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volume through which it propagates. To avoid significant pump
depletion, the total energy in the laser beams must be much
greater than that in the plasma wave.

The problem of producing plasmas (particularly with a cross
magnetic field) with densities between 10'® < n, < 10°° cm ™ and
with the required length and homogeneity will also require
considerable attention. At high intensities that are necessary in
this scheme, the requirement that plasma frequency be exactly
equal to the difference frequency may be relaxed, but this issue
needs careful investigation.

Prospects for ultrahigh energies

High-phase velocity space charge waves in a plasma have the
potential for producing the high accelerating gradients that are
necessary for a new generation of particle accelerators. Whether
this scheme can be used to accelerate particles to ultrahigh
energies depends on how well the phase stabilization (Surfatron)
scheme can be made to work in practice. Particular problems
are pump depletion, filamentation of the laser and injected
particle beams, and the effect of self-generated magnetic fields
on the accelerating particles.

On the positive side, the Surfatron scheme would produce a
compact accelerator with a high quality beam. The energy
spread, Ay/y would be small because approximately half of
the injected particles quickly form accelerating ‘buckets’ that
are narrow in phase space near the equilibrium point. In the
wave frame this is where v, B is equal to the local longitudinal
electric field. Thus all the particles gain energy at nearly the
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same rate, the one given by equation (4). The bunch length of
the final beam as well as Ay/ vy is thus expected to be extremely
small, as shown in Fig. 5.

The number of accelerated particles N can be estimated from
the consideration of the energy balance®:

laser energy (kJ)
particle energy (GeV)

N=2x10"

sa)\#x/n_ls (6)

where factor « is the ratio of particle energy to wave energy.

The zero-order motion of the particles in the Surfatron scheme
is approximately a straight line, and thus synchrotron radiation
loss turns out not be to be a problem. The radiation loss due
to high-order bounce motion® and due to oscillation in the laser
field, as well as other loss mechanisms such as Coulomb scatter-
ing and bremsstrahlung radiation, are also not thought to be
serious problems.

Finally, the acceleration scheme is still at an embryonic stage
for a reliable estimate to be made of its potential total efficiency
from wall power (ac) to beam power. The severest limitation,
one that is common to all laser acceleration schemes, is the
a.c.-to-laser beam efficiency. If we optimistically assume this to
be 10% then using our simulations as a guide we may be able
to achieve a total efficiency between 107> and 107*,

We thank Professor F. F. Chen and Dr C. E. Clayton for
valuable comments and discussions. This work was supported
at UCLA by DOE contract DE-AMO03-765F00034, NSF grant
ECS 83-10972 and LLNL University Research Program and at
LANL by the DOE.

4. Morse, R. L. & Neilson, C. W. Phys. Fluids 14, 830-840 (1971).

5. Katsouleas, T. & Dawson, J. M. Phys. Rev. Leit. 51, 392 (1983).

6. Katsouleas, T., Joshi, C., Mori, W. B. & Dawson, J. M. Proc. 12th int. Conf. on High-Energy
Accelerators (Fermilab, Batavia, 1982).

7. Cohen, E. I., Kaufman, A. N. & Watson, K. M. Phys. Rev. Lett. 29, 581-584 (1972).

Is there a climatic attractor?
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Much of our information on climatic evolution during the past million years comes from the time series describing the
isotope record of deep-sea cores. A major task of climatology is to identify, from this apparently limited amount of
information, the essential features of climate viewed as a dynamic system. Using the theory of nonlinear dynamic systems
we show how certain key properties of climate can be determined solely from time series data.

EXPERIMENTAL data have essentially two roles in the process
of modelling. First, they parameterize the equations postulated
by the modeller. Second, they set constraints to be satisfied by
the model. For instance, a reasonable model of Quaternary
glaciations should reproduce the general aspects of a palaco-
temperature time series as deduced from ice or deep-sea core
data and, in particular, should exhibit the characteristic time
scales of 100,000, 41,000 and 22,000 yr (ref. 1). In either case,
however, the information drawn from the data will remain
esentially one-dimensional. Thus, starting from the time series
of a certain variable one may construct a power spectrum or a
histogram which, despite their interest, do not provide any hint
about the additional variables that may affect the evolution. We
show here that experimental data contain far richer information
which, independent of any particular model, can be used to
‘resurrect’ the multivariable dynamics of a system starting from
a time series pertaining to a single variable.

We should first comment on the status of a time series from
the standpoint of the theory of dynamical systems. Let Xo(¢)
be the time series available from the data, and {X,(¢)}, where

k=0, 1, ... n—1, the full set of variables actually taking part
in the dynamics. {X,} is expected to satisfy a set of first-order
nonlinear equations, whose form is generally unknown but
which, given a set of initial data {X, (0)}, will produce the full
details of the system’s evolution. It is instructive to visualize
this evolution in an abstract multi-dimensional space spanned
by these variables, the phase space. An instantaneous state of
the system becomes a point, say P, in this space, whereas a
sequence of such states followed as time varies defines a curve,
the phase space trajectory (see Fig. 1). As time grows and
transients die out, the system is expected to reach a state of
permanent regime, not necessarily time-independent. In phase
space, this will be reflected by the convergence of whole families
of phase trajectories towards a subset of phase space (C in Fig.
1), such that the system subsequently remains trapped therein.
We refer to this invariant set as the attractor.

The interest of the phase space description of a system lies
primarily in the fact that the nature of the attractors provides
extensive information on the time behaviour of the variables
and on the nature of their coupling. For instance, a point
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Fig. 1 Typical phase space trajectory emanating from point P

and converging to a periodic attractor, represented by curve C.

attractor (point 0 in Fig. 2a, b) implies that the transient-free
behaviour of the system will be time-independent. In addition,
if the attractor is approached in the way shown in Fig. 2a the
transients will die out monotonically, whereas a spiral approach
like that in Fig. 2b indicates that transients perform damped
oscillations. An attractor in the form of a closed curve (C in
Fig. 1) implies, on the other hand, that the system will perform
sustained oscillations in time with an intrinsically-determined
period and amplitude. Finally, multiperiodic motions with
incommensurate frequencies are represented in phase space by
high-dimensional attracting toroidal surfaces. In each of the
above cases, the character of the attractor also gives an indication
of the minimum number of variables that should be involved
in the description. Thus, for the zero-dimensional attractors of
Fig. 2 (d =0) we need, respectively, at least one variable (n=1)
for Fig. 2a and two variables (n =2) for Fig. 2b. For the one-
dimensional attractor of Fig. 1 (d =1) we need at least two
variables (n=2), and for the simplest quasi-periodic
phenomenon we need at least a two-dimensional torus (d =2)
embedded in a three-dimensional phase space (n =3).

So far we have argued in terms of attractors which are points,
lines or surfaces or, in more technical terms, smooth topological
manifolds characterized by an integer dimensionality. In recent
years, it has been firmly established that geometrical objects
exist which are not topological manifolds. Such constructions,
which have a non-integer dimensionality, are known as fractals®.
The theory of dynamical systems and some experimental results
from fluid dynamics and chemical kinetics provide us with many
examples of fractal attractors’. The importance of the latter
stems from the fact that they model irregular, time-dependent
phenomena, characterized by two features, both of which are
shared by the climatic system: a marked sensitivity to initial
conditions; and the appearance of large dispersions from a mean
motion similar to a stochastic process, even though the underly-
ing dynamics is perfectly deterministic. Note that the dimension-
ality of an attractor, fractal or smooth, is bound to be a number
smaller than the number of variables present in the evolution.

Climatic attractor

We shall establish the existence of an attractor associated with
the long-term climatic evolution of the past million years and
determine its dimensionalty. Knowing the characteristics of this
climatic attractor automatically gives us information on the
minimum number of variables that must be introduced into the
description.

Our starting point is the oxygen isotope record obtained from
the equatorial Pacific deep-sea core V28-238 (refs 4, 5), which
is one of the best climatic records available, because the sediment
accumulated at a fairly regular rate®.

Let X,(t) be the corresponding time series’. Because the n
variables { X (¢)} satisfy a set of first-order differential equations,
successive differentiation in time reduces the problem to a single
(generally highly nonlinear) differential equation of nth order
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a b

Fig.2 Two different approaches to a steady state, represented
by point 0 in phase space (point attractor). a, ‘Monotonic
approach; b, approach through damped oscillations.
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Fig. 3 A view of the climatic attractor embedded in a three-
dimensional phase space. The result utilizes about 500 equidistant
values of X,. These are inferred from the oxygen isotope record
obtained from the V28-238 deep sea core of Shackleton and
Opdyke* and extended over the past million years, following an
interpolation available from the data bank of the University of
Louvain’. The value of the shift 7 adopted in drawing the figure
is =2 kyr.

for one of these variables. Thus, instead of X, (t), k=
0,1,. —1, we may consider X, (¢), the variable supplied
by the tlme series data, and its n—1 successive derivatives
X8 (1), k=1, ..., n—1, to be the n variables of the problem
spanning the phase space of the system®. Now, both X, and its
derivatives can be deduced from the single time series pertaining
to X, (1), as provided by the data. We see, therefore, that, in
principle we have sufficient information at our disposal to go
beyond the one-dimensional space of the original time series
and to unfold the system’s dynamics into a multidimensional
phase space.

Actually, as suggested ongmally by Ruelle®, instead of X, (1)
and X§¥ (1) it will be easier to work with X, (t) and the set of
variables obtained from it, by shifting its values by a fixed lag
7. We, therefore, consider from now on the phase space defined
by the variables :

Xo (1), Xo(t+7), ..., Xo(t+(n~1)7) (1)

For a typical choice of 7 these variables are expected to be
linearly independent, and this is all one needs to define properly
a phase space. A simple example illustrating how an unshifted
function can give rise to a linearly independent one by a simple
shift is provided by the polynomials X, (t) =1t X,(t+7)=
t*+2tr + 7> These two functions are indeed independent, as
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Fig. 4 Distance dependence of the correlation function on the

climatic attractor. Note the existence of an extensive range of

linearity, from which the dimensionality of the attractor can be
inferred. Parameter values as in Fig. 3, except that =8 kyr.

the second polynomial contains terms of first and zero degree
in t, which are absent in the first one.

Before describing the procedure that will enable us to obtain
quantitative information on the nature of the climatic attractor
and, in particular, on its dimensionality we present, in Fig. 3,
a characteristic view of this object in a three-dimensional phase
space. This view clearly exhibits the complexity of the underlying
motion. However, the data are too coarse to draw any conclusion
from this figure alone. It will be our task to characterize the
complexity of the dynamics more sharply and, in particular, to
assess its similarities and differences with random noise. Note
that similar phase portraits have been constructed from experi-
mental data pertaining to chemical kinetics'®.

Analytical procedure

We now describe briefly a recently proposed procedure
which allows the indentification of some salient features of the
phase space portrait of a dynamical system. Consider a set of
N points on an attractor embedded in a phase space of n
dimensions, obtained from a time series:

Xo(t),. .. s Xo (tn)
Xo(ti+71),..., X (tn+7)

11,12

X, (1 +(n=1)7), ..., Xo (tx +(n—1)7) )

For convenience we introduce a vector notation: X; which stands
for a point of phase space whose coordinates are {X, (), ...,
Xo (4 +(n—-1)7)}.

A reference point X; from these data is now chosen and all
its distances |X; —X,| from the N —1 remaining points are com-
puted. This allows us to count the data points that are within
a prescribed distance, r from point X;. Repeating the process
for all values of i, one arrives at the quantity

N
Cn=73 I 00X, =X)) @)

i j=1

i#*j
where 6 is the Heaviside function, 8(x) =0 if x <0, 8(x) =1 if
x> 0. The non-vanishing of this quantity measures the extent
to which the presence of a data point X; affects the position of
the other points. C(r) may thus be referred to as the (integral)

correlation function of the attractor.

Suppose that we fix a given small parameter £ and we use it
to define the site of a lattice which approximates the attractor.
If the latter is a line, the number of data points within a distance

Fig. § Dependence of dimensionality, d on the number of phase

space variables, n for the climatic attractor (O) and for a white

noise signal ( X) for the same parameters as in Fig. 4. Notice the

saturation to a plateau value of ~3.1 in the first case, and the d ~ n
relationship in the second case.

r from a prescribed point should be proportional to r/e. If it
is a surface, this number should be proportional to (r/£)* and,
more generally, if it is a d-dimensional manifold it should be
proportional to (r/ £)°. We expect, therefore, that for r, relatively
small C(r) should vary as

C(r)y=rt (4)

In other words, the dimensionality d of the attractor is given
by the slope of the log C(r) versus log r in a certain range of
values of r:

log C(r) = d|log r| (5)

This property remains valid for attractors of fractal dimension-
ality.

The above results suggest the following algorithm (a similar
procedure has also been proposed in the context of fluid
dynamics'*'):

(1) Starting from a time series, we can construct the correla-
tion function, equation (3), by considering successively higher
values of the dimensionality n of phase space.

(2) Deduce the slope d near the origin according to equa-
tion (5) and see how the result changes as n is increased.

(3) If d reaches a saturation limit beyond some relatively
small n, the system represented by the time series should possess
an attractor. The saturation value d, will be regarded as the
dimensionality of the attractor. The value of n beyond which
saturation is observed will provide the minimum number of
variables necessary to model the behaviour represented by the
attractor.

Application to climatic data

This procedure has been applied to the analysis of the data
pertaining to core V28-238. Figure 4 gives the dependence of
log C(r) versus log r for n=2 to n=6. We see that there is
indeed an extended region over which this dependence is linear,
in accordance with equation (5). Figure 5 (points in circles)
shows that the slope reaches a saturation value at n =4, which
is about d; = 3.1. The same plot also shows the way in which d
varies with n if the signal considered is a Gaussian white noise:
there is no tendency to saturate. In fact, in this case d turns out
to be equal to n. It should be emphasized that the above results
are independent of the choice of the time lag r, provided that
the latter is of the order of magnitude of the times scales
pertaining to the long-term climatic evolution, and the linear
independence of the variables is secured.

The existence of a climatic attractor of low dimensionality
shows that the main feature of long-term climatic evolution may
be viewed as the manifestation of a deterministic dynamics,
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involving a limited number of key variables. The fact that the
attractor has a fractal dimensionality provides a natural expiana-
tion of the intrinsic variability of the climatic system, despite
its deterministic character'>. Moreoever, it suggests that despite
the pronounced peaks of spectra in the frequencies of the orbital
forcings, the actual behaviour is highly non periodic'®. A new
interpretation of variance spectra of the ice volume record is,
therefore, necessary.

Conclusion

We have identified a number of intrinsic properties of the
climate assuming it to be dynamical system, using only the time
series obtained from the data.

Qur results do not anticipate the validity of any particular
model of climatic evolution. Rather, they set a number of con-
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straints that should be satisfied by a model. In particular, they
suggest that models involving four variables could already pro-
vide a description of the salient features of the system.

Our approach could be applied to many other problems in
which naturally occurring complex systems are probed through
time series. Within the context of atmospheric physics and
climatotology, one important example is the blocking transition.
Another promising field of application are biological rhythms
like the heart beat or the electroencephalogram'’. In the long
run, it may be hoped that fractal dimensionality could become
for such systems a useful characterization of their specificity as
well as a measure of their complexity.
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Structure of the nucleosome core particle
at 7 A resolution
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The crystal structure of the nucleosome core particle has been solved to 7 A resolution. The right-handed B-DNA superhelix
on the outside contains several sharp bends and makes numerous interactions with the histone octamer within. The central
turn of superhelix and H3 - H4 tetramer have dyad symmetry, but the H2A - H2B dimers show departures due to interparticle

associations.

THE nucleosome is the primary repeating unit of DNA organiz-
ation in chromatin'~, Extensive digestion of chromatin with
micrococcal nuclease releases the nucleosome core, a small,
well-defined particle which has been crystallized. The particle
mass ( ~ 206 kilodaltons) is equally distributed between 146( +2)
base pairs (bp) of DNA and an octamer formed by two each
of the histone proteins, H2A, H2B, H3 and H4 (the outer histone
HI1 and the linker DNA having been removed during nuclease
digestion®). The crystals first obtained were of limited order and
gave a picture of the particle to 20 A resolution®. We later
prepared better crystals which diffracted to about 5 A, having
a single particle in the asymmetric unit®, We describe here the
three-dimensional structure of the nucleosome core particle at
7 A resolution determined by X-ray diffraction and multiple
isomorphous replacement. This advance was achieved by
improved diffractometry, control of the crystal unit cell para-
meters by adjustment of hydration, and derivatives prepared
from multi-heavy atom cluster compounds.

The nucleosome core crystals have previously been investi-
gated by several structural methods. Electron microscopy and
X-ray diffraction techniques were initially used to obtain elec-
tron density maps in the principal projections, suggesting that
the particle had the shape of a disk 57 A thick and 110 A in
diameter. The DNA appeared to be wound around the histone

core in 1.8 turns of a flat superhelix with a pitch of 28 A5, Using
neutron diffraction in conjunction with contrast matching’*®, the
DNA and protein components were seen as separate densities
in projections at 25 A resolution. The three-dimensional shape
of the octamer alone was determined to a resolution of 20 A by
image reconstruction from electron micrographs of negatively
stained, ordered aggregates®. The assignment of histone loca-
tions on the resulting low-resolution map relied on DNA-
histone'®'! and histone-histone (for references, see ref. 12)
proximities obtained from chemical cross-linking experiments,
and the neutron experiments fixed the orientation of the DNA
superhelix on the octamer. The suggested division of the octamer
into two H2A-H2B dimers residing on opposite faces of a
H3-H4 tetramer agrees well with the pattern of dissociation
found in earlier physicochemical studies'*'*. The tetramer (pro-
teolysed) and octamer have also been crystallized in the absence
of DNA, but structures have not yet been reported'*'®,

The electron density map at the higher resolution of 7A
described here reveals many new structural features. The DNA
is not bent uniformly into the superhelix, but exhibits several
regions of tight bending or possible kinking, adjacent to points
of substantial contact with histones H3 and H4. The histone-
DNA interactions occur on the inside of the superhelix; the
protein density does not seem to embrace the outside of the
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