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ABSTRACT

An analysis of the West European climate over short time scales is performed by means of time series of the
500 mb geopotential height at nine different meteorological stations. The characterization of the dynamics is
based on the computation of the dimensions of manifolds on which the systems evolve. For this purpose several
embedding techniques are used and compared. All methods give similar results, namely, that the data in different
stations seem to derive from a single deterministic dynamical system spanning a relatively low-dimensional
manifold embedded in a low dimensional phase space. The estimation of the most significant Lyapounov
exponents of the global system gives evidence that the nature of the dynamics is chaotic. The average e-folding
time scale of the “growth of errors” associated with divergence of nearby initial conditions is found to be a few
weeks. A more involved analysis reveals that the Western European weather attractor is highly nonuniform,
expressing the fact that the stability properties of the trajectories depend on their position on the manifold. It
is found that the predictability time in the regions of the attractor which correspond to low geopotential heights
is slightly above one month decreasing to about two weeks for high geopotential values. The connection between
these estimates and the error growth time determined from numerical models of weather prediction is discussed.

VoL. 46, No. 15

1. Introduction

Since weather and climate apparently have a very
complicated distribution in time and space, the usual
approach for improving their predictability is to intro-
duce increasingly more variables and equations in the
very complex numerical models used to simulate at-
mospheric dynamics. A typical example is found in
weather forecasting where the complexity of the models
tends to grow commensurately with the capacity of
supercomputers. Unfortunately, despite impressive
progress in short term forecasting this has not resulted
in commensurate improvements of the reliability of
forecasts on a time scale exceeding a few days.

Recent developments of the theory of dynamical
systems have provided new techniques by which im-
portant qualitative information can be extracted from
experimental time series. This suggests that it should
now be possible to learn more about the underlying
dynamics of weather and climate and to find to what
extent they are predictable, independent of any mod-
eling. The steps of such an analysis can be summarized
as follows.

First, one has to gain evidence that the system shows
the typical signs of a dissipative deterministic dynamics,
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that is to say, that it evolves on an attracting manifold
of zero volume in some finite-dimensional phase space.
Having ascertained this, one may proceed with the de-
termination of some of its qualitative properties, such .
as the dimension of the manifold itself and of phase
space in which it is embedded, and the Lyapounov ex-
ponents. Basically, the dimension of the attracting
manifold measures to what extent its dynamics fills the
embedding phase space, whereas the dimension of
phase space provides an estimate of the smallest num-
ber of ordinary differential equations sufficient to de-
scribe the time evolution of the dynamical system. The
Lyapounov exponents are related to the average rates
of divergence of nearby trajectories in phase'space and
measure, therefore, how unpredictable the system’s
evolution is.

Although the new developments and concepts men-
tioned above have found most of their applications in
theoretical studies of iterative maps and abstract model
systems, they have also provided important insights in
the analysis of results of laboratory experiments. Re-
cently, Nicolis and Nicolis (1984, 1985) applied these
ideas in the context of Geophysics by analyzing time
series of 5'®0 isotope record of deep sea cores. They
concluded in the existence of a low- (about three) di-
mensional attractor and a predictability time of about
30 kiloyears (kyr). Subsequently, Fraedrich (1986,
1987), Essex et al. (1987), Hense (1987) and Tsonis
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and Elsner (1988 ) analyzed time series of medium and
short time scales and have likewise concluded about
the existence of low-dimensional attractors. .

Our goal in the present work is to carry out a dy-
namical systems analysis of atmospheric variability

over the entire West European space. For this purpose .

we analyze geopotential time series using data from a
number of stations.

Since we only have a limited number of data points
in our disposal, we take special care to control at each
stage of the analysis the applicability of the various
algorithms (Grassberger 1986; Nicolis and Nicolis
1987). For instance, we apply several phase space re-

" construction techniques to compute the dimensions of
attracting manifolds and of embedding spaces; we also
test each of the techniques used on the time series gen-
erated by some known mathematical models, limited
to a number of points comparable to our data points.
We have obtained very similar results with all methods,
although we found that the one based on the recon-
struction of a phase space spanned by empirical or-
thogonal functions diminished the error margins of our
dimension estimates. In addition, we have found it
possible to estimate with relative accuracy the largest
Lyapounov exponents for the West European system
as a whole. These results, and their corrolaries ema-
nating from the local study of the rates of divergence
of nearby trajectories on the attractor, are entirely new
in the context of atmospheric sciences. They have al-
lowed us to extract additional information about the
topology of the weather attractor, to estimate a char-
acteristic predictability time scale for the dynamics of
our system and to confront it with the estimate of error
growth time deduced from numerical models of
weather prediction.

The work is organized as follows. In section 2 we
present the data, comment on the adequacy of the
sampling time and of the total length of the series, and
carry out traditional spectral analysis. The results show
striking similarities between the different time series.
In section 3 we set up an appropriate phase space within
which the dynamics can be followed. In section 4 we
produce evidence that the phase space trajectories
evolve on a low-dimensional manifold, the attractor.
The dimensionality of the latter is evaluated and found
to be similar for all locations. This corroborates the
idea that individual time series are part of a single dy-
namical system. In section 5 it is shown that the motion
on the attractor displays sensitivity to initial conditions.
The Lyapounov exponents describing this sensitivity
are evaluated and found to be state-dependent, indi-
cating that the predictability time should depend on
the prevailing weather pattern. The implications of the
results are briefly discussed in section 6.

2. The data and their spectral properties

We were supplied with time series of the daily 500
mb geopotential record at nine different European sta-
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tions over a period of 24 years beginning 1 January
1961. The precision was the same for all series, the
geopotential height being rounded to the nearest de-
cameter. Two stations (Marseille and Rome), are sit-
uated in the Mediterranean sea, two (Lisbon and Bor-
deaux) are on the Atlantic coast, one (Stockholm) is
in Scandinavia, another (Reykjavik) in Iceland, and
the others (De Bilt, London and Paris) surround the
Channel and the North Sea area. Figure 1 depicts the
time dependence of the 500 mb geopotential height for
the Marseille station.

Before we proceed to the technical aspects of our
work, we comment on a number of qualitative issues
concerning the very objective followed in the present
paper, in connection with the data we have at our dis-
posal. Two particularly important points need to be
considered: the inherent discretization of the data with
a sampling time of one day; and the total number of
data points (about 9000 for each station) or alterna-
tively, the number of annual cycles (24 in our case)
retained.

As stated in the Introduction, our objective is “to
carry out a dynamical systems analysis of atmospheric
variability over the entire West European space.” Such
a goal seems at first sight far too ambitious; some com-
ments aiming to sharpen it somewhat are therefore in
order.

Atmospheric and climate dynamics involve a be-
wildering variety of phenomena in a wide range of time
and space scales (Hasselmann 1976; Lorenz 1987). In
principle, all these phenomena are included in the fun-
damental equations of conservation of macroscopic
physics, supplemented with adequate thermodynamic
relations and specific laws pertaining to the light-mattér
interaction. It is not our aim here to capture this entire
dynamics in all its details. On the one side such pro-
cesses as the formation of a droplet of water or of a
cumulus cloud, and the fine details of fully developed
turbulence are below the. one-day resolution of our
data; and on the other side the effect of such phenom-
ena as the dynamics of ice sheets or of the sun’s 22-
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FIG. 1. Time evolution of the 500 mb geopotential height
at Marseille.
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year cycle are beyond the 24-year range spanned by
our data. What we want to see instead, is whether there
exists an autonomous deterministic dynamics ac-
counting for the main features of the record in the
intermediate range between a day and a few decades,
which is largely independent of the phenomena oc-
curring on both much shorter and much longer scales.

The possibility of a drastic reduction of the descrip-
tion of a complex system envisioned by the above ar-
gument is by no means new. In physics for instance,
it is at the basis of the validity of such well-accepted
laws as macroscopic hydrodynamics and chemical ki-
netics. As well known the passage between the dynam-
ics at the molecular level and these macroscopic laws
rests on the fact (Belescu 1975) that the quantities
obeying to macroscopic laws are averages of micro-
scopi¢ quantities; the averaging being taken over a sta-
tistical ensemble or over a time interval much longer
than the characteristic times of the dynamics of a simple
molecule, such as the duration of an intermolecular
collision (107!? sec). Typical hydrodynamic or chem-
ical “sampling” times are therefore of the order of a
‘millisecond. It has been pointed out (Caputo et al.,
1986; Atmanspacher et al. 1988) that a valuable cri-
terion for choosing this time is to have about ten data
points into a correlation period of the process, the latter
being determined by an autocorrelation function anal-
ysis. Too few data points per correlation time yield a
spurious, uncorrelated (stochastic) process. As for the
upper limit of resolution a practical indication is to
avoid very small differences in successive signal am-
plitudes which could possibly be blurred by the count-
ing statistics. Regarding the total length of the time
series, noisy datasets of 500 points or so have been
shown to be sufficient for the approximate estimate of
the correlation dimension of chaotic attractors, if the
latter is not very large (Abraham et al. 1986). For more
detailed information such as the spectrum of the Lya-
pounov exponents or higher order dimensions more
data are needed.

Let us now have a critical look at our dataset in the
light of the above remarks. We first comment on the
resolution of one day. It has been pointed out (Ghil
and Childress 1987; Ghil 1987) that the typical life
cycle of a traveling cyclone in midlatitudes is in the 5-
7 day range and that the characteristic relaxation time
of vorticity at the equivalent barotropic level in mid-
troposphere is of the order of 10 days. Clearly the sam-
pling time of the 500 mb geopotential, a quantity di-
rectly related to the above processes, should be signif-
icantly less. This brings us to the one-day scale (the
highest resolution of the geopotential record available
is one-half day). For an additional confirmation of the
adequacy of this sampling we must turn to the corre-
lation function and spectral analysis of our data. This
will be reported in detail later on in this section. Suffice
it to state here that a reasonable estimate of the cor-
relation period appears to be 9 to 15 days (depending
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on the station considered), in view of which the one-
day sampling time appears again to be quite reasonable.

Turning next to the total length of the time series,
it should first be mentioned that no daily record of
geopotential spanning an appreciably longer period of
time is currently available. If, as pointed out earlier,
~ 500 points are sufficient to estimate low correlation
dimensions (Abraham et al. 1986) it is not unreason-
able to expect that with 9000 data points that we have
at our disposal we can go much further in the analysis
of the subsequent sections.

Despite the above rather reassuring remarks, in order
to control as much as possible any spurious effects that
might still subsist, we will constantly compare all results
of data analysis with those of mathematical models
whose dynamics has been extensively studied. Those
“reference” systems are (a) the Lorenz and Réssler
systems (Lorenz 1963; Rossler 1979), known to exhibit
chaotic dynamics, (b) simple periodic signals, and (c)
a numerical pseudorandom number generator. In each
case the time series extracted from these models is cho-
sen to have the same number of points, the same ac-
curacy and the same mean number of orbital periods
on the attractor as the geopotential signal (for which
the mean orbital period corresponds to the annual
cycle).

For subsequent reference we give below the evolution
equations of the Rossler and Lorenz models and the
corresponding parameter values for which both models
give rise to a chaotic attractor:

Rossler model

x=-(y+z)

y=Xx+ay '

z=bx+ z(x—c¢) (1)
with @ = 0.15, b = 0.20, ¢ = 10.0.
Lorenz model

xX=o(y —x)

y=x(r—z)—y .

z=xy— bz (2)

with o = 16.0, r = 45,92, b = 4.0.

Let us return to the geopotential signal. In order to
get some feeling about some general features of the
signals we shall perform in this section traditional
spectral and correlation function analysis, postponing
a more dynamical approach until section 3.

a. Power spectra

The most familiar- method of data analysis is the
spectral method. It is well known that spectral estimates
obtained by the standard FFT algorithm fluctuate with
an exponential distribution about the theoretical sam-
ple spectrum (square of the modulus of the Fourier
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transform). Therefore, it is more difficult to observe
frequency peaks in the corresponding spectra than in
those obtained using a smoothing artifact because peaks
are masked by uncontrolled large amplitude oscilla-
tions.

The computation of unsmoothed spectra involves
consideration of all autocorrelation coefficients (Wax
1954)

N N-k
\bk:E/YjX'j+ks k=19°°

Jj=1

N (3)

{X;} being the time series and N the total length.
Smoothed spectra are deduced from the set of the first
m covariances whereby the width m of the window
satisfies m < N. As the bandwidth of the resulting spec-
trum is proportional to 1/m, the spectral estimates are
reliable only over a frequency separation larger than
the bandwidth.

We have computed the smoothed spectra using the
Tukey window and a width of 6 mon. In this procedure
the correlation coeflicients y, are weighted by

1 k
wk=5[1 +cos(1r;n—)].

As expected, the spectra of the nine signals display
a very clear peak corresponding to the annual cycle.
All are predominently red and tend to become white
beyond a cutoff frequency of about 0.4 cycles per day
(cpd). The spatial average of all signals has a power
spectrum which is qualitatively similar (same peak and
general shape) to that of a single time series (compare
Figs. 2a and 2b).

Notice that from the above analysis alone one cannot
have clear-cut information on the underlying dynam-
ics. Namely, it is impossible to decide whether one deals
with noisy periodic—or quasi-periodic—signals or
whether the dynamics are chaotic, experiencing sen-
sitivity to initial conditions (Brock and Chamberlain
1984). For instance, truncated to the same number of
bits, the variable x of Rossler’s model [Eq. (1)] has a
continuous spectrum similar to that displayed in Figs.
2. In addition, it is well known that second or higher
order autoregressive models can also produce similar
behavior.

In fact, a simple sinusoid of one-year period will
give the appearance of a continuous spectrum centered
on a well-defined peak merely because of discretization.
Naturally, on increasing the sampling precision this
latter spectrum will tend to a line spectrum, whereas
the spectrum will remain continuous for deterministic
chaos or random noise. Nevertheless, these remarks
show how cautious one has to be in treating data in
which the sampling precision has been specified once
for all. Clearly, in order to extract the dynamics from
such data a confrontation of results from different
methods of analysis becomes necessary.

(4)
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F1G. 2. (a) Smoothed power spectrum of the daily 500 mb geo-
potential at Marseille (b) smoothed spectrum obtained from spatial
averaging of the signal at nine stations.

b. Time correlation functions

The normalized time correlation y of a discrete sig-
nal X, constituted of n samples X; equally spaced in
time, is defined as

1 N—m

N — 2:1 XiXi+m

Vi = (5)

X?

2| 3
M =

[]
—

It has the following properties. Except for a propor-
tionality factor, it is the inverse Fourier transform of
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the sample spectrum of the signal itself. It oscillates
indefinitely for a periodic or quasi-periodic signal
whereas for a wide class of Markov processes and of
deterministic chaotic attractors it goes through zero at
some finite time or tends asymptotically to zero as
t = oo. On the other hand, for Gaussian white noise
the zero is immediately attained. We compared the
time correlation function of our datasets with those
obtained from the discretization of Rossler chaos, a
sum of two sines and a pseudorandom signal.
The correlation functions of our signals tend to zero
.in a finite time and the same tendency is exhibited by
both the rounded off Réssler chaos [Eq. (1)] and a
truncated sinusoid though, as mentioned above, in the
latter case the properties depend critically on the res-
olution adopted. In Figs. 3a and 3b the time correlation
function corresponding to the station of Marseille is
compared to the one obtained by the spatial average
of all signals. Note that a qualitative difference of
between the individual signals is that the more south-
erly a station is situated, the faster the amplitude of

the oscillations of the correlation function decrease.
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This suggests that the periodic part of the dynamics is
less pronounced for the southern stations.

As pointed out earlier in this section the correlation
time—the time that must elapse between two samplings
to obtain statistical independence—is an important
characteristic of our system. In a multivariate process
likely to involve a variety of characteristic time scales,
such as the process studied in the present work, it is
not easy to estimate such a time unambiguously. Nev-
ertheless, one can argue that the time at which the first
inflexion point is observed in the graph of the auto-
correlation function versus time provides a valuable
indication. Indeed, using the standard properties of
correlation functions one easily sees that (Balescu
1975):

W) = (X(0)X(r))

—(X(0)X(7)). (6)

It follows that /() vanishes [i.e., ¥(7) has an inflexion
point] when the rate of change of X becomes uncor-
related from its initial value. Intuitively, this conclusion
is appealing since the rate of change of a variable is a
more significant indication of the dynamics than the
variable itself.

Inspection of the short time behavior of the auto-
correlation function of our signal shows that the first
zero of ¢ occurs in 9 to 15 days, depending on the
station. This scale turns out to be in accordance with
the characteristic time scales likely to be related to our
variable alluded to in the beginning of this section. We
can therefore infer from these arguments that a rea-
sonable value of the correlation time is in this same
range.

In summary, although it is premature to draw general
conclusions about the nature of the underlying dy-
namics we are, nevertheless, able to make the following
two statements:

e Neither of the series displays the signs of a com-
pletely random behavior, since none of the correlation
functions falls to zero within a very short time. How-
ever, it is not clear as yet whether the dynamics is pe-
riodic, quasi periodic, first or higher order Markovian,
or exhibits sensitivity to initial conditions.

e There seems to be a single overall dynamics.for
all stations, since results corresponding to individual
signals are similar. :

3. Phase space reconstruction: Time delays and prin-
cipal component analysis

Our next objective is to go beyond the limited view
afforded by spectral analysis and reconstruct some of
the salient features of the dynamics. To achieve this
we need to embed the evolution of our system in phase
space, the space spanned by the full set of its relevant
variables. Ordinarily, in mathematical modeling or in
laboratory experiments the state variables are known
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in advance since one deals with a well-defined set of
evolution laws. However, in a natural system this full
information is lacking: for instance, in the system of
interest in the present paper all we have at our disposal
is the geopotential time series at a given location,

Xi(t:): Xo(t), Xo(t2), . .., Xo(tn) (7N

where ¢, is the initial time (1 January 1961)and A = ¢,
-4 = = ty — Iy—1 is the sampling time
(1 day).

It has been shown by Takens (1981) that from a
single time series one can actually reconstruct properly
a phase space, by considering (7) as well as the hier-
archy of lagged variables

Xo(t): Xo(ty +7), Xo(t2 + 7), ..., Xo(tn + 1)

Xa(ti): Xolty + (n— 1)7), Xolt + (n— 1)7], ...,
Xolty + (n— 1)7]. (8)

Indeed, if 7 is properly chosen the variables X1, .. .,
X, will typically be independent, and this is all one
needs to define a phase space.

Owing to the limitations related to sampling, = will
necessarily be an integer multiple of A, 7 = mA. If the
last measurement at our disposal is Xy(Zx), then clearly
the variable X, has at most N = N — (n — 1)m data
points. In what follows, therefore, we shall limit all
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other variables to the same number of data. At this
stage of development we have no means to specify the
value of n. What is achieved is merely the possibility
to plot, for increasingly large #, the phase space tra-
jectory of the system and draw some preliminary con-
clusions about its complexity. This may also be useful
for determining a range of values of the lag = allowing
an optimal visualization of the dynamics.

Figure 4 gives a three-dimensional view of the tra-
jectory for the Marseille time series (Fig. 1). We see
that the portrait fills the entire space suggesting that
the system lives in a higher than three-dimensional
phase space.

Another method of reconstruction of phase space is
closely connected to a familiar question in geosciences,
namely how to determine the directions of maximum
variability. This is usually achieved by the so-called
principal component, or empirical orthogonal function
(EOF), analysis (for instance, see North et al. 1982).
More precisely, EOFs are just the eigenvectors of the
covariance matrix, i.e., of the matrix of quadratic av-
erages (in the present context “averaging” is a mean
over all data points). They therefore describe variables
that are statistically independent up to third or higher
order correlations. Clearly the EOFs corresponding to
the largest eigenvalues will correspond to the directions
of maximum variability.

If the variables are reconstituted from the time series
of a single variable as in (7), the covariance matrix
will be of the form

SECOND SHIFT

"ORIGINAL SIGNAL

FIG. 4. Three-dimensional projection of the entire trajectory for Marseille
obtained by the method of time delays, with a shift » = 10 days.
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1 & , :
q)ij =— z Xo(tK + lT)Xo(tk +jT)
Nr k=1

Lj=0,---,n—1. (9)
In the following we will denote the eigenvalues of
the covariance matrix as A\; > A\, > + + + > A\, and the
corresponding eigenvectors by ¢y, ..., ¢,. The space
spanned by these latter vectors will be referred to as

. singular space (Broomhead and King 1986). Embed-
ding our dataset into this space amounts therefore to
switching from the state vector X = { X, + - -, X,,} to

a state vector
Y = Xc (10)

where ¢ is an #n X n matrix whose columns are the
eigenvectors c;.

In addition to providing a natural way to visualize’

the dynamics, EOFs may also be of interest in the fol-
lowing respect. It may happen (as it will be the case in
the problem under consideration) that among the n

eigenvalues A; there exists a limited number of distinct .

ones whose magnitude is appreciable, whereas the oth-
ers are all close to zero. If so, this would be a strong
indication that the dynamics contains a “deterministic”
part in the subspace of the distinct eigenmodes, whereas
the other modes will play the role of “noise.” It is,

however, not possible to distinguish on this sole basis -

between noise of random origin or a noise related to
an underlying chaotic dynamics. For instance, North
et al. (1982) show that when the difference between
two nearby eigenvalues of the covariance matrix is
-comparable to the sampling error of the corresponding

- true EOFs, the sampled EOFs can form a degenerate
multiplet. In such a'case, the components of the mul-
tiplet’s members will be some linear combination of
those of the true EOFs associated to the geopotential
field. This is what is referred to as mixing. The same
authors also propose the following simple rule of thumb
to determine whether effective degeneracy is susceptible
to occur. If the difference A; — A;1 is about or less than
Ai(2/Nr)'/?, the components of ¢; and ¢, are likely
to mix. Thus, if in this case we truncate the dynamics
by retaining a j-dimensional projection of the trajectory
onto the subspace spanned by the first j EOFs, we will
lose some information over the time scale associated
to A; and retain information over the time scale cor-
responding to A;;. However, we may still truncate to
the first j + 1 EOFs if none of them mixes with some
EOF of higher order. In short, it is generally impossible
to estimate the dimension of the attractor on the sole
basis of singular space analysis.

Another problem arising in the use of EOFs for the
reconstruction of phase space pertains to the choice of
the width of the window (7 X n). If the latter is exces-
sively small it can result in an underestimation of the
number of singular values above the noise floor and a
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set of EOFs containing information solely on the dy-
namics over the shorter time scales. After several trials,
we found that the best choice of the width was about
6 months for an 18 X 18 covariance matrix, corre-
sponding to a lag 7 ~ 10 days. This is consistent with
the requirement (for instance, see Mayer-Kress 1986)
that the optimal range of lag 7, both for visualization
of the attractor and for the applicability of the various
algorithms, is given by the correlation time of the signal.

In Fig. 5 we represent the first six eigenvalues and
the corresponding EOFs of an 18 X 18 covariance ma-
trix for the 500 mb height at one station. We can see
that mixing appears after the first three vectors. The
signals corresponding to the other stations, the spatial
average of all nine time series as well as the signal ob-
tained by concatenating the individual series give com-
parable results. For comparison we show in Fig. 6 the
first six eigenvalues and eigenvectors of a pseudoran-
dom signal. The difference with Fig. 5 is striking: mix-
ing is immediate as the eigenvalues are all of compa-
rable size. This indicates that all space directions
spanned by the EOFs are explored to the same extent
by the dynamics.

The preliminary analysis performed in the preceding
section suggests that all nine datasets describe the same
kind of dynamics, and in the next section we shall pro-
duce further evidence corroborating this idea. Assum-
ing then that this view is legitimate, we may use a third
alternative for the phase space reconstruction of our
system based on the “multichannel” variables corre-
sponding to the different spatial locations, instead of
the time lag variables of a single location. In the present
case the number of different space locations is limited
to nine. Since we do not know offhand the phase space
dimensionality we will use a “mixed” representation
in which each spatial channel is enlarged to a number
of lagged variables obtained from the original time se-
ries. As it will turn out these approaches yield similar
results.

4. Dimensions of weather attractor and of embedding
phase space

a. Methods

Having identified the variables that will span the
phase space and the way they can be obtained from
the original time series, we shall now characterize the
nature of the trajectories of our dynamical system in
this space. To this end we shall proceed as follows:

(i) Choose increasingly large values of embedding
dimension n, and for each z plot the values of X = (Xj,
-« «, X,,) for the N data points [cf. Eq. (8)].

(ii) For each n, determine the dimension, », of the
above plotted dataset.

-(iii) Study the dependence of » for increasing n. If
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F1G. 5. Eigenvalues (white blocks) and eigenvectors ( hatched blocks) of an 18 X 18
covariance matrix for the signal at Marseille. The vertical axis has been shifted upwards

by 0.5.

this dependence saturates to some value v; beyond a at random a point X; of our dataset in phase space and

certain reasonably small #,, we will conclude that our

count the number of other data points X; in a ball of

In dynamical systems theory one defines a whole

system is a deterministic dynamical system possessing
a dimension v;. As for n, it will represent the minimum
number of variables needed to describe the dynamics.
hierarchy of dimensions, but for our purposes it will

suffice to focus on the correlation dimension v (for in-
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stance, see Mayer-Kress 1986). The idea is to choose

FIG. 6. As in Fig. 5, but for a pseudorandom signal.
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For values of r, which are much smaller than the linear
size of the attracting manifold and yet larger than scales
in which sampling errors or noise may be important,
one can show that C depends on r as

C(r)y~r’. . (12)

It follows that in each embedding space, v can be es-
timated from the slope of the linear part of the plot of
InC(r) versus Inr.

We have carried out the above algorithm using the
time delay and the principal component representation,
as well as using multichannel variables referring to dif-
ferent stations. We estimated the dimensions of man-
ifolds and of phase spaces of the individual geopotential
time series, as well as of the series obtained from their
spatial average using both time lagged and multichan-
nel variables. In phase space representation the effects
of the transformation from principal to delay space is
reflected by the fact that in the former the trajectory is
significantly smoother than in the latter.

The calculation of the integral correlation function,
Eq. (11), for both phase-space reconstructions, revealed
" that a lower limit of the time lag 7 needed for v to
saturate to »; was of the order of 10 days (approximately
the first zero of /). We increased the embeddlng di-
mensions step by step from 2 to 12. We did not increase

it beyond this value in order to avoid spurious effects

due to the scarcity of data points. Indeed, if the systems
were embedded in higher-dimensional spaces, the in-
terval in r for which the scaling relation of the integral
correlation function holds becomes insufficient for the
method to hold. Actually, this interval begins to shrink
as soon as the embedding dimension becomes larger
than two, mainly. because the number of pairs of points
available to compute the correlation function is pro-
portional to N;? while it should increase as N7”, where
- n is the embedding dimension, for the scaling interval
to remain unchanged. Moreover, in excessively high-
dimensional embeddings, the correlation exponent will
converge for any dynamical system whatsoever, in-
cluding cases of infinite-dimensional, stochastic dy-
namics (Caputo et al. 1986).
The distances between data points were calculated
using the norm

. IXi = Xill = 2 | Xie — Xl -
k=1

(13)

Finally, for all the computations mentioned above, the
correlation exponents were estimated using third order
finite difference formulas involving between 10 and 20
points depending on the size of the interval in r over
which the scaling relation is valid.

b. Results

We found that the two methods of phase space re-
construction gave almost identical results for each time
series as well as for the computations involving the
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space average of all signals and a multi-channel ap-
proach. Some representative results are given in Table
1 and illustrated in Figs. 7a and 7b where InC is plotted
against Inr for the two methods and different embed-
dings for a single geopotential record. It is clear from
the comparison of the two figures that the singular space
representation reduces the effects of noise which tends
to give rise to small oscillations in the plot. In Fig. 8
we represent a three-dimensional graph of the corre-
lation exponents of the records of five different stations
in spaces of increasing dimensions. Black blocks show
the results using a singular phase space reconstruction
whereas hatched ones are obtained using the method
of delays. The upper left blocks correspond to corre-
lation exponents of a pseudorandom signal. Interest-
ingly, when comparing the black and hatched blocks
one notes that convergence of v toward its final value
comes for about the same dimension of embedding
space. Presumably this is due to the important amount
of mixing occurring between EOFs corresponding to
all but a few eigenvalues, thus counteracting the effects
of the “optimal orthogonal set property” of the singular
vectors. This corroborates the statement made in sec-
tion 3, that dimensionality cannot be estimated reliably
from the number of unmixed modes as suggested by
Fraedrich (1986).

To have an idea of the error bar associated with our
calculations we computed the dimension when the
original time series is the product of two sines which
as known evolves on a two-dimensional torus. The
number was correctly found from both methods with
an error of ~0.1 or less (see also Table 1). We do not
expect so small an error for our geopotential series,
even though they involve the same number of samples
and the same round-off error as the reference signal,
mainly because the underlying dynamics seems to be
much more involved. However, since the difference
between the results obtained for a same attractor by
the two methods never exceeds 0.3, it is likely that this
gives a good idea of the error bar.

In summary, we see that the dimensionalities of all
attractors analyzed are in a narrow range with a mean

TABLE 1. Generalized dimension (correlation exponent) inferred
from two reconstruction methods.

Correlation exponent

Signal Method of delays Singular phase space
Lisbon 7.6 74
Marseille 6.8 6.7
Reykjawk 7.2 7.4
Roma 8.3 8.2
Stockholm 7.8 8.1
Space-averged 7.7 8.0
Multichannel 8.4 8.3
Two-torus 2.1 2.0
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value of about 7.5 and a dispersion of 10%. Conse-
quently, it is reasonable to ascertain that the individual
time series refer to a well-defined dynamical system
describing the short term variability of the western Eu-
ropean weather.

5. Lyapounov exponents: Predictability and nonuni-
formity

The results reported so far suggest strongly that short
term weather variability over western Europe corre-
sponds to a low-dimensional aperiodic attractor. In
view of the inaccuracies in dimensionality estimates
we cannot ascertain that the attractor dimension is
fractal rather than integer, although the evidence for a
fractal dimension is very suggestive. In this section,
therefore, we examine this question from an alternative
point of view, and show that the dynamics on the at-
tractor displays sensitivity to initial conditions. To-
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gether with our previous results, this will entitle us to
conclude that we are in the presence of low-dimen-
sional chaos.

Let us formulate the problem of sensitivity to initial
conditions in a quantitative manner. We imagine at
time ¢ = 0 a set of data included in a small n-dimen-
sional sphere, whose center is on the attractor. The
long time evolution of this sphere is subsequently
monitored. We order the principal axes of this object
from most rapidly to least rapidly growing and compute
the mean growth rate ¢; of the ith principal axis p; over
a long period of time:

1 t
g; = lim — d‘riln(

w0 L JoO dT

= lim l ln(git—)-)
-t \pi(0)

where p;(0) is the radius of the initial sphere. The set
of \g; are referred to as Lyapounov exponents of the
underlying dynamical system. There exist as many
Lyapounov exponents as phase space dimensions
(Guckenheimer and Holmes 1983). One of them is
necessarily equal to zero, expressing the fact that the
relative distance of initially close states on a given tra-
jectory varies slower than exponentially. Others are
negative, expressing the exponential approach of initial
states to the attractor. If the dynamical system at hand
is chaotic there will be at least one positive Lyapounov
exponent, and the sphere will evolve to a complex el-
lipsoidlike form reflecting the exponential divergence
of nearby initial conditions along at least one direction
on the attractor. This property will be interpreted by
the observer as the inability to predict the future state
of the system on the basis of past knowledge of its tra-
jectory, beyond a certain interval of time of the order
of the inverse of the divergence rate. Note that in a

Pi(‘f))
pi(0)

(14)

- well-behaved dissipative system the sum of all expo-

nents must be strictly negative (Guckenheimer and
Holmes 1983).

Hitherto, most analyses have provided only the larg-
est positive Lyapounov exponent of a chaotic system.
Besides, in most of the mathematical models and lab-
oratory experiments studied so far the dimension of
the chaotic attractor was between two and three,
meaning that not more than one such exponent could
be expected. In the problem under consideration, how-
ever, one typically deals with Ayperchaos, manifested
by attractors in the form of folded multidimensional
fractal structures. In principle there is no reason to
expect that unstable motion will only occur along one
direction on such complex manifolds. One should
therefore aim at computing as large a part of the entire
spectrum of Lyapounov exponents as possible. To that
effect we will use some algorithms developed recently
in the framework of dynamical systems theory which
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- allow one to compute the large amplitude exponents
with reasonable accuracy (Sano and Sawada 1985;
Eckmann et al. 1986).

Our analyses are mainly based on the work by Eck-
mann et al. (1986). The interested reader will find in
the Appendix the main features of the method and
some key technical details. The algorithm was first ap-
plied to one of our reference systems, the Lorenz equa-
tions, Eq. (2). We found in this case that the number
of samples needed (truncated to the accuracy of data)
to extract all three exponents with a reasonable error
bar was of the order of 30 000! Therefore, taking into
account the results reported in the previous sections,
namely, that the nine stations behaved more or less as
being parts of a single dynamics encompassing the
whole West European weather, we reassembled the data
into a single series of about 80 000 samples (see also
Essex et al. 1987). We verified that the discontinuities
of the signal at the connections between the different
series would influence the neighborhoods of about 0.1%
of the samples of the resultant concatenated time series.
This would probably make the error in the estimation
of the Lyapounov exponents 0.1% larger than what we
would have obtained from an uninterrupted series of
a single variable of the system. Using the same amount
of data for the Lorenz system, we found it possible to
extract the positive and zero exponents within 0.03¢7,
and the negative one within 25% of its true value from
a time series of the variable x. This last result is prom-
ising because the negative exponent of the Lorenz sys-
tem is one order of magnitude larger than the positive
one and a 25% error on its value consequently does
not influence much the ratio of these two exponents

which is an important qualitative property of the dy-
namics.

We repeated the algorithm using the concatenated
series corresponding to the geopotential signal. The
convergence of the algorithm to relatively sharp Lya-
pounov exponents was fair. Table 2 (first column)
summarizes the result on the large amplitude o;. Several
interesting conclusions can be drawn:

(i) Considering the accuracy of the method one can
assert that two exponents are unmistakingly positive.
Therefore, one deals here with a Ayperchaotic attractor.
The fact that the two positive ¢; are comparable in
magnitude suggests that the chaotic dynamics arises
from the interference of two independent mechanisms
of instability of comparable importance.

(ii) There are at least three negative exponents. The
absolute value of the largest among them is not signif-
icantly larger than the largest positive ;. This suggests
that there is no single time scale dominating the system
in the range considered.

TABLE 2. Mean and (variance)'? of the most significant Lyapounov
exponents deduced from the concatenated time series of the geo-
potential record.

Mean divergence rate (Variance)'?

o; (day™) Ac; (day™)
0.023 0.028
0.014 0.022

—0.017 0.034
—0.032 0.050
—0.079 0.101
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(iii) The existence of several practically vanishing
g; implies that the corresponding directions belong to
a low-dimensional torus. It is therefore legitimate to
advance the idea that the chaotic dynamics of the sys-
tem arises from the fractalization of this torus.

(iv) The sum of the two largest positive exponents,

equal to 0.037 day ~!. It gives an estimate of the metric
(Kolmogorov) entropy K. Its inverse, which is about
27 days, is therefore an estimate of the mean predict-
ability time for the geopotential signal. It is comparable,
but clearly larger than the 12-17 days inferred by
Fraedrich (1987) from series of about 5500 samples.

We will now discuss a way for exploring the structure
of the attractor in a more detailed manner. By defini-
tion [Eq. (14)], the Lyapounov exponents are time
averages over a long interval. Hence, since a typical
motion on a chaotic attractor satisfies strong ergodic
properties, o; are effectively (ensemble ) averages over
the entire attractor. We now introduce a finer motion
on the attractor, namely the Jocal rate of divergence.
For this purpose we discretize time, letting n be a rea-
sonably small step, and define :

1 Di(kn)
(k)=—-In| —————}.
=3 “(p,-((k- l)n)) (13)
Clearly
1 X ,
0= 13311—\—7 2 Bi(k). (16)

k-1

The point is that starting from (15), one can compute
numerically deviations from the averages o; (variances
(Ac;)? and higher moments) or, as a matter of fact, the
probability distribution for having a given local rate of
divergence. Obviously the larger Ag; (or the flatter the
probability distribution ), the more nonuniform the at-
tractor will be (Nicolis 1986 ). The variances of the five
Lyapounov exponents are given in Table 2 (second
column). We see that all exponents are subjected to a
" very strong variability. This shows that the attractor is
highly nonuniform. It is important to note that the
high values of As; do not compromise the sign of o;.
Indeed, in Figs. 9a and 9b we show the histogram of
the largest positive 3;, and of the most negative one.
We observe in all cases a rather broad distribution,
which is markedly asymmetric (toward positive and
negative values, respectively). Interestingly, in these
two figures the mean o; is rather different from the
most probable value, which is close to zero. Similar
trends are found for the other §; as well.

In summary, as time varies, the system will contin-
uously switch along the unstable directions from states
of low g (large predictability ) to states of high 8 (small

predictability ). We will now attempt to identify these:

states. To this end we follow numerically on the at-
tractor the motion along the unstable directions cor-
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responding to a positive rate of divergence. Since the
attractor is constructed from the original time series
and from a number of additional variables generated
by it, this motion will necessarily run over different
values of the geopotential. We will thus be able to iden-
tify the rate of divergence prevailing for different values
of the geopotential.

Figure 10 summarizes the result. We consider the
sum of the positive local rates, known as (local) Kol-
mogorov entropy (Lichtenberg and Lieberman 1983).
Its inverse gives the limit of predictability of states with
different geopotential values. We observe that for values
corresponding to low geopotential heights the predict-
ability is of the order of 30 days. It decreases to about
2 weeks for high geopotential values. One verifies that
the mean value of these two extremes is close to the
inverse of the metric entropy estimated earlier in this
section.

One rather obvious idea is to relate these results with
the fact that winter predictions are generally more sat-
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isfactory than summer ones. A less obvious and some-
what speculative conjecture is to associate a cyclonic
weather pattern over western Europe to the Atlantic
blocking (for instance, see Benzi et al. 1986). The high
persistence of the latter appears therefore as the con-
sequence of the high predictability of the low geopo-
tential part of the attractor.

Throughout this section we have related the pre-
dictability of the atmosphere to the existence of an in-
herently nonlinear dynamics described by a chaotic
attractor and displaying sensitivity to initial conditions.
A comment on the connection between this point of
view and the current use of the concept of predictability
in atmospheric sciences is therefore in order.

Ordinarily, the difficulty to carry out long-term pre-
dictions of the dynamics of the atmosphere is traced
back to two major elements (Lorenz 1984, 1987):

(i) Operationally, in defining the state of the at-
mosphere a number of errors are involved. For in-
stance, due to the finite resolution of a measurement
or of a numerical experiment, small-scale “subgrid”
processes are discarded.

(ii) The principal atmospheric and climatic vari-
ables undergo complex dynamics, as a result of which
small errors of the kind mentioned above are rapidly
amplified. Present estimates from models of weather
prediction are carried out by extrapolating to small
errors the amplification times actually computed. They
give error growth (doubling or e-folding) times of a
few days. It is this time that is usually identified as the
predictability time. Significantly, the growth rate seems
to depend very little on the detailed nature of the error,
provided that the amplitude of the latter is small
enough (Lorenz 1984).

This view of atmospheric predictability is entirely
- compatible with the one advocated in the present paper.
Indeed, whatever their detailed nature might be,
subgrid processes will be perceived by the large-scale
processes as a “forcing” perturbing their evolution
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continuously. Assuming that the forcing amplitude is
small, it is then clear that the response of the large-
scale processes will depend on the nature of their own
dynamics, i.e., of the dynamics one is trying to predict.
If the dynamics is stable the forcing will be damped:
even though errors of all sorts will be arising contin-
uously, there will be no error growth. But if, on the
contrary, the dynamics is unstable the forcing will be
amplified and the slightest error will grow. In short,
““error growth” is above all a manifestation of a system’s
intrinsic instability rather than of the initial error itself,
the latter acting merely as a trigger. This is also what
happens in deterministic chaos: to probe the sensitivity
to initial conditions one has to deviate from some basic
trajectory through some initial error; but the fact that
this error will be amplified and, equally importantly
perhaps, the rate of its amplification, depend entirely
on the dynamics. :

We close this section with some remarks on the
quantitative estimation of the predictability time. We
have just mentioned that the current estimates of error-
growth times of a few days from numerical weather
prediction models involve extrapolations to the range
of small errors. How are these estimates related to the
predictability time of a few weeks deduced in the pres-
ent paper?

Theoretically, a Lyapounov exponent from which
predictability time is deduced, is an average of local
rates of divergence over the attractor (or parts thereof).
By definition, a local rate is a rate characterizing the
response of the system in the limit of a vanishingly
small deviation from a reference trajectory—a vanish-
ingly small error. In practice, owing to the finiteness
of sampling times this limit is never attained. In the
problem under consideration, where the sampling time
is one day, this obviously limits the analysis to errors
beyond a certain size. Our results must therefore be
understood in the following sense: the response of the
atmosphere to errors or to disturbances in this (finite)
size range, is characterized by a predictability (error
growth) time of 2 to 4 weeks, depending on whether
one considers the range of high or low geopotential
values. Should one be able to extrapolate this estimate
to small errors, a value close to Lorenz’s result of a few
days could conceivably come out. Such an extrapola-
tion cannot be carried out with the type of data at our
disposal.

In our view there is an additional, and perhaps sub-
tler, aspect of this problem. Predictability is not an
absolute concept but depends on the type of dynamics
considered. As an example, predictability times at the
level of molecular dynamics (which is known to be
chaotic) are by orders of magnitude smaller than pre-
dictability times descriptive of, say, a turbulent flow.
In this respect it does not make much sense to extrap-
olate turbulence data, whose coarseness reflects the hy-
drodynamic level of description, to characteristic
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lengths in the molecular range and join in this way
predictability estimates of molecular trajectories. We
believe that a somewhat similar situation arises in the
present problem. In other words, even though the daily
sampled 500 mb geopotential values are inevitably af-
fected by smaller scale processes whose predictability
times might be substantially smaller, they are likely to
be governed by an autonomous dynamics. This dy-
namics displays deterministic chaos, and is character-
ized by a predictability time of a few weeks. As a cor-
ollary, we suggest that there is considerable room for
improving predictions of the daily 500 mb geopotential
values, beyond the range of a few days.

6. Discussion

We have produced strong evidence that weather
variability over western Europe, as reflected by the 500
mb geopotential values, can be accounted for by a single
dynamical system of a few degrees of freedom pos-
sessing a low-dimensional attractor. We have estimated
some average properties of the attractor such as its di-
mension and the dominant Lyapounov exponents.
Furthermore, we explored its local structure and found
a relation between the rate of divergence on it and the
corresponding heights of geopotential.

The very possibility to describe the global dynamics
by a single attractor implies the existence of long-range
spatial correlations in the atmosphere, of the order of
several hundreds of kilometers. The mean predictability
time of three to four weeks that we found suggests that
there is ¢considerable room for improving weather pre-
dictions for phenomena belonging to this time scale.
Of more interest is, perhaps, the result that predict-
ability is actually variable and may depend on the state
of the atmosphere (Lorenz 1965). This conclusion
seems to be supported by meteorological experience as
discussed, for instance, by Gilchrist (1986). It should
be of practical value in helping to choose the adequate
level of description and the degree of detail to be in-
cluded in the model, when tackling a given problem.

It would be interesting to analyze from a similar
point of view variability over other extended regions
of the globe, as well as over time scales shorter than
the one day sampling interval considered in the present
work. We also believe that a dynamical systems analysis
of the output of general circulation models would shed
some light on the kind of variability described by these
models. It should also clarify the connection between
what is to be regarded as a purely statistical element
or as an element reducible to some well-defined deter-
ministic dynamics.

From a more fundamental point of view, it is our
belief that the existence of intrinsically imposed limits
of predictability, whatever the quality of a model might
be, should have a lasting effect on the very way to model
or even monitor our natural environment.
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APPENDIX

Numerical Computation of Lyapounov Exponents

The basic steps of the algorithm used for the com-
putation of the Lyapounov exponents may be sum-
marized as follows (Eckmann et al. 1986; Sano and
Sawada 1985):

(i) One first embeds the dataset in a dz-dimensional
space and constructs therein by the time-delay method
[cf. Egs. (7) and (8)] an orbit representing the time
evolution of the system. In this space one determines
the neighbors of all X;, i.e., the set S; of data points
{X;} within a prescribed distance p from X;. Note that
p must be sufficiently large for the results to be statis-
tically significant and yet small enough to ensure the
validity of the subsequent analysis [see step (ii)], based

- on successive linearizations of the full dynamics.

(ii) Since the Lyapounov exponents describe the
mean rate of amplification of a small initial deviation
from a reference trajectory [cf. Eq. (14)] we seek to
construct a linear operator describing the time evolu-
tion of such deviations. Specifically, we inquire whether
there exists a matrix T, relating some initial displace-
ment X; — X to its value one unit of time later, X;;
- xi+1

Xjn — Xiv1 = Ti(X; — X3). (A1)
In principle the rank of this matrix, dj, need not be
equal to dg, the latter being sometimes chosen to have
a rather high value. Assuming that there is an integer
m = 1 such that

dE— 1= (dM_ l)m (AZ)

one may then associate to the dg-dimensional vector

X; = (X, Xit1, * * *» Xivag—1) @ dyr-dimensional vector
Y; defined as ‘
Y = (Xi, Xivms = * *, Xi+(dM—l)m)- (A3)
Equation (A1) is thus replaced by
Yiri =Y, =T(Y;, - Y)
or equivalently:
Xjrm = Xiem = Ti(X; — Xp). (A4)
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Projecting both sides of Eq. (A4 ) successively on the
coordinate vectors of the delay space allows one to fix
the d,, — 1 first rows of T; by equating the coefficients
of identical components of the distance vectors ap-
pearing on both sides. For the last line the above iden-
tification does not work and one has to fix the elements
by a least-squares fit, requiring the difference between
left- and right-hand sides of (A4) to be minimum. This
yields:

0 1 0
0 0 1 0
T; = (A5)
0 0 0 1
a1 a as Qay
with
dpr—1
E { z ak+1(/Yj+km _Xi+km)
jes; k=0
- (/Yj+de - Xi+de)}2 = min. (A6)

(iii) Finally, by taking the logarithmic average of
the eigenvalues of T; over a large number of T; one
obtains the average exponential rates of divergence of
X, — X; in phase space, which are nothing but the Lya-
pounov exponents for which we are looking.
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