•] (here e i• the magnitude of the 
electron charge, and Te and T• are the electron and ion ther- 
mal energies). 

A way to introduce flow a•ymmetry in one-dimensional 
magnetic field reversal is to consider multivalued distribu- 
tion functions in the (H, Ps) plane [Sestero, 1964; Whipple 
et al., 1984]. This means that particle trajectories corre- 
sponding to the same values of H and Ps can be physically 
disconnected, and an additional parameter characterizing 
the spatial region from which particle• are unable to escape 
can be introduced. For our case, particles movinS outside 
the neutral resion (Ix I < (p,L) •/2) will never c,oss the plane 
x = 0 and can be characterized by an additional invariant: 
sign(z). Inside the neutral re•ion the flow velocity profile 
should be symmetrical. For thick MHD layers the extent 
of the symmetrical neutral region is negligible. On the con- 
trary, for thin kinetic layers typical of the magnetopause 
(L • 10pi) [Berchem and Ru,,ell, 1982a] the extent of the 
symmetrical neutral regiol• is at least L/3; and the flow con- 
figuration cannot be similar to that •iven by eqeation (2). 
For these kinetic layers the flow velocity is nearly constant in 
the central part, while the shear can only occur in the outer 
regions. This kind of flow velocity profde was modeled by 
Lakh•na and Schindler [1983a, b] only for z •_ 0, using equi- 
librium distribution functions similar to those introduced by 
Alpcrs [1969]. 

In the next section we will consider another way for mod- 
eling an asymmetrical flow velocity profile by introducing 
a nonvanishing B s component which does not reverse sign. 
Indeed, in most magnetopause crossings, observations show 
that the magnetosheath and magnetospheric magnetic fields 
are not strictly antiparallel and that the angle of rotation of 
the B vector is less than 180 ø [Berchem and Russell, 1982b]. 

3. MODIFICATION OF THE HARRIS PLANE 

CONFIGURATION BY A FLOW ASYMMETRY 

Across the TD considered in this section, the magnetic 
field B is assumed to rotate in the (it-z) plane (the total 
angle of rotation being t•0; t•0 • 180 •) and to have equal 
magnitudes B1 = B2 = B(x --, :Foo)on magnetosheath 
(x -- -co) and magnetospheric (x -• +oo) sides. In this 
case it is possible to choose the coordinate system in such a 
way that the Bz component is changing sign in the center 
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of the MCL (z = O) and has opposite asymptotic values: 
B•(z • +oo) = -B•(z --• -oo) = B0, while assuming B v 
everywhere positive. 

Let us introduce unperturbed velocity distribution func- 
tions which are combinations of distributions of Harris 

[1962] and Sestero [1966]. Sestero's contribution for a j 
plasma species will, however, be modified to take into ac- 
count a thickness larger than the characteristic Larmor ra- 
dius Pi of particles with thermal energy (temperatures) Ti 
in the asymptotic magnetic field B• 

cv/2m•Tj 
P'• = eB• ' j = e, i (S) 

Therefore the (Pv, P•) dependence in Sestero's part will 
now be expressed in terms of complementary error func- 
tions, whose "half-thickness' is at least the Larmor radius, 
rather than in terms of step functions which always lead 
to maximum characteristic thicknesses equal to pi (for ob- 
servations of the magnetopause thickness, see Berchem and 
Russell [1982a]). 

It can be seen that the following velocity distribution 
functions are quite appropriate 

fo• = • 2•rTi exp- 

ß 
ß erfc[-Sj•(Pj•-mjU)]exp 

where 

c c 

ej B1 v/DS -- pj ½j B1D' 
and erfc(u) is the complementary error function 

2 / exp(_z 2 e•U(•) = • ) & 

(10) 

The parameter D characterizes the thickness of the MCL. 
When D shrinks to pj, the complementary error functions in 
(9) tend to the step functions introduced by Sestero [1966]. 
When U tends to 0, the distribution functions (9) tend to 
Maxwellian functions shifted by the diamagnetic drift ve- 
locity U• = cTi/e)B• D, which for boundary conditions (5) 
correspond to Harris configuration (1). The parameter D 
is related to the L parameter of configuration (1) by the 
relation 

L • 2DB•/Bo (11) 

The parameters so and s• characterize, respectively, the dis- 
tribution of "trapped' and "untrapped' particles. They are 
linked to the number density i•t the ce•tter of the layer (for 
s0) and to the asymptotic number densities (for s•) ist a way 
that will be clarified when express/OhS for number dens/ties 
will have been calculated. 

Assuming the B• component everywhere positive, it is 
easy to verify that the distributions (9) describe a MCL 
where a two-components plasma (electrons, ions) with sym- 
metrical temperatures Ti is flowing at a velocity (0, 0, U) on 

the magnetosheath side and at a velocity (0, 0,-U) on the 
magnetospheric side (i.e., the profile of the bulk flow velocity 
is antisymmetrical). 

If one assumes that c•i • 1, then the distributions (9) 
describe a TD with asymmetrical profiles of the number 
density and corresponding magnetic field intensity. In this 
study we will, however, neglect these possible asymmetries 
in order to single out the effect of the relative flow velocity. 

Note that the velocity distribution functions of the 
trapped particles in equation (9) differ from those intro- 
duced by Lee and Kan [1979, Equation 8]. The distribution 
of the trapped particles defined in equation (9) has been 
found more appropriate for configurations with large angles 
of magnetic field rotation and nonzero relative flow velocity. 

From the velocity distribution functions given in (9) the 
number and current densities can be calculated as a function 

of (•b, a•, a•). It is found 
2 

n)----En•) (12) 
Y----1 

1 exp(-•'u)] X -•?)= • [,• + •0 

exp (13) 

where 

Jjz 

JJy 

c•"• o.', (•4) 
cTi oni Oar (15) 

T• el _ a, av 

and u is the factor of flow asymmetry 

. = v/v•, v• = •T•/•r•D (•) 

Assuming that a•(0) = a,(0) = O, it is clear from the quasi- 
neutrality condition that •b(0)= 0 and 

•(• • q=oo): (Wc)B,(, • a:oo)l•:l (•7) 

From equations (12), (13), and (17) it can be seen that the 
parameter s• is equal to the symmetrical asymptotic number 
densities [ni(z --• =Foo) = s•; j = e, i], while so characterizes 
the number density in the center of the layer [nj(z = O) = 
so + s•; j = e, q. 

The structure of the MCL is given by the solutions of a 
set of two second-order differential equations for %(z) and 

d'.. = _4__• ]•. •(%,..,•) (•s) dX 2 C 

d 2a, 4•' E Jj,(a• a, q•) (19) dz2 = - .•- , , 

coupled with the quasi-neutrality equation 

..(o•, o., •) = .•(o•,.., •) = .(=) (20) 

The differential equations (18) and (19) form a system of 
four differential equations of the first order for a•, a,, Bv, 
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and Bz. This system is solved numerically using a Ham- 
ming's predictor-corrector scheme [Ralston and Will, 1965]. 
It is coupled with equation (20) whose solution is obtained 
by the Newton-Raphson method for finding the root of a 
nonlinear algebraic equation [Press eta/., 1986]. Starting 
from the central surface z = 0, the system is integrated 
toward the magnetosheath (z --• -oo) up to the turning 
point z*, where both components of the current density be- 
come negligibly small, and then back to the magnetosphere 
(z -• +oo). For the starting values we choose 

= = ,(0) = 0, 

av'(0) = B,(0) = 0, s,'(0) = -Bv(O ) (21) 

The value of By(0) can be obtained from the pressure 
balance condition 

(22) 

We will now illustrate how the M CL structure is chang- 
ing when the factor of flow asymmetry u is increased, while 
keeping the angle 80 • 170 ø. In what follows, the MCL layer 
is characterized by the following plasma and field parame- 
ters: B• --- B2 = 60 nT, Ti = T• = 1 keV, pi = 76.2 km. 
The asymptotic number density s• on the magnetosheath 
and magnetospheric sides is chosen very small in compari- 
son with the density inside the MCL (in order to compare 
with the Harris model), that is, s• -- 0.01 cm -z • so. On 
the other hand, the value of the input parameter so is de- 
termined by the &symmetry factor u in the following way: 
for a fixed value of u, an iterative method is used to find the 
value of so corresponding to 8o • 170 ø, that is, to nearly 
opposite directions of the asymptotic magnetic fields. Table 
1 gives some computed values of so corresponding to a set of 
values of u, for D -• 1.5pi. Note that these values as well as 
profiles illustrated in Figures 1-3 practically do not depend 
on the ratio D/pi. 

Figures 1 and 2 illustrate the structure of the magne- 
topause for u - 0.9 and u -- 2, respectively. Plasma and 
field parameters are illustrated •s functions of the distance 
z/p• from the center of the layer. The dashed curves in 
Figures 1 and 2 correspond to Harris profiles, that is, to 
the case where u = 0. The following variables are illus- 
trated: B, (in nanoteslas) (Figures !a and 2a); bulk flow 
velocity V/Va.i (Va'i = (2Ti/mi) '/2 is the ion thermal ve- 
locity, Va-i = 438 km/s) (Figures lb and 2b); hodogram of 
the magnetic field (in nanotesl•s) (Figures l c and 2c); num- 
ber density n (per cubic centimeters) (Figures 1 d and 2d); 

TABLE 1. Computed Values of so(u) 
--3 

• so, cm 

2. 2. 

1.615 $. 

1.4 $.5 

1.2 4. 

0.9 4.2 

0. 4.4 

u = U/Ud, where U is the shear tlow and Ud is ion 
drift velocity; so is the parmeter detined in equation 
(9) (for very small values of the number density on 
the magnetosheath and m&4i;netospheric sides so is 
nearly equaJ to the number density at the center of 
the M CL); and the total an•e of rotation 80 •-. 170 ø. 

J•* = J[, + Jg• is the z component of the total current den- 
sity normalized to Aj = s•eVa. i (= 7x10 -•ø A/m 2) (Figures 
le and 2e); electric potential •b*, normalized to A o = 2T•/e 
(= 2 x 10 a V) (Figures If and 2f). It is seen from Figures 
l e and 2e that the relative flow velocity results in a finite 
Jz component of the current density inside the M CL which 
generates the B• component in the center of the layer. 

Figure 1 shows that the Harris profiles of B,(z) and n(z), 
corresponding to u = 0, are only slightly modified when u 
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Fig. 1. Structure of the magnetoImuse current layer for ]BI] = 
]B2] = 60 nT, Ti = Te = 1 keV,/?0 • 1700 , u = 0.9. The ratio 
u = U/Ud is the factor of flow &symmetry. It represents half 
the relative flow (U = - V:l/2) normalibi to the ion drift 
velocity U• = cTi/eB•D (=146 km/s for the plasma and field 
parameters used here). The total an$1e of rotation of the magnetic 
field is do. For comparison• the Harris profiles corresponding to 
• = 0 are also displayed and are represented by the dashed curves. 
From left to right and from top to bottom the following variables 
are illustrated. (a) B, (in nanoteslas); (b) bulk flow velocity 
V/VTi (VTi = (2Ti /mi )l /2 is the ion thermal velocity; VTi = 
43s km/,); (c) hoaozr. of the (i. (a) 

the z component of the total current density nornmliz• to A $ = 
zz eVTi (=7X 10 -zø A/m2); (f) electric potential •*, nommlized to 
A, = 2Tile (=2x10ZV). Three • m•d field p•rma•et•r• •re 
illu•tr&ted a• & function of the distance zip i from tile center of 
the layer (where Pi i• the ion L•rmor r•liu• in the fiehi Bz; Pi = 
76.2 km). The configm•tion is • characterized by the following 
parmeters: D = 1.Spi •, 114 kin, $z = 0.01 cm -a. The value 
of the parameter •0 depend• on the value of u • deternfined in 
Table 1. 
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Fil•. 2. Same as • 1, but for the case u = 2. 

has a nonzero value less than 1 (i.e., U _• Ua). Figure 2 
shows that when u = 2, the Bz(z) and n(z) profiles differ 
more strongly from the Harris case. Note that the density 
has now 2 maxima, separated by a minimum at the center 
of the layer. This is due to the increase of the magnetic 
pressure near z = 0. Indeed, the hodo•ram shows that when 
Izl --• 0, the B v increase is larger th•u the Bz decrease. It 
can also be seen that the Jz component and a.•sociated B v 
component increase with u. 

Profries of the B v component of the magnetic field for dif- 
ferent values of t• are shown on Figure 3. It is seen that 
can reach significant values when u • I -/-2, that is, when 
the relative flow velocity U is of the order of the ion drift 
velocity (U•t), which is much less than the ion thermal ve- 
locity [U,: = VT• (p•/2D) < VT•], especially for thick layers 
2D/.,• pi (see also Figure 4). We see that in the presence 
of a relative flow (along the component of the magnetic field 
which reverses sign) there is no neutral plane. Even for prac- 
tically opposite direction of magnetic fields on both sides of 
the layer, the absolute value of the magnetic field does not 
equal 0 in the center of the layer where z = 0. 

The dependence of Bv(O)/B• on the relative flow veloc- 
ity is shown on Figure 4 for different values of the layer 
thickness, while keeping the value of 80 = 170 •. In Fig- 
ure 4 the relative flow velocity 2U is normalized to 
that is, U/V•.• = up•/(2D), while the thickness is mea- 
sured in ion Larmor radius and expressed in terms of the 

4O 

o 
-lO 

- By(nT) 

Fig. 3. Profile• of the Bit cow4•onent of the magnetic field for 
diCerent value• of the flow •ymmetry f•ctor u. The value of a0 
(the number density of "trapp•"p&rtlcles at z -- 0) depends on 
the value of u as indicated in Table 1. For all case• comidered 
in this figure the total •le of rotation of the magnetic fmld 
through the nmgnetopmme is •0 • 170 ø. The other plasma and 
field parameters are the same as those used to compute Figures 
1 and 2. 

parameter L of the Harris model by using the relation 
L/pi • 2D/pi (see equation (11) for the case where the 
asymptotic fields are nearly antiparallel). It can be seen 
that decreasing/increasing the value of the relative flow ve- 
locity can lead to the same intensity of Bv(O)/B•, provided 
the thickness is increased/decreased. On the other hand, 
the factor of asymmetry u [=U/U,t = (U/VTi)(2D/pi)] is di- 
rectly proportional to D. Clearly, for a fixed value of 
this factor increases proportionally to the thickness of the 
layer (L/pi), because of a decrease of the ion drift velocity 
(U•). This results in a decrease of so (see Table 1) and, conse- 
quently, from pressure balance equation (22), to an increase 
of Bv(z = O)/B•, as illustrated in Figure 4. This increase 
of Bv(O)/B• with L, for a fixed U, can be explained by the 
new distribution of the current density, resulting from the 
larger value of the thickness, which modifies the integrated 

1.0 
- By(O)/B• 

0.8 9 6 L/?i = 3 

0.6 

0.4 

0.2 

0.0 , I • I , I • 
0.0 0.2 0.4 0.6 

U/VT i 

Fig. 4. Dependence of the By component of the magnetic field 
at x = 0 (normalized on B• ) on the shear flow U (normalized on 
VTi) for different values of the MCL thickness, while keeping the 
value of/•0 • 170 •. In this figure the thickness is measured in 
the ion Larrnor radius and is expressed in terms of the parameter 
L of the Harris model by using the relation L/pi • 2D/pi (see 
equation (11) for the case where the asymptotic fields are nearly 
antiparallel). It can be seen that decreasing the value of the shear 
flow can lead to the same intensity of the Bit component at x = 0, 
provided the thickness is increased. 
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z component of the current density f_o• Jz dz, responsible 
for the generation of B•(0). This integrated component, 
which is proportional to U L, is indeed increasing with the 
growth of L for a fixed U, while the integrated y component 

ß •-oo . . . , . , . 

f-oo J' dx ~ UaL, supporting the lmt•al (Harris) mvers•on 
of the magnetic field or the total variation of B• (• 2B•) is 
independent of L. Thus the thicker the Harris layer given 
by configuration (1) (with B• • B0), the easier "to spoil" it by smaller values of the relative tlow velocity. 

For 00 --• 180', when it is difficult to choose the shortest 
way of rotation [Berchem and Ruzsell, 1982b], the sense of 
magnetic field rotation (determined by the sign of B•) de- 
pends on the direction of the tlow (the sign of U); that is, it 
may be opposite in the northern and southern hemispheres 
(there are some experimental data, discussed by Sonnerup 
and Cabill [1968] and Su and Sonnerup [1968], confirming 
this assumption). 

4. EIGENMODE EQUATION FOR THE TEARING MODE 
IN MAGNETIC FIELD REVERSAL 

WITH RELATIVE FLOW VELOCITY 

Let us consider the stability of the central magnetic sur- 
face z = 0 of the plasma configuration modeled in the pre- 
vious section with respect to the excitation of low-frequency 
tearing-type electromagnetic perturbations. Such perturba- 
tions can be described by a correction of the unperturbed 
vector potential which depends on both z and z coordinates 
and on the time t 

A, = A(z)exp(-,•t + ,kz) (23) 

where w (= •7) is the complex frequency and k is the wave 
vector directed along the z axis. The first-order perturba- 
tion of the velocity distribution function (fxj) is obtained 
by integrating the linearized Viasoy equation along the un- 
perturbed particle trajectory. 

t 

•" = 0e•, • •-'-•(•-• + • ) o,A• d• (•4) 
An eigenmode equation is obt•ned by considering the 

linearized Maxwell equation 

a," - kZA, = _4• • e) f v,f,) dv (25) C . 

Assuming that •1 particl• •e magnetized and that the ion 
Larmor radius • sm•l, the standard procedure of ev•ua• 
ing the trajectory integr• can be used (•e, for example, 
Wang et al. [1992]), and equation (25) c•n be reduced to 
the follo•ng differenti• form 

A(z)A•" + B(z)A•' + C(z)A• = 0 (26) 

The term 

A(z) = 1 - Ai (27) 
B(•) = •, (2s) 

c(•) = -•: - v0 + • • + •, (•) 
j=e,i 

4•r OJ• A• (30) VoA• = •- 

is responsible for the adiabatic interaction of electromag- 
netic perturbations with particles. It depends on the global 
plasma distribution and characterises the power of the free 
energy of the tearing mode, which determines whether the 
current fil•nentation resulting in the formation of magnetic 
islands is energetically favorable. 

The flow asymmetry modifies the well-known potential 
well 

Vo = B•"/B• = -2L -z cosh-Z(x/L) (31) 

corresponding to the symmetrical Harris case (u = 0), in 
the following way 

B•" ByB•' (32) V0=-•-• +B•B•L 

We can expect that with the potential well described by 
equation (32) the stability properties of the MCL will be 
modified. 

The term I•A• corresponds to the singular current due 
to the nonadiabatic response of particles near z = 0 

1• = 2•i •-(•)r (•)W(•) C2 qj •j '' 2j (33) 

where 

kll w• = w- w.• + (-1) u•'•'kVa (34) 

w• = kcEB•B: •- kll = k B: ' B 

o.? ) •,,) = 1 •) kUa (35) 

• = • ) 

(,,s, v,, ':Zo(½?)} (•) 

1 / t"exp(-t:)dt e--•0 

In these equations, E (= -O&/Oz) is the equilibrium electric 
field, wp• = (4•rne:/m•) •/• are plasma frequencies, and Z0 
is the plasma dispersion function. 

The singular current, which is strongly peaked near the 
singular surface x = 0, is controlled by the local values of 
plasma density and magnetic field and could be significantly 
modified by flow azymmetry for Ud < U •;• Va.i even though 
the local velocity is very small around x = 0. 

Coefficients Ai, Bi, and Ci come from the finite ion Lar- 
mot radius corrections (diamagnetic current perturbation) 

2 

A, = v•', ,•) • c! ') 



4102 KUZNETSOVA ET AL.: EFFECT OF THE RELATIVE FLOW VELOCITY 

where VA = B/(47rmin) •/2 is the Alfven speed 

= )- (40) 

(41) 

The differential approach used for evaluating these terms 
is only vMid for pic9/c9z • 1, that is, outside the region 

< p,. Thus in the singular region these coefficients can 
be neglected. 

5. INFLUENCE OF SHEAR FLOW ON GROWTH 

OF THE COLLISIONLESS TEARING MODE 

IN CENTER OF THE MAGNETOPAUSE CURRENT 

LAYER (Z = 0) WITH LARGE ANGLES 
OF MAGNETIC FIELD ROTATION (0o = 170 ø) 

The stability analysis of the guide field tearing mode 
(B v y• 0, By = const• B0) performed by Wang and 
Ashour-Abdalla [1992], where the modification of the B• 
component profile by flow asymmetry was neglected, is only 
appropriate for very thin layers (L --• pi). In this section 
we will evaluate the growth rate of tearing mode by solving 
the dispersion equation (26) for thicker layers (L/pi ~ 3.'-9, 
i.e., Ud 

5.1. Analytical Estimates 

Let us first make analytical estimates of the growth 
rate. Contributions from diamagnetic current perturbation 
(terms Ai, Bi, Ci) in the dispersion relation are of the or- 
der of (U/VA) 2. For shear flow much less than the Alfven 
speed (U ~ Ud • VA) the diamagnetic current perturba- 
tion (terms with Ai, B•, C'i) can be neglected in comparison 
with current filamentation (term with V0). The dispersion 
relation (26) in this approximation acquires the form 

a'(kL, •) = L f ¬ dz 
0 

(42) 

The fight-hand side of equation (42) is proportional to 
the perturbed electric field work upon the singular electron 
current and describes the irreversible increase of resonant 

electron energy. The value of this integral is controlled by 
the local valuem of the magnetic field and electron density in 
the region of the singular surface z -- 0 and can be easily 
estimated from expressions (33)-(36). The growth rate 
takes the form 

Ti miTi B•{0) 

where o,,i (= eB•/mic) is the ion Larmor frequency, fid = 
8•rn(O)(T, + T,)/B• 2 For u O, •o = :• : . = Bo/B• • 1. 

The term A'(kL, u) is proportional to the power of the 
free energy source available from current filamentation. This 
term contains information about the global distribution of 
plasma and magnetic field in the layer. One can get the 
value of A'(kL, u) by solving the eigenmode equation in the 
"outer region" 

A•"- k2A• - VoAv = 0 (44) 

and evaluating the jump of the logarithmic derivative 

1 A'(kL u)= Ay'(z • +0) Ay'(z • -0) • ' Ay(z • +0) - Ay(z • -0) (45) 
For the Harris model without flow (u = 0) the expres- 

sion for A' can be calculated for arbitrary magnetic sur- 
faces within the layer and are expressed through the associ- 
ated Legendre functions [see Kuznetsova and Zelenyi, 1985, 
p. 367]. For z = 0 this expression reduces to the well-known 
form 

- = 0) = o= kL 
The free energy of perturbations modified by the flow 

asymmetry factor is illustrated in Figure 5. It is seen that 
the curves %=0"(symmetrical Harris case) and %=2" are 
dose to each other only in the narrow interval of wavelength: 
0.5< kL <0.8. For longwave perturbations, kL < 0.5, the 
free energy is strongly modified. Specifically, for 0< kL = 

[A'(kL -- m*, u)]-' = 0 (47) 
For kL --• rn* the perturbed vector potential Av and, conse- 
quently, the normal perturbation of the magnetic field tend 
to zero near the singular surface z = 0. The z = 0 singular 
surface itself remains unperturbed; meanwhile the periph- 
eral magnetic surfaces experience the rippling-type distor- 
tions instead of reconnection. Thus with the increase of the 

wavelength, the quasi-symmetrical tearing mode transforms 
into the asymmetrical kink mode. For such perturbations 
(with A•(0) ~ 0) the contribution from terms A•A"• and 

0.0 1.0 1.2 

/ Xs=O 

U = (• 

0.2 0./, 0.6 0.8 
kL 

Fig. 5. The dependence of the free energy of perturbatious At of 
the centrM magnetic surface z = 0 on the wave number kL. The 
solid curve corresponds to a finite value of the flow asymmetry 
factor (u = 2). For comparison, the corresponding profile of A • 
for the symmetrical Harris configuration (u = 0) is illustrated by 
the dashed curve. 
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BiA'y into the dispersion relation (26) could be essential. 
For kL < m* the free energy changes sign, and the mode of 
"negative energy" transforms therefore to the mode of "pos- 
itive energy." Such transformation of the mode type in the 
longwave limit (kL < m* = z/L) for perturbations of the 
peripheral magnetic surfaces (z/L • 0) in the symmetrical 
Harris configuration was considered in details in the paper 
by Kuznetsova and Zelenyi [1985]. 

Assuming that for shortwave (m* • kL < 0.8) perturba- 
tions , A'(u) • A'0, it is then easy to compare the growth 
rate of the tearing mode 7(u), modified by the shear flow, 
with the well-known expression for the growth rate of the 
electron tearing mode (7,), excited in the center of the sym- 
metrical Harris configuration 

•(•)_ -0 •0 •'•(0)• (4S) 
• n(0) B•(0) Bo 

where n0 = n(0) for u = 0, Byo = By(z -• --{:oo) •< Bz(z --• 
= Bo. 

For 0o = 1700 and U > Ud the ratio Byo/By(O) could be 
very small. It is seen from equation (48) that the growth 
of the tearing instability will be significantly suppressed by 
the large value of the magnetic field By(O) generated by the 
shear flow in the center of the current layer. 

5.œ. Numerical Results 

The numerical solution of the dispersion equation (26) 
is performed by using the shooting method (see, for exam- 
ple, Gladd [1990] and Wang and Ashour-Abdalla [1992]). 
Coefficients A(•), B(•), and C(z), which can be expressed 
through the initial profiles ay(z), a,(•), and &(•), are cal- 
culated for the numerical equilibrium distribution obtained 
in section 3. As the values of ay(z), a:(z), and •b(z) are 
only known at some discrete points, the numerical integra- 
tion of equation (26) must be coupled with a polynomial 
interpolation for determining those quantities at each step 
of integration. 

Figure $ shows the dependence of the maximum growth 
rate of the tearing instability on the factor of flow asym- 
merry u. It is seen that the growth rate decreases with in- 
creasing u. For u -• 2, corresponding to a relative flow U = 
VTipi/D (which is much leas than the ion thermal veloc- 
ity V•'i), the growth of the tearing mode significantly slows 
down. 

xlO• •max/W i 
2.0 

1.5 

1.0 

0.5 

- 
0.0 , I , I , I , , I 

0.0 0.5 1.0 1.5 2.0 
tJ 

Fig. 6. The dependence of the maximum growth rate of the tear- 
ing instability (normalized on the ion Larmor frequency wi = 
eB1/rnic) on the factor of flow asymmetry u. 

6. SUMMARY AND CONCLUSIONS 

The •im of this study is to understand some of the ba- 
sic signatures of the internal structure of the magnetopause 
current layer separating plasmas with nearly opposite mag- 
netic fields and with a relative flow velocity. The suggested 
simple kinetic self-consistent equilibrium model depends on 
parameters characterizing the flow asymmetry and deter- 
mining the plasma density and magnetic field in the center 
of the layer. In the presence of a shear flow the magnetic field 
is expected to rotate from one direction to another, rather 
than to change its sign only. The structure of relatively thick 
layers (L ~ 3 + 9) is sigaifica•tly modified by comparatively 
small vMues of the shear flow (of the order of the ion drift 
speed). The modifications of the initial symmetrical Harris 
configuration (1), introduced by the presence of a shear flow, 
strongly influence the •diabatic interaction of the plasma 
with the teaxing-type perturbations as well as the nonadia- 
batic response of the particles near the center of the MCL. 
In other words, the free energy of the perturbations (con- 
trolled by the global plasma and field distributions) and the 
sinõular current (controlled by the local values of the plasma 
density and magnetic field near the center of the MCL) are 
both significantly modified by the presence of a sheared flow. 
The growth rate of the collisionless electron tearing mode is 
decreased an order of magnitude when the relative flow ve- 
locity exceeds the ion drift velocity which for L ~ 3 + 9pi 
is much smMler than the ion thermal speed. Thus the con- 
dition for reconnection beyond the stagnation region neax 
the subsolar point, where the relative flow is small, is rather 
unfavorable. 

It is reasonable to mention, concluding our discussion, 
that the results of the present study could also be applied 
to the magnetotail current layer, where a By component of 
the magnetic field is frequently observed [Tsurutani et al., 
1984; Sergeev, 1987]. The value of this component some- 
times is rather large in comparison with the one that could 
penetrate inside the tail from the solar wind (V. A. Sergeev, 
private communication, 1991). Some asymmetry in the ion 
flow across the plasma sheet boundary layer, resulting in 
field-aligned currents, may become a source of generation of 
this dawn-dusk magnetic field, which is very important for 
magnetotail dynamics [Biichner et al., 1991]. 
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