Ultraviolet Absorption Cross-Sections of Chloro and Chlorofluoro-Methanes at Stratospheric Temperatures

P. C. SIMON, D. GILLOTAY, N. VANLAETHEM-MEUREE, and J. WISEMBERG Institut d'Aéronomie Spatiale de Belgique, 3, Avenue Circulaire, B1180 Brussels, Belgium

(Received: 7 October 1987)

Abstract. Absorption cross-sections of nine halomethanes (CCl_4 , $CHCl_3$, CH_2Cl_2 , CH_3Cl , CF_2Cl_2 , CF_3Cl_2 , C

The largest temperature effect which takes place near the absorption threshold, decreases the absorption cross-section up to 50% for highly chlorinated methanes, but is negligible for molecules highly stabilized by hydrogen and/or fluorine. Extrapolated values for temperatures of aeronomical interest are presented, as well as parametrical formulas which give absorption cross-section values for given wavelength and temperature ranges.

Key words. Chloromethanes, chlorofluoromethanes, ultraviolet absorption, photodissociation coefficients, temperature dependence.

1. Introduction

Odd chlorine (Cl, ClO, ClONO₂, HCl, HOCl, ...), which plays a key role in the budget of ozone in the stratosphere, is produced essentially by decomposition of halocarbons released in the troposphere. Organic halocarbons carbons containing hydrogen atoms such as CHCl₃, CH₂Cl₂, CH₃Cl, CHFCl₂, CHF₂Cl, may react rapidly with radicals such as OH and may thus be largely destroyed in the troposphere (Singh *et al.*, 1979). Fully halogenated compounds, such as CFCl₃, CF₂Cl₂, ..., are not subject to chemical destruction in the troposphere and, therefore, are transported in the stratosphere where they are destroyed by photodissociation (Molina and Rowland, 1974). Actually, only molecules with appreciable tropospheric residence times are subject to the diffusion up to stratospheric altitudes. When emission data are considered simultaneously, it appears that at least CF₂Cl₂, CFCl₃, CCl₄, CH₃Cl, and CHFCl₂ play a significant roles in the stratospheric chemistry (WMO, 1985; Wuebbles, 1983; Schmidt *et al.*, 1985).

Since a significant fraction of the ozone loss in the 30–50 km region is due to active chlorine resulting from the photodecomposition of these halocarbons, the absorption cross-section of these molecules has to be known with a high accuracy. Furthermore, their temperature-dependence has to be carefully measured because of the temperature condition prevailing at stratospheric altitude.

Preliminary measurements of the temperature-dependence of absorption cross-sections of chlorofluoromethanes, published by Vanlaethem-Meuree *et al.* (1978), have shown some nonnegligible disagreements in the temperature-dependence of cross-sections with existing data (Chou *et al.*, 1976, 1977, 1978; Robbins, 1976a,b,c; Robbins and Stolarski,

1976; Bass and Ledford 1976). Even at room temperature, discrepancies between some data are larger than the experimental uncertainties.

The purpose of this paper is to report new measurements of the ultraviolet absorption cross-sections of nine halomethanes, namely: CH_3Cl , CH_2Cl_2 , $CHCl_3$, CCl_4 , CF_3Cl , CF_2Cl_2 , $CFCl_3$, CHF_2Cl , and $CHFCl_2$ performed between 174 and 250 nm, at four different temperatures over the 225–295 K temperature range. This new set of data allows a reliable extrapolation down to 210 K. Taking into account the temperature dependence of the absorption cross-section and the stratospheric temperature profile, photodissociation coefficients are calculated showing a significant departure in these coefficients relative to similar calculations made for 295 K. These data will be helpful to quantitatively estimate the lifetime of these halomethanes and to perform more accurately chlorine and ozone budget evaluations in the stratosphere.

2. Experimental

Absorption cross-sections have been determined in the 200 nm wavelength range as a function of temperature, using classical single beam equipment (deuterium light source, 1 m model 225 McPherson monochromator, absorption cell, with an EMR 542 P.09.18 solar blind photomultiplier as the detector). A complete description of this experimental devise has previously been given by Wisemberg and Vanlaethem (1978) and Gillotay and Simon (1988).

Two different kinds of absorption cells were used to obtain the UV absorption spectra of the studied gases:

(1) As the condensation conditions restrict the use of fairly high gas pressures at low temperatures, a long absorption optical path is required to gain access to low absorption cross-section determination.

Most of the measurements have been performed by means of a thermostatic stainless absorption cell with a 2 m optical path. It can be evacuated down to 10^{-7} torr by an ionic pump which prevents contamination.

Temperature regulation down to 210 K is achieved by the circulation of cooled methylcyclohexane through a double jacket and thermal equilibrium is usually obtained after 3-4 hours, with a maximum temperature gradient between both ends of the cell of 2 K at 220 K.

Gas pressure is measured by three capacitance MKS-Baratron manometers, directly coupled to the absorption cell which enables the measurement of pressures ranging from 10^{-3} to 1000 torr with a precision better than 0.1%. Its decrease is followed during the cooling process. The actual gas temperature is determined by considering both the conditions prevailing at the three points of measurement in the cell and the value deduced from the pressure decrease, according to the perfect gases law. Both determinations are in close agreement, better than 2 K. Therefore, the accuracy of the final temperature determination is within 2 K over the whole temperature range.

For technical reasons, three temperatures have been selected for absorption cross-section measurements, namely around 270, 255, and 225 K.

(a) $T = 295 \text{ K}$	%	%
Optical path (200 cm \pm 0.1 cm)	0.05	
Pressure (in the range 10^3 -2 × 10^{-3} torr)	0.1	
Impurities in the sample	0.1	
Temperature (± 0.1 K at 300 K)	0.03	
Absorbance $\ln(I_0/I)$ for $\tau = 1$	2.0	
Total r.m.s. error (2σ)	±2.00	- <u>Luar</u>
(b) $T = 210 \text{ K}$		
Optical path (200 cm \pm 0.1 cm)	0.05	
Pressure (in the range $10^3 - 2 \times 10^{-3}$ torr)	0.1	
Impurities in the sample	0.1	
Temperature (± 2 K at 210 K)	1	
Cross-section dependence on temperature error	1	
Absorbance $\ln(I_0/I)$ for $\tau = 1$	2.0	
= 0.6		3.3
(min. value considered)		
Total r.m.s. error (2σ)	±2.47	±3.62

Table I. Error budget

(2) Some of the experiments were performed at room temperature in a 13.5 cm optical path absorption cell in order to gain access to the fairly high absorption cross-sections.

The agreement of the two sets of results is always within the experimental uncertainties defined below (2% at room temperature) in the overlap wavelength range.

Determination of the absorption cross-sections is based upon at least 15 sequential recordings of continuously scanned spectra of the incident and absorbed fluxes measured for identical temperature conditions, using Beer-Lambert's law.

$$I(\lambda) = I_0(\lambda) \exp(-\sigma(\lambda)nd)$$
(1)

where: $I_0(\lambda)$ and $I(\lambda)$ are, respectively, the incident and transmitted fluxes for a given wavelength, *n* is the number of molecules per volume unit, *d* is the optical path, and $\sigma(\lambda)$ is the absorption cross-section at wavelength λ . The spectral resolution is of 0.15 nm with 100 μ m slits.

In all cases, measurements were performed in a wide pressure range, for which the validity of Beer-Lambert's law was confirmed.

All samples were of analytical grade and were distilled under vacuum and thoroughly outgassed before use.

According to the error budget, presented in Table I, the accuracy on cross-section measurements is of the order of $\pm 2\%$, at the ambient temperature. At lower temperatures, the uncertainties increased from $\pm 3\%$ to $\pm 4\%$ for the absorption cross-sections values lower than 2×10^{-21} cm² molec⁻¹. Moreover, the standard deviation calculated, at each wavelength on the observed cross-sections values (at least 15 values), are lower than 2% at

Tables II-X

(a) Absorption cross-sections at 2 nm intervals for selected temperatures (295, 270, 250, 230, and 210 K)

(b) Absorption cross-sections over the spectral intervals used in atmospheric modeling calculations for selected temperatures (295, 270, 250, 230, and 210 K)

Table IIa. CH₃Cl

λ(nm)	$\sigma(\lambda) \times 10^{21} (\mathrm{cm}^2 \mathrm{molec.}^{-1})$							
	295 K	270 K	250 K	230 K	210 K			
174	1110	1110	1110	1110	1110			
176	938	938	938	938	938			
178	766	766	766	766	766			
180	607	607	607	607	607			
182	467	467	467	467	467			
184	350	350	350	350	350			
186	255	255	255	255	255			
188	182	182	182	182	182			
190	127	127	127	127	127			
192	87.2	87.2	87.2	87.2	87.2			
194	58.8	58.8	58.8	58.8	58.8			
196	40.1	40.1	40.1	40.1	40.1			
198	26.6	26.6	26.1	25.8	24.3			
200	17.6	17.3	16.9	16.3	15.1			
202	11.3	10.7	10.3	9.70	9.30			
204	7.50	6.91	6.60	6.11	5.73			
206	4.83	4.50	4.05	3.75	3.45			
208	3.18	2.85	2.57	2.35	2.12			
210	2.06	1.82	1.64	1.45	1.30			
212	1.32	1.12	1.00	0.90	0.80			
214	0.86	0.72	0.63	0.55	0.47			
216	0.55	0.44	0.38	0.33	0.27			

Table IIb. CH_3Cl (wavenumber intervals: 500 cm⁻¹)

No.	$\sigma(\lambda) \times 10^{21} \text{ (cm}^2 \text{ molec.}^{-1}\text{)}$								
	λ (nm)	295 K	270 K	250 K	230 K	210 K			
45	173.9–175.4	1057	1057	1057	1057	1057			
46	175.4-177.0	923	923	923	923	923			
47	177.0-178.6	787	787	787	787	787			
48	178.6-180.2	656	656	656	656	656			
49	180.2-181.8	536	536	536	536	536			
50	181.8-183.5	429	429	429	429	429			
51	183.5-185.2	333	333	333	333	333			
52	185.2-186.9	254	254	254	254	254			
53	186.9-188.7	188	188	188	188	188			
54	188.7-190.5	139	139	139	139	139			
55	190.5-192.3	97.8	97.8	97.8	97.8	97.8			

No.	$\sigma(\lambda) \times 10^{21} \text{ (cm}^2 \text{ molec.}^{-1}\text{)}$								
	λ (nm)	295 K	270 K	250 K	230 K	210 K			
56	192.3–194.2	69.3	69.3	69.3	69.3	69.3			
57	194.2-196.1	47.7	47.6	47.3	46.8	45.8			
58	196.1-198.0	32.5	32.2	31.7	31.2	30.2			
59	198.0-200.0	21.6	21.1	20.6	19.9	19.2			
60	200.0-202.0	14.2	13.7	13.2	12.6	12.0			
61	202.0-204.1	9.27	8.81	8.36	7.90	7.44			
62	204.1-206.2	5.91	5.50	5.14	4.77	4.43			
63	206.2-208.3	3.76	3.42	3.13	2.86	2.62			
64	208.3-210.5	2.33	2.06	1.86	1.67	1.50			
65	210.5-212.8	1.44	1.24	1.09	0.973	0.853			
66	212.8-215.0	0.874	0.726	0.634	0.555	0.474			
67	215.0-217.4	0.525	0.424	0.367	0.320	0.264			

Table IIb. (Continued)

Table IIIa. CH₂Cl₂

λ(nm)	$\sigma(\lambda) \times 10^{21} (\mathrm{cm}^2 \mathrm{molec.}^{-1})$						
	295 K	270 K	250 K	230 K	210 K		
176	1850	1850	1850	1850	1850		
178	1807	1807	1807	1807	1807		
180	1695	1695	1695	1695	1695		
182	1509	1509	1509	1509	1509		
184	1307	1307	1307	1307	1307		
186	1040	1040	1040	1040	1040		
188	799	799	799	799	799		
190	575	575	575	575	575		
192	417	417	417	409	400		
194	288	288	281	271	263		
196	197	193	186	178	171		
198	136	130	124	118	112		
200	92.0	86.5	82.5	76.2	72.2		
202	62.0	56.8	52.7	49.0	45.6		
204	42.2	38.1	34.8	31.7	29.0		
206	28.8	25.4	22.8	20.6	18.5		
208	19.5	16.8	14.8	13.1	11.8		
210	12.8	11.0	9.70	8.50	7.36		
212	8.35	7.10	6.10	5.25	4.63		
214	5.40	4.60	3.93	3.36	2.87		
216	3.55	2.97	2.53	2.15	1.84		
218	2.34	1.93	1.61	1.34	1.12		
220	1.52	1.23	1.03	0.860	0.720		

No.	λ (nm)	$\sigma(\lambda) \times 10^{21} \text{ (cm}^2 \text{ molec.}^{-1})$				
		295 K	270 K	250 K	230 K	210 K
46	175.4-177.0	1847	1847	1847	1847	1847
47	177.0-178.6	1812	1812	1812	1812	1812
48	178.6-180.2	1783	1783	1783	1783	1783
49	180.2-181.8	1652	1652	1652	1652	1652
50	181.8-183.5	1470	1470	1470	1470	1470
51	183.5-185.2	1252	1252	1252	1252	1252
52	185.2-186.9	1040	1040	1040	1040	1040
53	186.9-188.7	801	801	801	801	801
54	188.7-190.5	621	621	621	621	621
55	190.5-192.3	457	454	450	442	435
56	192.3-194.2	335	330	325	316	309
57	194.2-196.1	238	232	226	218	211
58	196.1-198.0	167	160	155	148	141
59	198.0-200.0	113	108	102	96.5	91.4
60	200.0-202.0	76.7	71.5	67.1	62.4	58.4
61	202.0-204.1	51.6	47.3	43.7	40.1	37.0
62	204.1-206.2	33.9	30.5	27.7	25.0	22.8
63	206.2-208.3	22.2	19.6	17.5	15.6	14.0
64	208.3-210.5	14.2	12.3	10.8	9.48	8.38
65	210.5-212.8	9.07	7.71	6.66	5.77	5.02
66	212.8-215.0	5.64	4.71	4.02	3.43	2.95
67	215.0-217.4	3.47	2.86	2.42	2.04	1.73
68	217.4-219.8	2.06	1.69	1.42	1.18	0.995

Table IIIb. CH_2Cl_2 (wavenumber intervals: 500 cm⁻¹)

Table IVa. CHCl₃

λ(nm)	$\sigma(\lambda) \times 10^{21} \text{ (cm}^2 \text{ molec.}^{-1})$							
	295 K	270 K	250 K	230 K	210 K			
174	4750	4750	4750	4750	4750			
176	4930	4930	4930	4930	4930			
178	4650	4650	4650	4650	4650			
180	3875	3875	3875	3875	3875			
182	3216	3216	3216	3216	3216			
184	2425	2425	2425	2425	2425			
186	1750	1750	1750	1750	1750			
188	1395	1395	1395	1395	1395			
190	1122	1122	1122	1122	1122			
192	878	878	878	878	878			
194	741	741	730	715	696			
196	618	609	593	578	556			
198	509	494	476	458	438			
200	411	390	374	355	339			
202	332	317	302	277	259			
204	265	247	228	213	198			
206	204	183	170	158	143			
208	151	134	122	110	100			
210	108	95.0	84.8	76.0	67.5			

λ(nm)	$\sigma(\lambda) \times 10^{21} \text{ (cm}^2 \text{ molec.}^{-1}\text{)}$							
	295 K	270 K	250 K	230 K	210 K			
212	77.5	66.8	58.8	51.8	45.5			
214	53.8	45.5	39.5	34.3	29.7			
216	36.5	30.3	26.4	22.9	19.3			
218	24.8	20.2	17.3	14.7	12.6			
220	16.7	13.6	11.4	9.68	8.15			
222	11.3	9.05	7.50	6.25	5.20			
224	7.50	5.95	4.94	4.10	3,40			
226	5.00	3.95	3.25	2.67	2.19			
228	3.38	2.65	2.18	1.77	1.45			
230	2.28	1.79	1.43	1.14	0.900			
232	1.52	1.11	0.896	0.711	0.566			
234	1.02	0.725	0.581	0.456	0.361			
236	0.680	0.472	0.378	0.294	0.231			
238	0.460	0.308	0.247	0.190	0.149			
240	0.310	0.202	0.162	0.124	0.096			

Table IVa. (Continued)

Table IVb. $CHCl_3$ (wavenumber intervals: 500 cm⁻¹)

No.	λ (nm)	$\sigma(\lambda) \times 10^{21}$				
		295 K	270 K	250 K	230 K	210 K
45	173.9–175.4	4850	4850	4850	4850	4850
46	175.4-177.0	4929	4929	4929	4929	4929
47	177.0-178.6	4680	4680	4680	4680	4680
48	178.6-180.2	4145	4145	4145	4145	4145
49	180.2-181.8	3500	3500	3500	3500	3500
50	181.8-183.5	2930	2930	2930	2930	2930
51	183.5-185.2	2340	2340	2340	2340	2340
52	185.2-186.9	1750	1750	1750	1750	1750
53	186.9-188.7	1470	1470	1470	1470	1470
54	188.7-190.5	1180	1180	1180	1180	1180
55	190.5-192.3	920	920	920	920	911
56	192.3-194.2	790	790	790	774	754
57	194.2-196.1	665	658	645	631	608
58	196.1-198.0	560	546	529	515	493
59	198.0-200.0	455	437	419	403	382
60	200.0-202.0	367	347	328	312	295
61	202.0-204.1	295	274	257	242	226
62	204.1-206.2	228	209	193	180	165
63	206.2-208.3	168	151	137	126	114
64	208.3-210.5	118	104	92.6	85.0	75.5
65	210.5-212.8	82.0	70.5	62.3	56.2	49.2
66	212.8-215.0	55.0	46.5	40.1	35.7	30.8
67	215.0-217.4	35.5	29.5	25.2	22.2	18.8
68	217.4-219.8	21.8	17. 9	15.1	12.9	10.9
69	219.8-222.2	13.5	10.9	9.11	7.69	6.48
70	222.2-224.7	8.35	6.64	5.51	4.59	3.84
71	224.7-227.3	5.00	3.95	3.25	2.67	2.19
72	227.3-229.9	2.95	2.29	1.87	1.50	1.25
73	229.9-232.6	1.76	1.34	1.08	0.860	0.677

λ (nm)	$\sigma(\lambda) \times 10^{21} (\mathrm{cm}^2 \mathrm{molec.}^{-1})$							
	295 K	270 K	250 K	230 K	210 K			
174	9900	9900	9900	9900	9900			
176	10100	10100	10100	10100	10100			
178	9750	9750	9750	9750	9750			
180	7200	7200	7200	7200	7200			
182	5900	5900	5900	5900	5900			
184	4400	4400	4400	4400	4400			
186	3100	3100	3100	3100	3100			
188	1980	1980	1980	1980	1980			
190	1469	1469	1469	1469	1469			
192	992	992	992	992	992			
194	767	767	767	767	767			
196	695	695	695	695	695			
198	680	680	680	680	680			
200	660	660	660	660	660			
202	638	638	638	638	638			
204	610	610	610	610	601			
206	570	570	570	561	544			
208	525	525	514	504	483			
210	469	459	446	434	415			
212	410	392	380	367	348			
214	345	327	315	295	279			
216	278	259	244	230	217			
218	221	201	189	172	163			
220	175	158	146	135	125			
222	136	120	109	98.0	90.0			
224	102	88.0	79.5	71.4	64.0			
226	76.0	64.5	57.8	50.5	44.5			
228	56.5	47.0	41.7	36.2	31.6			
230	42.8	34.9	30.4	25.7	22.7			
232	30.4	24.8	21.1	17.9	15.2			
234	22.0	17.7	14.8	12.5	10.5			
236	16.0	12.7	10.5	8.72	7.23			
238	11.6	9.06	7.43	6.10	5.00			
240	8.30	6.40	5.19	4.22	3.42			
242	5.90	4.49	3.62	2.91	2.34			
244	4.13	3.11	2.48	1.98	1.58			
246	2.90	2.17	1.72	1.36	1.08			
248	2.10	1.56	1.23	0.968	0.762			
250	1.48	1.09	0.858	0.673	0.528			

Table Va. CCl₄

No.	λ (nm)	$\sigma(\lambda) \times 10^{21} (\text{cm}^2 \text{molec.}^{-1})$					
		295 K	270 K	250 K	230 K	210 K	
45	173.9–175.4	10000	10000	10000	10000	10000	
46	175.4-177.0	10000	10000	10000	10000	10000	
47	177.0-178.6	9800	9800	9800	9800	9800	
48	178.6-180.2	8150	8150	8150	8150	8150	
49	180.2-181.8	6550	6550	6550	6550	6550	
50	181.8183.5	5350	5350	5350	5350	5350	
51	183.5-185.2	4200	4200	4200	4200	4200	
52	185.2186.9	3100	3100	3100	3100	3100	
53	186.9-188.7	1999	1999	1999	1999	1999	
54	188.7190.5	1510	1510	1510	1510	1510	
55	190.5-192.3	1076	1076	1076	1076	1076	
56	192.3-194.2	868	868	868	868	868	
57	194.2-196.1	749	749	749	749	749	
58	196.1-198.0	687	687	687	687	687	
59	198.0-200.0	670	670	670	670	670	
60	200.0-202.0	649	649	649	649	649	
61	202.0-204.1	619	619	619	619	619	
62	204.1-206.2	598	598	598	594	577	
63	206.2-208.3	548	544	537	529	513	
64	208.3-210.5	483	472	463	451	435	
65	210.5-212.8	413	397	386	371	355	
66	212.8-215.0	339	321	308	292	277	
67	215.0-217.4	270	251	238	222	209	
68	217.4-219.8	207	188	176	162	151	
69	219.8-222.2	155	138	127	115	105	
70	222.2-224.7	113	98.1	88.9	79.4	71.7	
71	224.7-227.3	77.9	66.4	59.1	51.9	46.1	
72	227.3-229.9	52.7	44.0	38.4	33.2	29.0	
73	229.9-232.6	33.4	27.2	23.4	19.8	17.0	
74	232.6-235.3	22.6	18.1	15.3	12.8	10.8	
75	235.3-238.1	14.2	11.1	9.23	7.61	6.31	
76	238.1-241.0	8.83	6.81	5.56	4.52	3.69	
7 7	241.0-243.9	5.30	4.02	3.23	2.59	2.08	
78	243.9-246.9	3.24	2.43	1.93	1.53	1.21	
79	246.9-250.0	1.93	1.43	1.13	0.886	0.696	

Table Vb. CCl_4 (wavenumber intervals: 550 cm⁻¹)

the ambient temperature. At the lowest temperature and for the lowest values of the absorption cross-section, the standard deviation is in the order of 3.5%, after the least-squares fit on the four studied temperatures.

3. Results

The numerical values of absorption cross-sections for selected wavelengths between 174 and 250 nm and wavenumber intervals of 500 cm^{-1} currently used for aeronomy modelling (Brasseur and Simon, 1981) are given, respectively, in Tables IIa–Xa and IIb–Xb. The absorption spectra are also presented in Figures 1–6.

1	1	۲
I	I	D

Table VIa. CF₃Cl

P. C. SIMON ET AL.

 $\sigma(\lambda) \times 10^{21} \, (\mathrm{cm}^2 \, \mathrm{molec.}^{-1})$

λ (nm)	$\sigma(\lambda) \times 10^{21} (\mathrm{cm}^2 \mathrm{molec.}^{-1})$	No.	λ (nm)
	295 K		
172	11.0	43	169.5-172.4
174	9.70	44	172. 4–173.9
176	8.25	45	173.9–175.4
178	6.81	46	175.4-177.0
180	5.42	47	177.0-178.6
182	4.25	48	178.6-180.2
184	3.26	49	180.2-181.8
186	2.44	50	181.8-183.5
188	1.75	51	183.5-185.2
190	1.28	52	185.2-186.9
192	0.900	53	186.9-188.7
194	0.610	54	188.7-190.5
196	0.410	55	190.5-192.3
198	0.280	56	192.3-194.2
200	0.190	57	194.2-196.1
		58	196.1-198.0
		59	198.0-200.0
		60	200.0-202.0

Table VIb. CF₃Cl (wavenumber intervals: 500 cm⁻¹

295 K

11.7 10.3 9.25 8.10 6.95 5.80 4.80 3.90 3.10 2.44 1.80 1.36 0.990 0.700

0.480 0.320 0.220

0.150

Table VIIa. CF₂Cl₂

λ (nm)	$\sigma(\lambda) \times 10^{21} \text{ (cm}^2 \text{ molec.}^{-1}\text{)}$					
	295 K	270 K	250 K	230 K	210 K	
174	1620	1620	1620	1620	1620	
176	1810	1810	1810	1810	1810	
178	1870	1870	1870	1870	1870	
180	1790	1790	1790	1790	1790	
182	1600	1600	1600	1600	1600	
184	1340	1340	1340	1340	1340	
186	1070	1070	1070	1070	1070	
188	828	828	815	807	793	
190	632	600	576	552	529	
192	455	419	397	377	358	
194	315	286	265	246	228	
196	211	188	172	157	144	
198	139	121	109	98.1	88.2	
200	88.9	75.5	66.3	58.2	51.1	
202	55.1	45.9	39.7	34.3	29.7	
204	34.4	27.7	23.2	20.0	16.9	
206	20.9	16.8	14.1	11.8	9.89	
208	12.7	9.94	8.19	6.75	5.57	
210	7.59	5.90	4.84	3.96	3.24	
212	4.54	3.47	2.80	2.26	1.83	
214	2.71	2.05	1.65	1.32	1.06	
216	1.58	1.17	0.926	0.731	0.577	
218	1.00	0.720	0.550	0.420	0.330	
220	0.600	0.420	0.320	0.240	0.180	
222	0.360	0.252	0.189	0.140	0.105	
224	0.220	0.152	0.112	0.081	0.060	
226	0.130	0.092	0.067	0.047	0.034	

No.	λ (nm)	$\sigma(\lambda) \times 10^{21}$	(cm ² molec	1)		
		295 K	270 K	250 K	230 K	210 K
45	173.9-175.4	1700	1700	1700	1700	1700
46	175.4-177.0	1822	1822	1822	1822	1822
47	177.0-178.6	1860	1860	1860	1860	1860
48	178.6-180.2	1817	1817	1817	1817	1817
49	180.2-181.8	1700	1700	1700	1700	1700
50	181.8-183.5	1528	1528	1528	1528	1528
51	183.5-185.2	1310	1310	1310	1310	1310
52	185.2-186.9	1070	1070	1070	1070	1070
53	186.9-188.7	847	847	827	816	803
54	188.7-190.5	683	642	621	600	580
55	190.5-192.3	502	470	446	424	403
56	192.3-194.2	365	335	313	293	274
57	194.2-196.1	253	227	209	193	177
58	196.1198.0	171	150	136	123	112
59	198.0-200.0	111	95.2	84.6	75.4	67.1
60	200.0-202.0	70.2	59.1	51.6	45.2	39.6
61	202.0-204.1	43.6	36.0	31.0	26.7	23.0
62	104.1-206.2	26.1	21.1	17.9	15.2	12.8
63	206.1-208.3	15.5	12.3	10.2	8.53	7.11
64	208.3-210.5	8.84	6.88	5.64	4.63	3.81
65	210.5-212.8	5.03	3.85	3.10	2.51	2.03
66	212.8-215.0	2.79	2.09	1.66	1.32	1.05
67	215.0-217.4	1.55	1.14	0.890	0.694	0.545
68	217.4-219.8	0.846	0.606	0.467	0.357	0.275
69	219.8-222.2	0.467	0.326	0.247	0.184	0.139
70	222.2-224.7	0.262	0.177	0.134	0.0954	0.0704
71	224.7-227.3	0.143	0.0927	0.0672	0.0471	0.0337

Table VIIb. CF_2Cl_2 (wavenumber intervals: 500 cm⁻¹)

3.1. AMBIENT TEMPERATURE (295 K)

Cross-section measurements have been extended to lower values ($< 2 \times 10^{-21}$ cm² molec.⁻¹) than those currently available in the literature.

Chloro- and chlorofluoromethanes display continuous absorption in the 174–250 nm region, with absorption cross sections ranging from 10^{-17} to 10^{-22} cm² molec.⁻¹.

The progressive substitution of H atoms of the basic methane by Cl atoms leads to increased absorption and to an extended absorption region towards higher wavelengths, while, to the contrary, the presence of F atoms tends to stabilize the molecule whose absorption spectrum is depressed and shifted towards lower wavelengths.

The results presented in Table II–X and Figures 1–3 are, within the quoted accuracy, in close agreement with those generally used in modelling calculations (Codata panel, 1982; DeMore *et al.*, 1985) and confirm the previous published values for CH₃Cl (Robbins, 1976, a,b), CHCl₃ (Robbins, 1976c), CCl₄ (Rowland and Molina, 1975; Robbins, 1976c), CF₂Cl₂ and CFCl₃ (Rowland and Molina, 1975; Robbins, 1976c; Robbins and Stolarski, 1976; Bass and Ledford, 1976; Chou *et al.*, 1977), and for CHF₂Cl and CHFCl₂ (Robbins, 1976c; Robbins and Stolarski, 1976c; Robbins and Stolarski, 1976; Chou *et al.*, 1976) within the experimental errors.

λ (nm)	$\sigma(\lambda) \times 10^{21} (\mathrm{cm}^2 \mathrm{molec.}^{-1})$						
	295 K	270 K	250 K	230 K	210 K		
174	3130	3130	3130	3130	3130		
176	3240	3240	3240	3240	3240		
178	3235	3235	3235	3235	3235		
180	3140	3140	3140	3140	3140		
182	2960	2960	2960	2960	2960		
184	2720	2720	2720	2720	2720		
186	2430	2385	2360	2335	2300		
188	2130	2090	2070	2045	2020		
190	1790	1760	1745	1725	1705		
192	1540	1495	1465	1440	1412		
194	1243	1218	1198	1174	1151		
196	991	959	945	925	905		
198	780	762	747	733	718		
200	645	622	600	579	558		
202	500	476	454	441	420		
204	374	348	330	316	300		
206	280	256	241	225	216		
208	197	182	170	159	149		
210	148	133	120	110	99.4		
212	105	91.8	82.6	76.7	66.3		
214	75.6	64.1	56.2	49.2	43.1		
216	53.8	44.3	37.9	32.4	27.8		
218	37.9	30.3	25.3	21.2	17.7		
220	26.4	20.5	16.8	13.8	11.3		
222	18.2	13.8	11.1	8.90	7.14		
224	12.4	9.25	7.30	5.76	4.54		
226	8.42	6.16	4.79	3.73	2.91		
228	5.65	4.08	3.15	2.43	1.88		
230	3.75	2.70	2.08	1.60	1.23		

Table VIIIa. CFCl₃

Disagreements of between 20 to 30% at some wavelengths are clearly seen from Figure 2, for CF_2Cl_2 between 204 and 210 nm and from Figure 4 for CHF_2Cl between 198 and 204 nm.

In the case of methylene chloride (CH_2Cl_2) , if one expects the data of Gordus and Bernstein (1954) limited to a narrow wavelength range (205–220 nm), the only available data are the values published by Hubrich and Stuhl (1980) which are, on average, 10% higher than those reported here.

Values obtained in this work for CF_3Cl are significantly lower in the region of weak absorption (up to 30% depending of the wavelength) than the ones obtained by Chou *et al.* (1978) (not plotted on the figure) with a 10 cm absorption cell.

It should be pointed out that the use of a 2 m absorption cell allows a more accurate determination, especially in the ranges corresponding to low absorption.

With the assumption, in the first approximation, of an exponential decrease of absorption cross-sections with the wavelength in this low absorption region, the results presented here substantiate the hypothesis according to which tropospheric photodissociation is

No.	λ (nm)	$\sigma(\lambda) \times 10^{21}$	(cm ² molec.	-1)		- <u>-</u>
		295 K	270 K	250 K	230 K	210 K
45	173.9–175.4	3180	3180	3180	3180	3180
46	175.4-177.0	3240	3240	3240	3240	3240
47	177.0-178.6	3238	3238	3238	3238	3238
48	178.6-180.2	3160	3160	3160	3160	3160
49	180.2-181.8	3050	3050	3050	3050	3050
50	181.8-183.5	2880	2880	2880	2880	2880
51	183.5-185-2	2670	2670	2670	2670	2670
52	185.2-186.9	2430	2385	2360	2335	2300
53	186.9-188.7	2155	2123	2114	2097	2079
54	188.7-190.5	1894	1871	1858	1843	1827
55	190.5-192.3	1612	1590	1577	1563	1548
56	192.3-194.2	1360	1339	1325	1312	1296
57	194.2-196.1	1118	1097	1081	1068	1052
58	196.1-198.0	905	882	865	851	834
59	198.0-200.0	712	689	671	656	638
60	200.0-202.0	552	528	510	494	477
61	202.0-204.1	422	398	380	365	348
62	204.1-206.2	313	291	274	260	244
63	206.2-208.3	229	209	194	181	167
64	208.3-210.5	163	145	132	121	110
65	210.5-212.8	114	99.3	88.7	79.7	71.0
66	212.8-215.0	77.6	65.7	57.4	50.5	44.0
67	215.0-217.4	52.1	42.9	36.6	31.4	26.8
68	217.4-219.8	34.0	27.1	22.6	18.9	15.7
69	219.8-222.2	21.8	16.9	13.8	11.3	9.15
70	222.2-224.7	13.9	10.5	8.33	6.66	5.30
71	224.7-227.3	8.42	6.16	4.79	3.73	2.91
72	227.3-229.9	5.00	3.60	2.77	2.12	1.64

Table VIIIb. CFCl₃ (wavenumber intervals: 500 cm⁻¹)

Table IXa. CHF₂Cl

λ (nm)	$\sigma(\lambda) \times 10^{21} (\mathrm{cm}^2 \mathrm{molec.}^{-1})$					
	295 K	270 K	250 K	230 K	210 K	
174	57.2	57.2	57.2	57.2	57.2	
176	40.4	40.4	40.4	40.4	40.4	
178	27.6	27.6	27.6	27.6	27.6	
180	19.1	19.1	19.1	19.1	19.1	
182	12.8	12.8	12.8	12.8	12.8	
184	8.42	8.42	8.42	8.42	8.42	
186	5.76	5.76	5.76	5.76	5.76	
188	3.72	3.72	3.72	3.72	3.72	
190	2.45	2.45	2.45	2.45	2.42	
192	1.56	1.56	1.56	1.52	1.48	
194	1.03	1.02	0.99	0.96	0.93	
196	0.72	0.69	0.67	0.64	0.62	
198	0.48	0.45	0.43	0.41	0.39	
200	0.32	0.29	0.278	0.259	0.246	
202	0.220	0.192	0.184	0.169	0.159	
204	0.142	0.121	0.114	0.104	0.096	

No.	λ (nm)	$\sigma(\lambda) \times 10^{21} (\mathrm{cm}^2 \mathrm{molec.}^{-1})$				
		295 K	270 K	250 K	230 K	210 K
45	173.9–175.4	51.7	51.7	51.7	51.7	51.7
46	175.4-177.0	38.0	38.0	38.0	38.0	38.0
47	177.0-178.6	28.8	28.8	28.8	28.8	28.8
48	178.6-180.2	21.2	21.2	21.2	21.2	21.2
49	180.2-181.8	15.5	15.5	15.5	15.5	15.5
50	181.8-183.5	11.3	11.3	11.3	11.3	11.3
51	183.5 -185.2	8.03	8.03	8.03	8.03	8.03
52	185.2-186.9	5.65	5.65	5.65	5.65	5.65
53	186.9188.7	3.88	3.88	3.88	3.88	3.88
54	188.7-190.5	2.72	2.72	2.72	2.72	2.72
55	190.5-192.3	1.83	1.82	1.80	1.77	1.72
56	192.3-194.2	1.26	1.24	1.22	1.19	1.15
57	194.2-196.1	0.850	0.825	0.806	0.778	0.747
58	196.1-198.0	0.576	0.548	0.532	0.508	0.484
59	198.0200.0	0.385	0.357	0.344	0.324	0.307
60	200.0-202.0	0.259	0.233	0.223	0.207	0.194
61	202.0-204.1	0.177	0.153	0.144	0.132	0.123

Table IXb. CHF_2Cl (wavenumber intervals: 500 cm⁻¹)

Table Xa. CHFCl₂

λ(nm)	$\sigma(\lambda) \times 10^{21} (\mathrm{cm}^2 \mathrm{molec.}^{-1})$					
	295 K	270 K	250 K	230 K	210 K	
174	1660	1660	1660	1660	1660	
176	1645	1645	1645	1645	1645	
178	1550	1550	1550	1550	1550	
180	1380	1380	1380	1380	1380	
182	1160	1160	1160	1160	1160	
184	924	924	924	924	924	
186	715	715	715	715	715	
188	532	532	529	525	520	
190	384	381	376	371	365	
192	269	264	259	254	247	
194	184	179	173	168	162	
196	123	118	113	109	104	
198	81.0	76.2	72.4	68.9	65.0	
200	52.4	48.5	45.6	42.9	39.9	
202	33.5	30.5	28.3	26.3	24.2	
204	21.2	19.0	17.4	15.9	14.5	
206	13.4	11.7	10.6	9.61	8.67	
208	8.36	7.20	6.45	5.78	5.16	
210	5.22	4.43	3.92	3.47	3.08	
212	3.25	2.72	2.39	2.10	1.84	
214	2.03	1.68	1.46	1.27	1.11	
216	1.27	1.04	0.904	0.782	0.681	
218	0.797	0.654	0.564	0.487	0.423	
220	0.503	0.414	0.357	0.308	0.268	
222	0.319	0.266	0.229	0.199	0.174	

No.	λ (nm)	$\sigma(\lambda) \times 10^{21}$	(cm ² molec	1)		••••• ₂₇ , • • • •	
		295 K	270 K	250 K	230 K	210 K	
45	173.9–175.4	1660	1660	1660	1660	1660	
46	175.4-177.0	1640	1640	1640	1640	1640	
47	177.0-178.6	1565	1565	1565	1565	1565	
48	178.6-120.2	1435	1435	1435	1435	1435	
49	180.2-181.8	1270	1270	1270	1270	1270	
50	181.8-183.5	1090	1090	1090	1090	1090	
51	183.5-185.2	896	896	896	896	896	
52	185.2-186.9	715	715	715	715	715	
53	186.9-188.7	550	548	544	540	535	
54	188.7-190.5	419	415	410	405	398	
55	190.5-192.3	301	296	290	285	278	
56	192.3-194.2	215	210	204	199	192	
57	194.2-196.1	148	143	137	133	127	
58	196.1-198.0	100	95.1	90.8	86.9	82.5	
59	198.0-200.0	65.2	61.0	57.6	54.5	51.2	
60	200.0-202.0	41.9	38.6	36.0	33.7	31.2	
61	202.0-204.1	26.7	24.1	22.2	20.5	18.8	
62	204.1-206.2	16.4	14.6	13.3	12.1	11.0	
63	206.2-208.3	10.1	8.75	7.88	7.09	6.35	
64	208.3-210.5	6.01	5.12	4.55	4.04	3.59	
65	210.5-212.8	3.58	3.00	2.64	2.31	2.04	
66	212.8-215.0	2.08	1.72	1.50	1.30	1.14	
67	215.0-217.4	1.21	0.995	0.860	0.744	0.647	
68	217.4-219.8	0.695	0.569	0.490	0.423	0.368	

Table Xb. $CHFCl_2$ (wavenumber intervals: 500 cm⁻¹)

Fig. 1. Ultraviolet absorption cross-sections of CH_3Cl , CH_2Cl_2 , $CHCl_3$, and CCl_4 with respect to wavelength at 295 K.

Fig. 2. Ultraviolet absorption cross-sections of CF_3Cl , CF_2Cl_2 , $CFCl_3$, and CCl_4 with respect to wavelength at 295 K

Fig. 3. Ultraviolet absorption cross-sections of CF_3Cl , CHF_2Cl , and $CHFCl_2$ with respect to wavelength at 295 K.

negligible compared to the stratospheric contribution; even in the case of the most absorbing compound (CCl₄), the absorption cross-section does not exceed 10^{-26} cm² molec.⁻¹ in the 300 nm region (Rebbert and Ausloos, 1976).

3.2. LOW TEMPERATURE (225-270 K)

For each compound, absorption cross-sections have been measured for different temperatures in the largest range afforded by vapor pressure conditions which limit the maximum working pressure. The actual experimental conditions are summarized in Table XI.

As shown in Figures 4–6, absorption cross-sections decrease with temperature by a factor which depends on both the wavelength and the chemical composition of the compound. This effect is most significant at low temperatures and in spectral regions of low absorptions. The temperature dependence is more important in the case of highly chlorinated substances, but vanishes progressively in the region of higher absorptions. Temperature effect, if any, was too small to be detected in our experimental conditions in the case of CF_3Cl .

For all compounds, the relationship between the absorption cross-sections and the temperature for a given wavelength is characterized by an exponential decrease depending upon wavelength and temperature values (295, 270, 255, and 255 K). Consequently, extrapolation based on four temperatures well distributed within the temperature range, can easily be made down to 210 K within the accuracy range defined above.

Numerical values are presented in Tables II-X for selected temperatures (270, 250, 230, 210 K) which cover the usual stratospheric conditions.

Similar measurements have previously been made only at two temperatures, 296 and 223 K, in the particular case of CF_2Cl_2 and $CFCl_3$, by Bass and Ledford (1976) who used optical paths up to 10 m and by Chou *et al.* (1977) with a 10 cm absorption cell at several temperatures between 212 and 296 K. Comparison with the available data is given on Figures 7, 8, and 9.

For CF_2Cl_2 , values reported in this work confirm the previous results of Bass and Ledford (1976), down to 215 nm. The results published by Chou *et al.* (1977), give systematically higher values than those reported by Bass and Ledford and in this work. At 220 nm

	Temperature range (K)	Max. working pressure ^a (torr)	Wavelength range showing T (dependence) (nm)
CH ₃ Cl	295–225	20	198–216
CH ₂ Cl ₂	295-225	3	192-220
CHCl,	295-230	2	194-230
CCl₄	295-225	4	204-250
CF ₃ Cl	295-225	700	_
CF,Cl,	295-225	25	188-220
CFCl ₃	295-225	5	186-230
CHF ₂ Cl	295-225	40	192-204
CHFCl ₂	295–225	7	188-222

Table XI. Experimental conditions for the measurement of absorption crosssections at low temperatures

^a At the lowest working temperature.

Fig. 4. Ultraviolet absorption cross-sections of CH₃Cl, CH₂Cl₂, CHCl₃, and CCl₄ versus wavelength as a function of temperature. 295 K: ——, 250 K: –––, 210 K:

Fig. 6. Ultraviolet absorption cross-sections of CHF₂Cl and CHFCl₂ versus wavelength as a function of temperature. 295 K: ----, 250 K: ----, 210 K:

Fig. 7. Absorption cross-sections of CF₂Cl₂ versus temperature at three wavelengths (210, 214, and 220 nm).

Fig. 8. Absorption cross-sections of CFCl₃ versus temperature at three wavelengths (210, 214 and 220 nm).

where the absorption cross-sections are below 10^{-21} cm² molec.⁻¹, the agreement between Bass and Ledford and Chou *et al.* seems better, but both give higher values and, consequently, a less pronounced temperature dependence. Actually, this wavelength represents the lower limit in the measurements given by both authors.

A similar conclusion can be drawn from Figure 8 giving the comparison between measurements performed for CFCl₃ and can be extended down to 200 nm.

Absorption cross-sections for CH₃Cl, CFCl₃, CF₂Cl₂, CHF₂Cl, and CHFCl₂ have also been published by Hubrich *et al.* (1977) and Hubrich and Stuhl (1980) for only one low temperature (208 K). Their results confirm qualitatively the general conclusions mentioned above and are in fairly good agreement for CF₂Cl₂ between 190 and 205 nm (within the experimental accuracy of 4%) but diverge from about -5% at 200 nm up to $\pm 40\%$ at 230 nm for CFCl₃.

For the other compounds, differences of more than 20% are observed with their values, even at room temperature.

Discrepancies can be explained by a critical analysis of the experimental conditions reported by Hubrich *et al.* (1977) and Hubrich and Stuhl (1980) which reveals that some measurements have been performed in less favorable conditions, namely transmitted fluxes lower than 5% or higher than 95%, leading to larger uncertainties than those reported in this work for which experimental measurements for transmission below 10% and above 85% have been eliminated in order to stay in a range where the Beer-Lambert law is applicable within the quoted accuracy.

As explained above, the absorption cross-sections can be represented by an empirical function of temperature for each wavelength, according to the following expression

$$\log 10 \,\sigma(\lambda) = A(\lambda) + B(\lambda) \times T,\tag{2}$$

where the parameters A and B were determined by a polynomial fitting of the available

RELATIVE ABSORPTION CROSS-SECTION : σ_T / σ_{295}

Fig. 9. Relative absorption cross-sections $\sigma(T)/\sigma(295 \text{ K})$ as a function of wavelength for the eight chlorofluoromethanes showing a temperature dependence. -*-: this work (T = 270 K, 250 K, 230 K and 210 K), \triangle : Bass and Ledford (1976) (T = 223 K), \bigcirc : Hubrich *et al.* (1977) (T = 208 K). Note: values from Chou *et al.* (1978) are not plotted on this figure for sake of clarity.

CH₃Cl: $A_0 = -299.80$ $B_0 = -7.1727$ $A_1 = 5.1047$ $B_1 = 1.4837 \ 10^{-1}$ $A_2 = -3.3630 \ 10^{-2}$ $B_2 = -1.1463 \ 10^{-3}$ $A_3 = 9.5805 \ 10^{-5}$ $B_3 = 3.9188 \ 10^{-6}$ $A_4 = -1.0135 \ 10^{-7}$ $B_4 = -4.9994 \ 10^{-9}$ T range: 210-300 K λ range: 174-216 nm CH₂Cl₂: $A_0 = -1431.8$ $B_0 = -3.1171$ $A_1 = 27.395$ $B_1 = 6.7874 \ 10^{-2}$ $A_2 = -1.9807 \ 10^{-1}$ $B_2 = -5.5000 \ 10^{-4}$ $A_3 = 6.3468 \ 10^{-4}$ $B_3 = 1.9649 \ 10^{-6}$ $A_4 = -7.6298 \ 10^{-7}$ $B_4 = -2.6101 \ 10^{-9}$ T range: 210-300 K λ range: 176-220 nm CHCl₃: $A_0 = 269.80$ $B_0 = 3.7973$ $A_1 = -6.0908$ $B_1 = -7.0913 \ 10^{-2}$ $A_2 = 4.7830 \ 10^{-2}$ $B_2 = 4.9397 \ 10^{-4}$ $A_3 = -1.6427 \ 10^{-4}$ $B_3 = -1.5226 \ 10^{-6}$ $A_4 = 2.0682 \ 10^{-7}$ $B_4 = 1.7555 \ 10^{-9}$ T range: 210-300 K λ range: 190-240 nm CCl₄: $A_0 = -37.104$ $B_0 = 1.0739$ $A_1 = -5.8218 \ 10^{-1}$ $B_1 = -1.6275 \ 10^{-2}$ $A_2 = 9.9974 \ 10^{-3}$ $B_2 = 8.8141 \ 10^{-5}$ $A_3 = -4.6765 \ 10^{-5}$ $B_3 = -1.9811 \ 10^{-7}$ $A_4 = 6.8501 \ 10^{-8}$ $B_4 = 1.5022 \ 10^{-10}$ T range: 210-300 K λ range: 194-250 nm CF₃Cl: $A_0 = -155.88$ $B_0 = 0$ $A_1 = 2.0993$ $B_1 = 0$ $A_2 = -1.0486 \ 10^{-2}$ $B_2 = 0$ $A_3 = 1.6718 \ 10^{-5}$ $B_{3} = 0$ T range: 210-300 K λ range: 172-220 nm

 $B_0 = 6.1648$

 $B_1 = -1.2093 \ 10^{-1}$

 $B_3 = -2.8743 \ 10^{-6}$

 $B_2 = 8.8587 \ 10^{-4}$

 $B_4 = 3.4904 \ 10^{-9}$

Table XII. Parameters A and B for polynomial function (see formula (3) in the text)

 $A_3 = 2.4091 \ 10^{-4}$ $A_4 = -2.6113 \ 10^{-7}$ *T* range: 210–300 K λ range: 174–226 nm

 $A_2 = -8.2865 \ 10^{-2}$

 CF_2Cl_2 : $A_0 = -711.02$

 $A_1 = 12.490$

$CFCl_3:$ $A_1 = -84.611$ $A_1 = 7.9551 \ 10^{-1}$ $A_2 = -2.0550 \ 10^{-3}$ $A_3 = -4.4812 \ 10^{-6}$ $A_4 = 1.5838 \ 10^{-8}$	$B_0 = -5.7912$ $B_1 = 1.1689 \ 10^{-1}$ $B_2 = -8.8069 \ 10^{-4}$ $B_3 = 2.9335 \ 10^{-6}$ $B_4 = -3.6421 \ 10^{-9}$
T range: 210–300 K λ range: 174–230 nm	
$CHF_2Cl:$ $A_0 = -106.029$ $A_1 = 1.5038$ $A_2 = -8.2476 \ 10^{-3}$ $A_3 = 1.4206 \ 10^{-5}$ T range: 210-300 K	$B_0 = -1.3399 \ 10^{-1}$ $B_1 = 2.7405 \ 10^{-3}$ $B_2 = -1.8028 \ 10^{-5}$ $B_3 = 3.8504 \ 10^{-8}$
λ range: 174-204 nm $CHFCl_2$: $A_0 = -514.56$ $A_1 = 8.7940$ $A_2 = -5.6840 \ 10^{-2}$ $A_3 = 1.5894 \ 10^{-4}$ $A_4 = -1.6345 \ 10^{-7}$	$B_0 = -3.0577$ $B_1 = 6.6539 \ 10^{-2}$ $B_2 = -5.3964 \ 10^{-4}$ $B_3 = 1.9322 \ 10^{-6}$ $B_4 = -2.5754 \ 10^{-9}$
T range: 210–300 K λ range: 174–222 nm	

Table XII. (Continued)

experimental data with respect to temperature and wavelength by means of a least-squares fit algorithm developed by The Math Works Inc. (PC. MATLAB) to obtain the following polynomial expression

 $\log_{10}\sigma(\lambda, T) = A_0 + A_1\lambda + \dots + A_n\lambda^n + (T273) \times (B_0 + B_1\lambda + \dots + B_n\lambda^n).$ (3)

The computed values of the A and B parameters are given in Table XII.

The computed values of absorptions cross-sections calculated with expression (3) represent all the experimental data with differences lower than $\pm 4\%$.

4. Discussion

As discussed by Majer and Simons (1964) and Sandorfy (1976), the continuous absorption of chloro- and chlorofluoromethanes in the 200 nm region corresponds to the less energetic band of their electronic spectrum. It is due to the existence of a $(C-Cl)^* \leftarrow Cl$ transition involving excitation to a repulsive electronic state (C-Cl) antibonding). Substitution of hydrogen atoms in the basic hydrocarbon entity by chlorine atoms leads to an increased absorption and a red shift of the average wavelength absorption range, while fluorine atoms play an opposite role and stabilize the molecule.

Unfortunately, the complexity of the spectrum features, especially in the case of polychloro-compounds, makes a theoretical analysis of temperature dependence of their absorption cross-sections very difficult. Relative values of absorption cross-sections $\sigma(T)/\sigma(295)$ versus wavelength relationships, for a given temperature, display very similar features for all highly chlorinated compounds (CH₂Cl₂, CHFCl₂, CHCl₃, CFCl₃, CCl₄) while a greater specificity with the chemical composition is observed in the case of CH₃Cl, CHF₂Cl, CF₃Cl, and CF₂Cl₂ (Figure 9).

It is currently admitted in the wavelength and pressures ranges of stratospheric interest, that the most important process for the photodissociation of all the halocarbons is the release of one Cl atom with a unitary quantum yield, according to the general scheme

$$\mathrm{RCl}_x \to \mathrm{RCl}_{x-1} + \mathrm{Cl} \tag{4}$$

The immediate reaction of RCl_{x-1} with atmospheric O₂ releases another Cl atom, leaving RCl_{x-2} which, in turn, can be subject to photolysis.

The ultimate fate of such radicals in stratospheric conditions ought to be considered in detail in order to define the production of CIO radicals due to the photodissociation of each halocarbons.

Photodissociation coefficients J for a given altitude z, zenith angle x, and wavelength interval have been computed according to the relations

$$J^{z} = \sigma_{\lambda}q_{\lambda}(z),$$

$$q_{\lambda}(z) = q_{\lambda}(\infty) e^{-\tau_{\lambda}(z)}$$

$$\tau_{\lambda}(z) = \int_{z}^{\infty} [n(O_{2})\sigma(O_{2}) + n(O_{3})\sigma(O_{3}) + n(\operatorname{air})\sigma_{\operatorname{scatt.}}] \sec \chi \, \mathrm{d}z,$$

where σ is the absorption cross-section, $q_{\lambda}(z)$ and $q_{\lambda}(\infty)$ are the solar irradiance at altitude z or extraterrestrial $(z = \infty)$, and n is the number of particles per volume unit, for solar zenith angles of 0° and 60° (sec $\chi = 1$ and 2), taking the values of $\sigma(O_2)$, $\sigma(O_3)$ from WMO (1985) and Kockarts (1976), of σ_{scatt} from Nicolet (1984) and the values of $q(\infty)$ from WMO (1985), and taking into account the actual values of the cross-sections which correspond to the temperature conditions prevailing at a definite altitude (Tables XIII and XIV, Figures 10 and 11).

A comparison of either temperature-dependent or independent photodissociation coefficients for different stratospheric altitudes (15 to 50 km) is presented in Table XIV, where relative photodissociation coefficients J(T)/J(295) are given for all studied compounds. Obviously, the effect is maximum at low altitudes and gradually decreases, following the temperature profile in the stratosphere.

Table XIII. Temperature model

Altitude (km)	Temperature (K)
15	217
20	217
25	222
30	227
35	237
40	251
45	265
50	271

Z (km)	$\sec \chi = 1$		$J_{\rm rel}$	$\sec \chi = 2$		$J_{\rm rel}$
	$\frac{J(s^{-1})}{\sigma (295 \text{ K})^{a}}$	$J(s^{-1})$ $\sigma = f(T)$	_	$\frac{J(s^{-1})}{\sigma (295 \text{ K})^{a}}$	$J(s^{-1})$ $\sigma = f(T)$	-
15	1.063 10-10	7.837 10-11	0.737	2.686 10-13	2.003 10-13	0.746
20	1.412 10-9	1.094 10 ⁻⁹	0.775	2.548 10-11	1.932 10-11	0.758
25	9.471 10 ⁻⁹	7.895 10-9	0.834	6.526 10 ⁻¹⁰	5.342 10 ⁻¹⁰	0.818
30	3.917 10 ⁻⁸	3.414 10 ⁻⁸	0.872	7.206 10 ⁻⁹	6.095 10 ⁻⁹	0.846
35	1.095 10-7	9.982 10 ⁻⁸	0.912	3.962 10-8	3.527 10-8	0.890
40	2.196 10 ⁻⁷	2.075 10-7	0.945	1.219 10-7	1.134 10 ⁻⁷	0.930
45	3.346 10-7	3.244 10-7	0.969	2.277 10-7	2.188 10-7	0.961
50	4.444 10 ⁻⁷	4.354 10 ⁻⁷	0.980	3.314 10-7	3.230 10-7	0.975
CH ₂ Cl ₂ :						
15	6.225 10-10	4.134 10-10	0.644	1.564 10-12	1.049 10-12	0.671
20	8.080 10-9	5.620 10 ⁻⁹	0.696	1.472 10 ⁻¹⁰	1.003 10-10	0.681
25	5.269 10-8	3.945 10-8	0.749	3.694 10 ⁻⁹	2.680 10-9	0.725
30	2.121 10-7	1.688 10-7	0.796	3.988 10-8	3.068 10-8	0.769
35	5.784 10 ⁻⁷	4.899 10 ⁻⁷	0.846	2.146 10-7	1.766 10 ⁻⁷	0.823
40	1.131 10-6	1.014 10-6	0.896	6.474 10 ⁻⁷	5.680 10 ⁻⁷	0.877
45	1.673 10-6	1.569 10-6	0.938	1.180 10-6	$1.091 10^{-6}$	0.925
50	2.149 10 ⁻⁶	$2.055 \ 10^{-6}$	0.956	1.665 10-6	1.577 10 ⁻⁶	0.947
CHCL:						
15	4.521 10 ⁻⁹	3.179 10-9	0.701	1.117 10-11	7.948 10-12	0.712
20	5.325 10-8	3.838 10-8	0.721	1.017 10-9	7.298 10-10	0.718
25	$3.062 \ 10^{-7}$	2-318 10-7	0.757	$2.323 \ 10^{-8}$	1.741 10-8	0.749
30	1.0 9 4 10 ⁻⁶	8.601 10-7	0.786	2.264 10-7	1.761 10-7	0.778
35	$2.704 \ 10^{-6}$	$2.222 \ 10^{-6}$	0.822	1.108 10 ⁻⁶	9.024 10 ⁻⁷	0.814
40	4.921 10 ⁻⁶	4.261 10-6	0.866	3.107 10-6	2.657 10-6	0.855
45	6.773 10 ⁻⁶	6.132 10 ⁻⁶	0.905	5.294 10 ⁻⁶	4.755 10-6	0.898
50	8.050 10-6	7.457 10 ⁻⁶	0.926	6.878 10 ⁻⁶	$6.327 \ 10^{-6}$	0.920
CCl₄:						
15	1.490 10-8	1.387 10 ⁻⁸	0.930	3.381 10-11	3.200 10-11	0.946
20	1.630 10-7	1.523 10-7	0.934	3.020 10-9	2.857 10 ⁻⁹	0.946
25	8.752 10-7	8.206 10-7	0.938	6.520 10 ⁻⁸	6.194 10 ⁻⁸	0.950
30	3.075 10 ⁻⁶	2.870 10 ⁻⁶	0.933	6.169 10 ⁻⁷	5.850 10-7	0.948
35	7.950 10 ⁻⁶	7.368 10-6	0.927	3.121 10-6	2.942 10 ⁻⁶	0.943
40	1. 593 10 ⁻⁵	1.471 10-5	0.924	9.748 10 ⁻⁶	9.121 10-6	0.936
45	2.331 10-5	2-181 10-5	0.936	1.835 10-5	1.725 10-5	0.940
50	2.774 10-5	2.618 10 ⁻⁵	0.944	2.454 10 ⁻⁵	2.316 10 ⁻⁵	0.944
CF ₃ Cl:						
15	4.579 10 ⁻¹⁴			$6.410\ 10^{-18}$		
20	3.380 10-12			1.976 10-14		
25	4.341 10-11			1.892 10 ⁻¹²		
30	$2.385 \ 10^{-10}$			3.462 10-11		
35	$7.700\ 10^{-10}$			$2.412\ 10^{-10}$		
40	1.675 10-9			$8.444\ 10^{-10}$		
45	2.690 10-9			1.717 10-9		
50	3.701 10-9			2.647 10 ⁻⁹		

Table XIV. Photodissociation coefficients versus altitude

$\overline{Z(\mathrm{km})}$	$\sec \chi = 1$		J _{rel}	$\sec \chi = 2$		J _{rel}
	$\frac{J(s^{-1})}{\sigma (295 \text{ K})^a}$	$J(s^{-1})$ $\sigma = f(T)$	_	$\frac{J(s^{-1})}{\sigma (295 \text{ K})^{a}}$	$J(s^{-1})$ $\sigma = f(T)$	-
$\overline{CF_2Cl_2}$:						
15	4.447 10 ⁻¹⁰	2.253 10 ⁻¹⁰	0.503	1.146 10 ⁻¹²	5.789 10 ⁻¹³	0.505
20	6.238 10 ⁻⁹	3.345 10-9	0.536	1.105 10 ⁻¹⁰	5.704 10-11	0.516
25	4.385 10 ⁻⁸	2.628 10 ⁻⁸	0.599	2.946 10 ⁻⁹	1.674 10 ⁻⁹	0.568
30	1.867 10 ⁻⁷	1.235 10-7	0.662	3.364 10 ⁻⁸	$2.101 \ 10^{-8}$	0.625
35	5.297 10 ⁻⁷	3.909 10-7	0.738	1.889 10 ⁻⁷	1.329 10 ⁻⁷	0.703
40	1.065 10-6	8.698 10 ⁻⁷	0.817	5.886 10 ⁻⁷	4.651 10 ⁻⁷	0.790
45	1.610 10 ⁻⁶	1.425 10 ⁻⁶	0.885	1.105 10-6	9.584 10 ⁻⁷	0.867
50	2.099 10 ⁻⁶	1.92. 10 ⁻⁶	0.917	1.597 10 ⁻⁶	1.443 10 ⁻⁶	0.903
CFCl ₂ :						
15	6.240 10 ⁻⁹	4.701 10 ⁻⁹	0.753	1.532 10-11	1.178 10-11	0.769
20	7.480 10-8	5.797 10 ⁻⁸	0.775	1.406 10 ⁻⁹	1.090 10-9	0.775
25	4.403 10 ⁻⁷	3.557 10 ⁻⁷	0.808	3.278 10-8	2.636 10-8	0.804
30	1.607 10-6	1.334 10-6	0.830	3.263 10-7	2.701 10-7	0.828
35	4,033 10-6	3.443 10 ⁻⁶	0.854	1.627 10-6	1.388 10-6	0.853
40	7. 40 8 10 ⁻⁶	6.525 10 ⁻⁶	0.881	4.631 10-6	4.070 10-6	0.879
45	1.021 10 ⁻⁵	9.342 10 ⁻⁶	0.915	7.963 10-6	7.253 10-6	0.911
50	1.206 10-5	1.125 10-5	0.932	1.037 10 ⁻⁵	9.618 10 ⁻⁶	0.927
CHF_CL						
15	$1.944 \ 10^{-13}$	$1.449 \ 10^{-13}$	0.727	5.261 10^{-17}	$3.865 10^{-17}$	0.735
20	9.692 10-12	$7.416 10^{-12}$	0.765	7.935 10-14	$5.926 \ 10^{-14}$	0.747
25	$1.020 \ 10^{-10}$	8.196 10 ⁻¹¹	0.803	$5.363 \ 10^{-12}$	4.177 10 ⁻¹²	0.779
30	$5.053 \ 10^{-10}$	$4.262 \ 10^{-10}$	0.844	8.131 10-11	6.629 10-11	0.815
35	$1.558 10^{-9}$	1.386 10-9	0.889	$5.108 \ 10^{-10}$	$4.421 \ 10^{-10}$	0.866
40	$3.360 \ 10^{-9}$	3.126 10 ⁻⁹	0.930	1.708 10-9	1.562 10-9	0.915
45	5.471 10 ⁻⁹	$2.256 10^{-9}$	0.961	$3.441 \ 10^{-9}$	3.272 10-9	0.951
50	7.743 10-9	7.541 10 ⁻⁹	0.974	5.369 10-9	5.192 10-9	0.967
CHECL						
15	2 884 10-10	1 932 10-10	0.670	7 330 10-13	4 936 10-13	0.673
20	3 929 10-9	2 756 10 ⁻⁹	0.070	7.015 10-11	4.798 10-11	0.675
25	$2.706 10^{-8}$	2.041 10-8	0.754	1 836 10-9	1 338 10-9	0.728
30	$1 140 10^{-7}$	9 145 10-8	0.802	2.068 10-8	1 598 10-8	0.773
35	322810^{-7}	2 756 10-7	0.854	$1 154 10^{-7}$	9.559 10-8	0.829
40	6.507 10-7	$5.875 10^{-7}$	0.903	$3.590 \ 10^{-7}$	3.175 10-7	0.884
45	$9.898 \ 10^{-7}$	9.325 10-7	0.942	$6.746 \ 10^{-7}$	6.278 10-7	0.931
50	1.305 10-6	1.252 10-6	0.960	9.809 10 ⁻⁷	9.332 10-7	0.951

Table XIV. (Continued)

^a Temperature independent cross-section. $J_{\rm rel}$ relative values J(T)/J(295 K).

Fig. 10. Spectral distribution of photodissociation coefficients of CH₂Cl₂ for frequency intervals of 500 cm⁻¹, z = 35 km and solar zenith angle = 60° (sec $\chi = 2$). (*): J(295 K), (+): J(237 K).

Due to the significant increase of the ozone optical depth in the stratosphere at wavelengths beyond 220 nm, the value of the overall photodissociation coefficients between 20 and 35 km is mainly influenced by the 200–210 nm interval contribution.

In such conditions, a significant reduction of overall photodissociation coefficients is only to be expected in the case of compounds whose absorption cross-sections are strongly temperature-dependent in this wavelength interval. Accordingly, important reduction factors are observed for CH_2Cl_2 , $CHCl_3$, CF_2Cl_2 , and $CHFCl_2$ and, to a lesser extent for CH_3Cl , CHF_2Cl , and $CFCl_3$, while the CCl_4 photodissociation coefficient is almost temperature-independent in the stratosphere.

The introduction of lower photodissociation coefficients in atmospheric models increases altitudes of photolysis and, therefore, changes the altitude profile of the considered halomethane in the stratosphere.

In conclusion, this work presents a complete and coherent set of experimental data about temperature-dependent absorption cross-sections and photodissociation coefficients of chloro- and chlorofluoromethanes, and gives fairly simple relationships to compute the absorption cross-section values with respect to temperature and wavelength.

Fig. 11. Spectral distribution of photodissociation coefficients of CF_2Cl_2 for frequency intervals of 500 cm⁻¹, z = 35 km and solar zenith angle = 60° (sec $\chi = 2$). (*): J(295 K), (+): J(237 K).

Acknowledgements

The authors wish to thank Dr G. Brasseur for helpful discussions and Mr E. Falise who performed the computer calculations of the photodissociation coefficients. This research has been partially supported by the European Community Commission under contract No. 303-78-1.

References

- Bass, A. M. and Ledford, A. E. Jr., 1976, Ultraviolet photoabsorption cross-sections of CF₂Cl₂ and CFCl₃ as a function of temperature, 12th Int. Conf. on Photochemistry, Gaithersburg (U.S.A.), June 1976.
- Baulch, D. L., Cox, R. A., Crutzen, P. J., Hampson, Jr., R. F., Kerr, J. A., Troe, J., and Watson, R. T., 1982, Evaluated kinetics and photochemical data for atmospheric chemistry: supplement I, CODATA Task Group on Chemical Kinetics, J. Phys. Chem. Ref. Data 11, 327–496.
- Brasseur, G. and Simon, P. C., 1981, Stratospheric and thermal response to long-term variability in solar UV irradiance, J. Geophys. Res. 86, 7343.
- Chou, C. C., Vera Ruiz, H., Moe, K., and Rowland, F. S., 1976, Unpublished data, 1976, reported by Watson, R. T. (1977).

- Chou, C. C., Smith, W. S., Vera Ruiz, H., Moe, K., Crescentini, G., Molina, M. J., and Rowland, F. S., 1977, The temperature dependences of the ultraviolet absorption cross-sections of CCl₂F₂ and CCl₃F, and their stratospheric significance, J. Phys. Chem. 81, 286-290.
- Chou, C. C., Milstein, R. J., Smith, W. S., Vera Ruiz, H., Molina, M. J., and Rowland, F. S., 1978, Stratospheric photodissociation of several saturated perhalo chlorofluorocarbon compounds in current technological use (Fluorocarbons 13, 113, 114, 115), J. Phys. Chem. 82, 1–7.
- Demore, W. B., Margitan, J. J., Molina, M. J., Watson, R. T., Golden, D. M., Hampson, R. F. Kurylo, M. J., Howard, C. J., and Ravishankara, A. R., 1985, Chemical kinetics and photochemical data for use in stratospheric modeling, JPL publication 85-37.
- Fabian, P., Borchers, R., Penkett, S. A., and Prosser, N. J. D., 1981, Halocarbons in the stratosphere, *Nature* 294, 733–735.
- Gillotay, D. and Simon, P. C., 1988, Ultraviolet absorption cross-sections of methyl bromide at stratospheric temperatures, Ann. Geophysicae 6, 211-215.
- Gordus, A. A. and Bernstein, R. B., 1954, Isotope effect in continuous ultraviolet absorption spectra: Methyl bromide-d₃ and chloroform-d, J. Chem. Phys. 22, 790.
- Hubrich, C., and Zetzsch, C., and Stuhl, F., 1977, Absorptionsspektren von halogenierten Methanenen im Bereich von 275 bis 160 nm bei Temperaturen von 298 and 208 K, Ber. Bunsenges. Physik. Chem. 81, 437–442.
- Hubrich, C. and Stuhl, F., 1980, The ultraviolet absorption of some halogenated methanes and ethanes of atmospheric interest, J. Photochem. 12, 93-107.
- Kockarts, G., 1976, Absorption and photodissociation in the Schumann-Runge bands of molecular oxygen in the terrestrial atmosphere, *Planet. Space Sci.* 24, 589–604.
- Majer, J. R. and Simons, J. P., 1964, Photochemical processes in halogenated compounds, in J. Pitts, G. Hammond, and W. A. Noyes (eds.), *Advances in Photochemistry* vol. 2, p. 137.
- Nicolet, M., 1984, On the molecular scattering in the terrestrial atmosphere: an empirical formula for calculation in the homosphere, *Planet. Space Sci.* 32, 1467–1468.
- Molina, M. J. and Rowland, F. S., 1974, Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone, *Nature* 249, 810–812.
- Rebbert, R. E. and Ausloos, P. J., 1976, Gas-phase photodecomposition of carbon tetrachloride, J. Photochem. 6, 265–276.
- Robbins, D. E., 1976, Photodissociation of methyl chloride and methyl bromide in atmosphere, Geophys. Res. Lett. 3, 213–216.
- Robbins, D. E., 1976, Erratum, Geophys. Res. Lett. 3, 757.
- Robbins, D. E., 1976, UV photoabsorption cross sections for halocarbons, Int. Conf. on the Stratosphere and Related Problems, Logan, (U.S.A.).
- Robbins, D. E. and Stolarski, R. S., 1976, Comparison of stratospheric ozone destruction by fluorocarbons 11, 12, 21, and 22, *Geophys. Res. Lett.* 3, 603–606.
- Rowland, F. S. and Molina, M. J., 1975, Chlorofluoromethanes in the environment, *Rev. Geophys. Space Phys.* 13, 1.
- Sandorfy, C., 1976, Review paper: UV absorption of halocarbons, Atmos. Environ. 10, 343-351.
- Schmidt, U., Knapska, D., and Penkett, S. A., 1985, A study of the vertical distribution of methyl chloride (CH₃Cl) in the midlatitude stratosphere, J. Atmos. Chem. 3, 363–376.
- Singh, H. B., Salas, L. J., Shigeishi, H., and Scribner, E., 1979, Atmospheric halocarbon, hydrocarbons, and sulfur hexafluoride: Global distribution, sources and sinks, *Science* 203, 899–903.
- Vanlaethem-Meuree, N., Wisemberg, J., and Simon, P. C., 1978, Influence de la température sur les sections efficaces d'absorption des chlorofluorométhanes dans l'ultraviolet, Bull. Acad. Roy. Belgique, Cl. Sci. 64, 42.
- Watson, R. T., 1977, Rate constants for reactions of ClO_x of atmospheric interest, J. Phys. Chem. Ref. Data 6, 871–917.
- Wisemberg, J. and Vanlaethem-Meuree, N., 1978, Mesures des sections efficaces d'absorption de constituants atmosphériques dans l'ultra violet: description du système expérimental, Bull. Acad. Roy. Belgique, Cl. Sci. 64, 21.
- WMO, 1985, Atmospheric ozone 1985, WMO global ozone research and monitoring project, Report 16.
- Wuebbles, D. J., 1983, Chlorocarbon emission scenarios: potential impact on stratospheric ozone, J. Geophys. Res. 88, 1433-1443.