TEMPERATURE DEPENDENCE OF ULTRAVIOLET ABSORPTION CROSS SECTIONS OF BROMINATED METHANES AND ETHANES

D. Gillotay, P.C. Simon, and L. Dierickx Institut d'Aéronomie Spatiale de Belgique B-1180 Bruxelles, Belgium

ABSTRACT

Absorption cross-sections of five brominated methanes (CH_3Br , CH_2Br_2 , CF_3Br , CF_2Br_2 and CF_2BrCl), and of two brominated ethanes (CF_2Br-CF_2Br and $CF_3-CHBrCl$) have been measured between 172 and 300 nm with a classical single beam system, for temperature ranging from 210 to 295 K. These data are compared with previous determinations made at room temperature (Robbins, 1976 and Molina et al., 1982).

Numerical values of absorptions cross-sections are given and the temperature effects on the photodissociation coefficients of these molecules discussed.

1. INTRODUCTION

Recent studies (Prather et al., 1984; Rodriguez et al., 1986; Yung et al., 1980) show that brominated compounds can play a significantly role in the ozone catelytic destruction in the stratosphere. RBr species concentrations have been measured in the atmosphere by several authors (Fabian et al., 1981; Lal et al., 1985; Cicerone et al., 1988; Berg et al., 1984; Penkett et al., 1985; Class et al., 1986) confirming their possible impact on the ozone layer.

The reliability of models is strongly dependent on the photodissociation pattern adopted for these bromocarbons. Until now, one set of measurements of absorption cross-sections is available at room temperature for most of the bromocarbons (Molina et al., 1982), a second set of data being available for CH3Br (Robbins, 1976). The purpose of this paper is to report a new investigation of ultraviolet absorption cross-sections of five brominated methanes (CH3Br, CH2Br2, CF3Br, CF2Br2 and CF2BrCl), and of two brominated ethanes (CF2Br-CF2Br and CF3-CHBrCl) measured between 172 and 300 nm, for temperatures between 295 and 210 K. Temperature dependence of absorption cross-section is clearly demonstrated. Photodissociation coefficients are calculated and their temperature dependence is discussed.

2. EXPERIMENTAL

The absorption measurements has been performed by means of a single beam experimental device previously discribed in Gillotay and Simon, (1988), including a Deuterium or a Tungsten filament light source, a 1 m McPherson 225 monochromator, a 2 m thermostatic absorption cell and a EMR type 542 P-09-18 solar blind photomultiplier. The temperature is regulated down to 210 K by circulation of cooled methylcyclohexane through double jacket around the absorption cell and is determined with a precision better than 1% at 210 K. The pressures ranging from 2 x 10^{-3} to 1000 torr are measured with three capacitance manometers MKS Baratron with a precision better than 0.1%.

Determination of absorption crosssections is made after at least fifteen sequential recordings of the incident and absorbed fluxes measured for identical temperature conditions, using the Beer-Lambert's law.

3. RESULTS

Numerical values of absorption crosssections for selected wavelengths between 168 and 304 nm (2 nm intervals) are given in Tables 2-8. The absorption spectra are illustrated in Figures 1 for the bromo-methanes.

Measurements have been performed at working pressures given in Table 1. In all cases, Beer-Lambert's law was verified for absorptions ranging from 10 to 85%. In such conditions, and according to the error budget recently published (Simon et al., 1988), the absorption cross- sections given in Tables 2-8 are determined with an accuracy of \pm 2% at room temperature and of \pm 3 to \pm 4% at the lowest temperature.

Brominated compounds display a continuous absorption in the 172-300 nm range, with absorption cross-sections ranging from 10^{-17} to 10^{-25} cm² molecule⁻¹, with a maximum around 200 nm for the monobrominated carbons and around 225 nm for the dibrominated ones. The results are compared with the previous available values (Molina et al., 1982; Robbins, 1976). Disagreements up to 20% are observed between our set of measurements and the values proposed by Molina et al., (1982), the latter being lower than ours mainly in the region of high absorption.

Absorption cross-section values change with temperature by a factor which depends on both the wavelength and the chemical composition of the compound. For each wavelength, an exponential dependence of the absorption cross-section versus temperature is clearly shown, with a decrease of absorption crosssections in the region of low absorptions (up to 80% at 310 nm and 210 K) and an increase (up to 20% at 210 K) near the maximum of absorption.

	•					PRESS	SUI	E (to	rr)			
Compound (R)		3	291	S K	;		25	55 K	:		21	D K
CF3Br (*)	1	722		6x10 ⁻¹	:	597	-	6x10	1,	384.6	-	2×10-2
(*)	:	234	-	3x10-2	:	67	-	1x10 ⁻	1	3.4	2	2×10-2
F ₂ BrC1 (*)	:	453		1x10 ⁻¹	:	80	-	8x10	2	10.3		9×10-2
CH ₃ Br ^(**)	:	22	-	4x10-2	:	19	-	7x10	2	9.6	•	9x10-
CH2Br2	:	36	-	4x10 ⁻²	:	1	-	5x10	2			
274Br4	:	80	e	2x10 ⁻²	2	67	-	5x10	2	11.2	÷	2x10-
C.F.HBrCl	:	147	-	4x10 ⁻²	:	20		4x10	2	9x10	-1	-4x10
2.0	:								3			

^{(*) :} Gillotay and Simon, 1988a. (**) : Gillotay and Simon, 1988b.

Fig. 1. Ultraviolet absorption cross-sections of bromomethanes with respect to wavelength at 295 K.

TABLE 2. ABSORPTION CROSS-SECTIONS [σ (λ) x 10²¹ (cm² molec.⁻¹)] OF CH₃Br (Gillotay and Simon, 1988b)

λ(nm)	295K	270K	250K	230K	210K
180	500	500	500	500	500
182	198	198	198	198	198
184	208	208	208	208	208
186	271	271	271	271	271
188	346	346	346	346	346
190	439	439	439	439	439
192	529	529	529	529	529
194	620	620	620	620	620
198	691	691	691	691	691
198	760	760	760	780	760
200	791	791	791	791	791
202	797	797	797	797	797
204	793	793	793	793	793
206	767	767	767	767	767
208	727	727	727	727	727
210	686	686	666	666	666
212	614	613	613	613	613
214	557	557	556	556	556
216	493	493	492	492	492
218	440	438	436	434	432
220	378	374	372	369	367
222	325	321	318	316	313
224	278	273	268	264	260
226	231	226	222	218	214
228	190	187	184	181	179
230	155	152	149	147	144
232	125	122	120	117	115
234	99.2	96.1	93.7	91.3	89.0
236	77.3	74.2	71.7	69.3	67.1
238	59.7	56.6	54.3	52.0	49.9
240	44.8	42.7	41.0	39.4	37.9
242	33.3	31.6	30.2	28.9	27.7
244	25.1	23.3	22.0	20.8	19.6
246	18.2	16.9	15.9	15.0	14.1
248	13.0	12.0	11.2	10.5	9.81
250	9.57	8.65	7.98	7.37	6.80
252	6.89	6.09	5.52	5.01	4.54
254	4.83	4.26	3.85	3.48	3.14
256	3.39	2.93	2.61	2.32	2.07
258	2.40	2.02	1.75	1.52	1.32
260	1.70	1.43	1.24	1.07	0.932
262	1.23	0.946	0.800	0.678	0.573
264	0.810	0.638	0.529	0.439	0.364
266	0.557	0.429	0.348	0.282	0.229
268	0.384	0.287	0.227	0.180	0.142
270	0.255	0.191	0.147	0.114	0.0875
272	0.183	0.127	0.0953	0.0713	0.0533
274	0.118	0.0847	0.0614	0.0444	0.0322
276	0.0880	0.0567	0.0394	0.0275	0.0193
278	0.0616	0.0375	0.0253	0.0170	0.0114
280	0.0434	0.0251	0.0162	0.0104	0.00672

TABLE	3. ABSORPTI OF CH2Br	ON CROSS-S 2	ECTIONS [σ (λ) x 10	21 (cm ² mol	ec. ⁻¹)
λ(nm)	295K	270K	250K	230K	210K	
174	11709					
176	6624	6352	6143	5940	5744	
178	3772	3594	3458	3326	3200	
180	2410	2331	2270	2211	2153	
182	1784	1714	1660	1608	1557	
184	1544	1469	1412	1357	1303	
186	1535	1487	1450	1414	1379	
188	1661	1646	1634	1623	1611	
190	1870	1879	1887	1894	1902	
192	2093	2115	2133	2151	2170	
194	2225	2270	2306	2343	2381	
196	2283	2322	2354	2387	2419	
198	2260	2291	2317	2342	2368	
200	2201	2209	2216	2223	2230	
202	2143	2133	2126	2119	2111	
204	2101	2087	2075	2064	2052	
206	2112	2101	2092	2084	2075	
208	2175	2186	2195	2205	2214	
210	2269	2307	2339	2370	2402	
212	2428	2530	2614	2702	2792	
214	2548	2706	2839	2979	3126	
216	2622	2825	2998	3182	3377	
218	2647	2879	3080	3294	3524	
220	2621	2868	3082	3311	3558	
222	2547	2792	3005	3234	3481	
224	2430	2659	2859	3073	3304	
226	2276	2479	2656	2844	3046	
228	2094	2264	2411	2566	2732	
230	1893	2026	2140	2261	2368	
232	1682	1779	1861	1946	2035	
234	1470	1533	1585	1639	1695	
236	1264	1297	1324	1352	1380	
238	1070	1079	1086	1094	1101	
240	892	883	876	868	861	
242	733	711	694	678	662	
244	594	565	542	521	500	
246	475	442	417	394	372	
248	375	342	317	294	273	
250	293	261	238	217	197	
252	226	197	176	158	141	
254	172	147	129	114	100	
256	130	109	93.9	81.2	70.1	
258	97.8	79.7	67.7	57.5	48.8	
260	72.7	58.0	48.5	40.5	33.8	
262	53.7	42.0	34.5	28.3	23.2	
264	39.4	30.2	24.4	19.7	15.9	
266	28.8	21.6	17.2	13.7	10.9	
268	20.9	15.4	12.1	9.47	7.42	
270	15.2	11.0	8.48	6.55	5.06	
272	11.0	7.81	5.95	4.53	3.45	
274	7.93	5.55	4.17	3.14	2.36	
276	5.73	3.95	2.93	2.18	1.62	
278	4.15	2.82	2.07	1.52	1.12	
280	3.01	2.02	1.47	1.07	0.773	
282	2.19	1.45	1.04	0.750	0.539	
284	1.60	1.05	0.747	0.532	0.379	
286	1.18	0.764	0.540	0.381	0.269	
288	0.877	0.562	0.393	0.275	0.193	
290	0.656	0.416	0.290	0 201	0 140	

TABLE	4.	ABSORPTION	CROSS-SECTIONS	ŧ	σ	()	×	1021	(cm ²	molec.	1,1
		0.0 0.0 0				and the local sectors and the					

TABLE 4	. ABSORPTION OF CF3Br	CROSS-SEC (Gillotay	fions [σ] et al., 19	$(\lambda) \times 10^{21}$ 988a)	(cm ² molec
λ(nm)	295 K	270K	250K	230K	210K
168	5.17	5 09	5 04	4 9.9	4 02
170	6.96	6.89	6 84	6 79	6 73
172	9 28	9 24	9.21	0.10	0.13
174	12 2	12 3	10.21	10.11	8,14
176	16 0	16 1	16.0	16.3	12.3
178	20 6	20.0	20.2	10.3	10.4
180	26 1	20.0	21.1	21.0	21.8
182	32 6	20.0	21.1	21.0	28.0
184	40 2	41 6	42 7	43 0	30.8
186	48 8	50 8	52 4	40.0	40.1
188	58 2	60.0	63 2	65 K	67 0
190	68.4	71.9	74.8	77 8	81 0
192	78.8	83.2	86.9	80.7	94 7
194	89.3	94.6	99.0	104	108
196	89.4	105	110	116	121
198	109	115	121	127	133
200	116	123	129	136	142
202	122	130	136	142	149
204	126	133	139	146	152
206	128	134	140	146	152
208	127	132	137	142	148
210	123	128	132	136	140
214	110	121	124	127	130
216	101	102	114	118	118
218	90 6	00 3	90 1	103	104
220	79.9	78 6	77 6	76 6	75 0
222	69 2	67 1	65 4	63.8	62 2
224	58.8	56.1	54.1	52 1	50 1
226	49.1	46.1	43.8	41.6	39.5
228	40.3	37.1	34.7	32.5	30.5
230	32.4	29.3	27.0	25.0	23.0
232	25.7	22.8	20.7	18.8	17.1
234	20.0	17.4	15.6	13.9	12.4
236	15.3	13.1	11.5	10.1	8.88
238	11.6	9.66	8.35	7.22	6.24
240	8.62	7.04	5.98	5.09	4.33
242	6.33	5.06	4.23	3.54	2.96
244	4.59	3.59	2.95	2.43	2.00
240	3.28	2.52	2.04	1.65	1.33
240	2.32	1.75	1.39	1.11	0.881
250	1.03	1.20	0.941	0.738	0.579
254	0 777	0.010	0.032	0.408	0.378
256	0.630	0.373	0.922	0.322	0.240
258	0.360	0 250	0 186	0 130	0.100
260	0 243	0 167	0 123	0.0011	0.104
262	0.164	0 111	0 0817	0.0600	0.0440
264	0.110	0.0742	0 0542	0 0396	0.0290
266	0.0736	0.0496	0.0362	0 0264	0 0192
268	0.0494	0.0333	0.0243	0.0177	0.0129
270	0.0331	0.0225	0.0164	0.0120	0.00882
272	0.0223	0.0153	0.0112	0.00829	0.00611
274	0.0151	0.0105	0.00779	0,00580	0.00432
276	0.0103	0.00725	0.00547	0.00414	0.00313
278	0.00706	0.00509	0.00392	0.00301	0.00232
280	0.00489	0.00363	0.00286	0.00225	0.00177

TABLE 5.	ABSORPTION OF CF.Br.	CROSS-SECT (Gillotay	IONS [σ (et al.,]	$(1) \times 10^{21}$ (988a)	(cm ² molec. ⁻¹)}
λ(nm)	295 K	270 K	250 K	230 K	210 K
21 mm 170 172 174 175 180 180 182 184 186 186 186 192 200 200 200 200 200 210 210 21	1245 1245 1245 1245 1245 1265 1269 1200 1110 1009 1110 1009 1110 1009 1110 1009 1100 1009 1100 1009 1100 1009 1100 1009 1100 1009 1100 1009 1100 1009 1100 1009 1100 1009 1100 1009 1100 1009 1100 1009 1100 1009 1100 1009 1100 1009 1100 1009 1100 1009 1100 1009 100 100	$\begin{array}{c} 210 \ \text{B} \\ 6106 \\ 6106 \\ 6106 \\ 6101 \\ 620$	$\begin{array}{c} 250 & \mathbf{K} \\ 250 & \mathbf{K} \\ 0$	230 K 991 549 549 549 549 549 549 549 549	210 K 782 493 548 549 549 549 549 549 549 549 549
TADLE 7. 4	BSORPTION CR	055-SECTIO	NS [ơ (¾)	x 10 ²¹ (c	<pre>mplec.⁻¹)}</pre>
λ(ne)	295K	270K	250K	230K	210K
λ(nm) 170 172 174 176 182 184 186 186 186 186 186 186 186 186	295K 509 564 623 665 1080 1135 1222 1264 1223 1264 1241 1205 1264 1241 1205 167 765 712 630 877 765 712 630 877 1087 765 726 877 1087 765 726 877 1087 877 726 877 877 877 877 877 877 877 87	270K 539 534 653 779 844 653 779 844 653 1082 973 1244 1221 1245 1245 1245 1244 1221 1245 1244 1224 1245 1244 1224 1245 1244 138 1221 072 772 772 772 690 690 151 151 956 6 74.6 5 75 6 5 6 5 6 5 7 15 1 9 5 5 6 5 7 1 5 1 9 5 5 6 5 7 1 5 1 1 9 5 5 6 5 7 1 5 1 1 9 5 5 6 5 7 1 5 1 1 9 5 5 5 7 1 5 1 1 9 5 5 5 7 1 5 1 1 9 5 5 5 7 1 5 1 1 9 5 5 5 7 1 5 1 1 9 5 5 5 5 7 1 5 1 1 9 5 5 5 5 7 1 5 1 1 9 5 5 5 5 7 1 5 1 1 9 5 5 5 5 7 1 5 1 1 5 1 1 9 5 5 5 5 7 1 5 1 1 5 1 1 9 5 5 5 5 7 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	250K 564 620 670 802 899 9990 1046 1149 1238 9900 1046 1238 1238 1238 1238 1228 1238 1228 1228 1228 1228 1228 1228 1228 1228 1228 1228 1228 1228 1237 1228 1228 1228 1237 1228 1237 1228 1237 1228 1237 1228 1237 1228 1237 1228 1237 1237 1228 1237 1237 1238 1247 1228 1237 1237 1228 1237 1237 1237 1237 1237 1237 1237 1237 1237 1237 1237 1237 1237 1237 1237 1247 1228 1237 1247 1228 1237 1237 1247 1228 1237 1237 1247 1228 1247 1228 1237 1279 1277 1279 1277 1279 1277 1279	230K 590 646 705 826 886 900 1007 1115 1115 11190 1217 1237 124 235 125 125 137 245 250 245 250 245 250 245 250 245 250 245 250 245 250 245 250 245 250 245 250 245 250 245 250 245 250 245 250 245 250 250 250 250 250 250 250 25	210K 618 674 732 791 861 1024 1122 1161 1122 1161 1122 1161 1192 1214 1224 1216 1197 1218

TABL E 6.	ABSORPTION	CROSS-SEC	110NS [0	(^λ) x 10 ²¹	(om ² molec. ⁻¹)]
λ(nm)	295 K	(G111ot	ay et al. 250 K	1968a) 230 K	210 K
λ(nm) 170 172 174 176 180 180 180 180 180 180 180 180	00 CF 28C1 295 K 3230 2342 1200 847 847 847 847 847 847 847 847 847 847	(dillot 270 K 2300 2300 2300 1180 840 840 840 840 840 840 840 840 840 8	Py et al. 250 K 250 K 2285 K 824 824 824 824 824 824 824 824	1968-1 230 K 230 K 3150 2250 1170 850 415 570 845 435 545 437 845 437 845 1020 11324 1374 1400 1400 1313 1315 1316 1317 1400 1317 1317 1400 1317 1317 1400 1317	210 K 3150 2227 1680 1160 822 578 418 382 456 573 745 666 573 745 922 1180 1286 1452 1452 1455 1395 1395 1396 1452 1455 1396 1396 532 633 457 538 538 538 538 538 538 545 538 545 545 545 545 545 545 545 54
4234 4236 2236 2242 244 244 244 244 244 254 255 255 25	ABSORPTIO	376 376 264 266 266 266 266 266 266 26	3/6 3/6 245 245 245 245 245 245 245 245 245 245	3816 210 212 172 138 67.13 67.13 67.13 67.13 67.13 172 172 172 172 172 172 172 172	382 311 316 210 166 134 106 82.6 83.9 149.5 24.3 24.5 24.3 24.3 24.5 24.3 24.5 25.5
TABLE 5.	ABSORPTIO	N CROSS-SE BrCl	CTIONS (0	(Å) x 10 ²	¹ (cm ² molec. ⁻¹)]
λ(nm) 170	295K 7026	270K	250K	230K	210K
170 172 174 175 178 180 180 180 184 186 186 186 186 186 186 186 186	7026 6146 4968 37619 2061 1184 2061 1184 8865 985 1082 1082 1082 1143 1164 1155 1082 1082 1082 1143 1144 1155 981 1082 1082 1082 1082 1082 1082 1082 10	$\begin{array}{c} 7014\\ 7016\\ 4849\\ 4849\\ 2715\\ 1986\\ 2715\\ 1986\\ 1986\\ 1986\\ 1986\\ 986\\ 986\\ 986\\ 986\\ 986\\ 986\\ 986\\ $	7005 5998 4736 2840 1932 1442 1932 1442 1932 1932 1932 1932 1932 1932 1932 193	6996 5919 4665 5919 2667 1407 1407 1407 1903 802 8904 8902 8904 1107 1237 1247 1247 1247 1247 1247 1247 1244 1253 1247 1244 1253 1244 1253 1244 1253 1244 1253 1265 1267 1265 1275 1275 1275 1275 1275 1275 1275 127	6997 5851 4675 5851 1823 11823 1383 894 822 890 997 882 890 997 1054 1157 1253 1272 1253 1272 1253 1272 1253 1272 1253 1272 1255 1275 1266 11095 944 669 773 889 329 665 527 454 8389 3276 2380 3277 246 3277 2476 2476 2476 2476 2476 2476 2476 2

4. DISCUSSION

Photodissociation coefficients of these molecules have been calculated, neglecting effects of multiple scattering, for given altitude (z), zenith angle (χ) and wavelength interval according to the relations:

$$J(z) = \sigma_{\lambda} q_{\lambda}(z) ; q_{\lambda}(z) = q_{\lambda}(\infty) e^{-\tau_{\lambda}(z)}$$

$$\tau_{\lambda}(z) = \int_{z} [n(0_{2}) \sigma_{\lambda} (0_{2}) + n(0_{3}) \sigma_{\lambda}(0_{3}) + n(air)\sigma_{scatt}] \sec \chi dz \qquad (1)$$

where

z is the altitude,

 σ_{λ} are the absorption cross-sections,

 $q_{\lambda}(z)$ and $q_{\lambda}(\infty)$ are the solar irradiance at altitude z or extraterrestrial $(z - \infty)$,

n is the number of particles per volume unit, for solar zenith angles of 0° and 60° (sec χ = 1 and 2),

taking into account the values of $\sigma_{\lambda}(0_2)$ and $\sigma_{\lambda}(0_3)$ from WMO and Kockarts (1976), σ_{scatt} from Nicolet (1984) and the values of $q_{\lambda}(\infty)$ from WMO (1985) and taking into account the actual values of cross-sections corresponding to the temperatures conditions at each altitude. Stratospheric photodissociation coefficients (for altitude ranging from 15 to 50 km) calculated with the temperature dependent absorption cross-sections, are about 15% greater than those calculated with the room temperature values in the 20-35 km region, due to the increase in the absorption cross-sections in the 200 nm region. The photodissociation coefficients of CH3Br and $C_2F_4Br_2$ seem to be temperature independent. Tropospheric photodissociation coefficients for all these molecules are very low (between 10^{-8} and 10^{-11} sec⁻¹) and are reduced down to 20% of their room temperature values, using the temperature dependent cross- sections values. Therefore, the theoretical tropospheric residence times are increased, and the production of Br radicals in the troposphere by photodissociation of brominated species may be considered as negligible.

In conclusion, this work presents a new set of experimental data on the absorption cross-sections of brommocarbons in atmospheric temperature conditions and also highlights the non negligible temperature dependence for stratospheric studies.

4.1. REFERENCES

- BERG, W.W., L.E. HEIDT, W. POLLOCK, P.D. SPERRY, R.J. CICERONE, and E.S. GLADNEY, 1984, Brominated organic species in the Arctic atmosphere, Geophys. Res. Lett., 11, 429-432.
- CLASS, Th., R. KOHNLE, K., BALLSCHMITER, 1986, Chemistry of organic races in air VII : Bromo- and Bromochloromethanes in air over Atlantic Ocean, Chemosphere, 15. 429-436.

- 1988, Measurements of atmospheric Methyl bromide (CH3Br) and Bromoform (CHBr3), J. Geophys. Res., 93, 3745-3749.
- FABIAN, P., R. BORCHERS, S.A. PENKETT and N.J.D. PROSSER, 1981, Halocarbons in the stratosphere, Nature, 294, 733-735.
- stratosphere, Nature, 294, 733-735. GILLOTAY, D. and P.C. SIMON, 1988a, Ultraviolet absorption spectrum of trifluro-bromomethane, difluoro-dibromomethane and difluoro- bromo-chloromethane in the vapor phase, submitted for publication to J. Atmos. Chem.
- GILLOTAY, D. and P.C. SIMON, 1988b, Ultraviolet absorption cross-sections of methyl bromide at stratospheric temperature, Ann. Geophysicae, 6, 211-215.
- KOCKARTS, G., 1976, Absorption and photodissociation in the Schumann- Runge bands of molecular oxygen in terrestrial atmosphere, Planet. Space Sc., 24, 589-604.
- LAL, S., R. BORCHERS, P. FABIAN and B.C. KRUGER, 1985, Increasing abundance of CBrClF₂ in the atmosphere, Nature, 316, 135-136.
- MOLINA, L.T., M.J. MOLINA and F.S. ROWLAND, 1982, Ultraviolet absorption cross sections of several brominated methanes and ethanes of atmospheric interest, J. Phys. Chem., 86, 5172-5178.
- NICOLET, M., 1984, On the molecular scattering in the terrestrial atmosphere : an empirical formula for calculation in the homosphere, Planet. Space Sc., 32, 1467-1468.
- PENKETT, S.A., B.M.R. JONES, M.J. RYCROFT and D.A. SIMMONS, 1985, An interhemispheric comparison of the concentrations of bromide compounds in the atmosphere, Nature, 318, 550-553.
- PRATHER, M.J., ⁻M.B. MCELROY and S.C. WOFSY, 1984, Reductions in ozone at high concentrations of stratospheric halogens, Nature, **312**, 227-231.
- ROBBINS, D.E., 1976, Photodissociation of methyl chloride and methyl bromide in atmosphere, Geophys. Res. Lett., 3, 213-216. Erratum in Geophys. Res. Lett., 3, 757, 1976.
- RODRIGUEZ, J.M., M.K.M. KO and N.D. SZE, 1986, Chlorine chemistry in the Antarctic stratosphere : Impact of OC10 and Cl₂O₂ and implications for observations, Geophys. Res. Lett., 13, 1292-1295.
- SIMON, P.C., D. GILLOTAY, N. VANLAETHEM-MEUREE and J. WISEMBERG, 1988, Ultraviolet absorption cross-sections of chloro and chloro- fluoro-methanes at stratospheric temperatures, J. Atmos. Chem., 6, in press.
- WMO, Atmospheric ozone 1985, WMO global ozone research and monitoring project, Report 16, 1985.
- YUNG, Y.L., J.P. PINTO, R.T. WATSON, and S.P. SANDER, 1980, Atmospheric bromine and ozone perturbations in the lower stratosphere, J. Atmos. Sci., 37, 339-353.