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A kinetic .adel of tangential discontinuity in a 

collisionless magnetized plasaa with multiple particle 

species has been reviewed in this paper, It is a one­

di~nsional and stationary model whose boundary 

conditions on each side of the current sheet are 

specified by unlike densities, temperatures and average 

velocities for each plasma component. These average 

velocities must however be compatible with the 

asymptotic conditions of plasma uniformity, The model 

also allows the magnetic field to make an arbitrary 

rotation in the plane of the discontinuity. Vlasov 

equations for the particle species and Maxwell's 

equations for the fields are solved simultaneously. The 

theory is self-consistent in that the electric 

potential and the electric field are obtained from the 

charge-neutral approximation which is verified in most 

cases. In particular, it is sbown tbat tbe electric 

field inside the current sheet is far from being 

identical witb tbe convection electric field whicb is 

aaauaed to be a good approximation for tbe actual 

electric field in the MHO framework. The velocity 

distribution functions complying with Vlasov equation 

are linear combinations of sbifted Maswellians. 

Aay.ptotically their first moments are identical witb 

tbose of the actual velocity distribution functions an 

experiment would measure on both sides of a current 

sbeet. With such distributions all the moments of any 

order are analytically determined in tenas of tbe 

electric potential and of tbe caaponents of the vector 

potential. A numerical method is used to solve 

Maswell's equations for the fields and their correspond­

ing potentials. Therefore a full description of the 

sicroscopic structure of tbe current sheet can be made. 

The model is a powerful tool for studying the 

structure of tangential discontinuities which occur in 

collisionless space (or laboratory) plasmas. 

I. Introduction 

Space plasmas have a natural propensity to break 

up into distinct regions with characteristic densities, 

compositions, temperatures, magnetizations and average 

particle velocities (Falth .... r at al., 1978, Alfven, 

1981, p. 40). The boundaries between these regions are 

often stable transition layers with very high observed 

1ifeti .. s. These layers contain interpenetrated plasaas 
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froa the adjacent zones and moat of chea have electrlc 

current sheets which change the orientation and intenslty 

of the local .agnetic field. Their observed thickness is 

usually of the order of a few ion Larmer gyroradii (see 

for instance: Surlaga. 1971; Burlaga ec at.. 1977. for 

the solar wind discontinuities). Typical examples of such 

a cellular structure of sPdce plasmas are the fi lolm"nt.l~·, 

~haracter 0f the solar wlnd and the Lontainmen~ :f ~l~S~35 

originating from planets and stars inside distinct 

compartments dividing the neighborhood of planetary 

lllagnetospheres. 

Boundary layers resulting from a p~rtition of 

magneti&ed plasmas can be classified into (Nishida, 197B, 

p. 17) : tangential discontinui ties .. contac t discontinu­

ities ~nd shocks. For tangential and contact discontinu­

ities there is no mass flow across the boundary layers 

which are then convected along with the flow. To 

distinguish between these two types of discontinuities one 

has to examine the magnetic field component along the 

normal to the boundary. If this component vanishes, then 

it is a tangential discontinuity for which the tot~l 

plasma and field pressure across the discontinuity is 

conserved, while in the case of a finite normal component, 

it is a contact discontinuity for which the particles 

rapidly diffuse along field lines making the pl~sma 

pressure uniform. On the other hand, when the plasma flo~s 

across the boundary layers, these structures are 

propagated through the medium. The resulting waves are 

large amplitude, sharp structures or shock waves. These 

shocks include rotational discontinuities (intermediate 

shocks) as well as slow and fast shocks. 

Equilibrium configurations of tangential discontinu­

ities in collisionless plasmas have been discussed by a 

number of authors in the context of thermonuclear 

containment. Harris (1962) considered a pinch configura­

tion in which an exactly charge-neutral layer (i.e., with 

no electric field) was confined between two oppositely 

directed magnetic fields produced by perpendicular flowing 

currents. On the other hand, Nicholson (1963) obtained a 

pinch configuration for an exactly charge-neutral layer 

confined between two reversing flowing diamagnetic 

currents perpendicular to a given extern~l magnetic field. 

A superposition of Harris and ~icholson's models was 2ade 

by Kan (1972). In Kan's model, reversing and field-aligned 

currents, perpendicular to each other, produced 

corresponding diamagnetic and opposite magnetic fields 

inside an exactly charge-neutral plasma with a slab 

configuration. Sestero (1964) provided a model for the 

aicroscopic description of hydrogen plasma sheaths using 

Vlasov equations for ions and electrons coupled with 

Maxwell's equations for the fields. The plasma sheaths he 

considered connected two different unifora states of a 

plasma in a magnetic field. In the charge-neutral 

approxilllation (i.e., with a saall charge separation), 

solutions were obtained which scaled accordinl to scae 

representative electron Larmar radius, or ion Laraor 
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radius, or piec~i.e, according to both. Sestero 

,ener.lized this model by con.iderinl .1.0 c.se. 

involvin, shearin, pl ..... (Sestero, 1966). In.ide 

tbese sheath. the magnitude of the &asnetic field 

changed while the direction did not. However, Sestero 

did not include changes in composition, temperatures, 

~nLsotropies, etc ... Although Kan's ~odel included 

:nultidirecti unal current. (Kan, 1972), it .,as restricted 

t~ exactly charge-neutral layers. 

These early models of tangential di.continuities 

were adjusted and generalized to describe the ~icro­

scopic structure of current sheets in space plas.as. 

Thus, kinetic theories of tangential discontinuities 

were elaborated for the purpose of explaining the 

structure of the earth's plasmapause (Roth; 1976), 

of current sheets in the solar wind (Lemaire and 

Burlaga, 1976) and of the terrestrial magnetopause 

(Alpers, 1969; Roth, 1978, 1979, 1980; Lee and Kan, 

1979) . In this context the most improved model was 

elaborated by Roth in a series of papers (Roth, 1976, 

1978, 1979, 1980). This model considers the structure 

of steady-state tangential discontinuities in a 

collision less magnetized plasma with multiple particle 

species. It includes changes in magnetic field 

intensity and direction, pla~ bulk velocity, 

composition, temperatures and anisotropies. It is not 

restricted to exactly charge-neutral layers. The role 

of collisions as prime mover for the dissipation is 

played by wave-particle interactions which determine 

the stability and thickness of the current layers 

(Roth, 1980). 

8y reason of the considerable significance of such 

kinetic models for our understanding of the micro­

scopic Structure of current layers in space plasaas we 

will devote this paper to a review of the aut~or's 

model. Section 2 will be devoted to the description of 

this model, with particular emphasis on the bOUDda~ 

conditioa.. Unidimensional plane current layers are 

considered and the deter.ination of tbeir aUcroscopic 

structure is based on both Vlasov and Maxwell's 

equations for plasma and fields. In section 3, the 

moments of the velocity distribution functions are 

determined in terms of the electric potential and the 

components of the vector potential. The numerical 

method for solving Maxwell's equations is explained Ln 

section 4. Hence, by solving these equations for both 

the potentials and the fields we can also compute the 

variuus moments determined in section 3. This is done 

by means of a suitable numerical program (see numerical 

results in Roth, 1978, 1979, 1980). Therefore a 

complete description of the microscopic structure of 

the current sheet can be achieved. In particular, the 

electric field is found by assuming that the charge­

neutrality approximation remains true. It is also shown 

that tbe actual electric field is far fra. being 

identical with the convection electric field. Finally , 

conclusions will be s~rized ,n section S. 

2. Description of the model 

ln a cartesi.n coordinate syst .. , the plane of a 

discontinuity is parallel to the (y, z) ?Iane and .. il 

the variables are assumed to depend on the x 120-

ordinate_ 'lonna I to the discontinuity. Sinct! there '5 

no mass flow across the transition and since the 

parallel conductivity is very large, the electric "field 

is everywhere oriented along the x-axis. Furthermore, 

the nonaal component of the magnetic field (8 ) 
x 

is assumed to vanish since this model applies to the 

description of tangential discontinuities. 

In rationalized MKSA units, Maxwell's equations 

become for the one-dimensional geometry considered 

here 

e 
~O 

P 
I Z~} n~) 

v-I 

( I ) 

(2) 

(3) 

where ~O and Po are the vacuum permitt~vLty and permeabi­

lity, respectively; Jl, the number of particle species; 

ay and a z ' the non-vanishing components ~f the vector 

potentid (!>;;, the electric potential; j (I') and 
. (I' ) Y (v ) 
Jz ,the camponents of the current density (1 ) 
produced by the flow of particles of species., (eacb 

. ~). 
part~cle carrying a charge Z e; e be~ng the magnitude 

f h ~) o t e electronic charge); and n ,the corresponding 

number density. 

The .. gnetic and electric structures of a 

transition are dete~ined by solving tbe system of 

differential equations (I) - (3). This can be achieved 

by numerical methods when the current and number 

densities are known functions of ;, a , and a . These 
y z 

functions are the first moments of the plasma velocity 

distribution functions determined from Vlasov equation. 

These moments will be deteraUned in section 3. For the 

potential ., we replace Poisson's equation (3) 

by the quasi-neutrality approximation 

Jl 
I 

"·1 
z(v) n(") (a ;) .0 

y' ~z· (4) 

A self-consistent electric field is obtained 

whenever the charge density proportional to the 

Laplacian of ; is much smaller than the cbarge density 

associated with the positive (or negative) particles. 



The velocity distribution functions aust s~tisfy 

Vlasov equ~tion whose sast lener~l solution is any 

function depe~dinl on the constants of the sotion of ~ 

sinale particle . These const~nts ~re th. kinetic enerlY 

(8) and the y- and z- components of the iener~lized 

IIIOmentum (~). 

From Liouville's theorem, it follows that the 

velocity distribution functions satisfying Viasov 

equation ;ue my functions of II, Py ~Dd Pz' ISy 

generalizina the method used by Sestero (1964, 1966), 

the followina velocity distribution functions F(v) 

have been used by Roth (1978, 1979, 1980) 

where H, Py and Pz vary in the set defined by the 

inequa Ii ties 

--<p <+ 
y 

--<Pz<+-

8(~) .. B < + -o 

with 

H(V) 
o 

Z(~) e. + (2 1II(~»-1 [(p - Z(V) e a )2 
y y 

(5) 

(6) 

(7) 

(8) 

(9) 

Here III(~) is the ~ss of particles of species ~. In 

the (B, Py' pz) space, the set defined by the in­

equalities (~ - (8) corresponds to the interior of ~ 

par~boloid of revolution whose syametry axis is 

parallel to the H- axis md whose vertex is located at 

the point (Z(~) •• Z(V)e ~ Z(~). a ). In equation 
t y' z 

(5). q~.) are shifted Maxwellians in the presence of aD 
1. 

electric field while g~.) (i - I, 2) ~re discontinuous 
1. 

functions in the (p , p ) plane takiag noa-negative 

constant values C~pJ(k) Zin each quadrant Ek (k I, 2. 

3. 4) dividing this plane into four parts from a finite 
.. (p) (p) 

or1g1n fo.i . For Z > 0, these quadrants are defined 

in the following way: 

EI - J - -, (~) I x [ (~) ,+ - [ 
POy,i POz.i 

• + 

E3 - ) - -, 

(p) 
- [ x [ POz, i 

(P) 
E4 - [ POy.i ' + - [ x I - -. 

(p) 
ror Z < 0, quadrants I!l' E4 and E2 , 1!3 are 

permuted. Therefore the a.ymptotic parts of tbe 

I'll 

qu~draDt. Ek are related to the asymptotic value. of the 

component. of the vector potential located in the 

correspondinl quadrants I!~ of the (a , a ) plane. This 
.. y z 

can be ea.ily .een fra. the definition of the leneralized 

~nt~. Across the transition. from x • (i • I) 

to •• + - (i • 2), the point of the vector potential 

draws a curve in the (a
y

' a z) plane starting in the 

asymptot i C part J[ a quadrant E' and ~nding Ln the 
kl 

asymptotic part of another quadrant EkZ ' (Transition 

from an a.ymptotic confiauration of ~ toward. another 

one actually deter.ines the structure of the !!Iagnetic 

field! and, in particular, the amount of rotation of 

this vector acro.s the tangential discontinuity). 

Therefore if 

( 10) 

(II) 

it is seen from Eq. (5) and the definition of g~lI) 
1 

that the velocity distribution function changes from 

c (p ) (k ) q (~) a t x • - - to c (II ) (k ) q (II) a t x • + -. 
1 I I 2 2 2 

Note however that the same result is also achieved 

without any restriction on the values of C~")(k2) 
and c~~) (k

l
) in the particular cases for which II t) ~ 0 

at x - - - and q (~) ~ 0 at x - + -
I 

The asymptotic velocity distribution functions 

c~p) (k . ) q ~~) must have the same first order moments as 
1. 1 1. 

the actual velocity distribution functions observed on 

each side of the tangential discontinuity. A simple 

description of these functions is given by sbifted 

Maxwellians in the presence of an electric field 

1Il(1I )]/2 H \ 

) exp ( - -) x 

- kT~·) 
1. 

lwkT.(P) kT~II) 
~ 1 

]} 
where the lower indices i-I and i - 2 refer to 

( 12) 

quantities evaluated at x- and x • + -. respectively. 

In Eq. (12), T~·) and v~ .. ) are the observed average 
1 ""1 

asymptotic temperatures and velocities of the particles 

of species P, respectively; while NO is a constant which 

has the dimensioa of a number density. To simplify. 

asymptotic isotropic temperatures have been considered 

in this paper (Bowever, asymptotic anisotropies have 

also been taken iato account by Roth. 1980). It mu.t be 

noticed that the velocity distribution functions defined 

by Eq. (5) are solutions of Vlasov equ~tion in a weak 

way. Indeed, these solution. have !!Iathematical dis­

continuities in the (Py' pz) plane since their deriva­

tives are singular at the boundaries of quadrants E
k

• 

However, a. shown in section 3, any IIIOment of the 

• velocity distribution functions defined by Eq. (5) 

is continuous with respect to the potentials •• a and 
y 
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a • rurthen.ore, these ~nts strictlY ~et the full 
I 

bieracchy of tr~nsport equations. It aust also be 

noticed that the observed ~syaptotic densities ~t) 
• 1 " V u.) t b't I d d _d averaae ve OClt1eS_

i 
are no ar 1 rary. nee, 

the pl .... at x • , - is charge-neutral ~nd homogeneous. 

Chis i~plies that 

~ (~) ~ (~) • 0 
l 

V(" ~ C 
1.,1· 1.,i 

zu.) N~") vu.) . • 0 
.l 1/,1 

( IJ ) 

( 14) 

(15) 

Equaeion (13) is the condition of charge neueraliey 
(I' ) (I' ) 

at " • ~ -. In Eqs. (14) and (15), V II ,i and Vl,i 

are respectively the parallel and perpendicular (with 

respect to the ~agnetic field direction) average 

velocities of the particles of species v, at x •• -, 

Equation (14) ~eans that the perpendicular co~ponents 

(Vl("~) are uniform and all are equal to the perpendicular 
,1 

component (Cl,i) of the asymptotic mass-velocity (fi) 

defined by 

C. • 
-1. 

/A 
t 

1'-1 

m(V) N. (v) v. (I') 
1 -1 

(16) .. 

Indeed, since ' the plasma and fields become uniform 

asymptotically, the electric drift remains the only 

perpendicular drift. This also i~plies that the asymptotic 

electric field (E . ) is a convection electric field 
-1 

given by 

C. " B. 
-1. -1 

(17) 

Finally, equation (15) shows that the parallel electric 

current density vanishes at " - ; -. Indeed, since the 

magnetic field becomes uniform at " • ' , -, the electric 

current becomes vanishingly small. From equation (14), 

it can be seen that, in frames of reference moving with 

the .s,.ptotic mass-velocity of the plasma, tbe average 

peculiar velocity of the charged particles of species 

II (u. (.» is parallel to the asymptotic magnetic field, 
-1 

i.e. , 

(I' ) 
• U . 

II ,1 
( 18) 

In this equation, ~i is the unit vector parallel to 

the asymptotic ~agnetic field direction. From Eqs. (13), 

(15) and (18), it is easy to show that 

U(II) .• 0 
1/ ,1 

.,hi Ie, frOlll Eqs. (18) and (I tI) 

( 19) 

(20) 

Equations (14), (19) and (20) are the conditions that 

the asymptotic olIverage lIelocities ~(") .. ust fulfill for 
1 

the plana and fields to remain un if a nil at x • • 

FrOlll Eqs. (5) and (12) the asymptotic nWllber 

densities dre of the form 

(~ ) 
:-I l CJ(~ ) Ik,') 'I .: .. . f) ~xp 

it T ~" , 
l 

where the exponential term is the asymptotic Boltzmann 

factor. In this equation • .!i and. i are the asymptoeic 

vector potentials and the asymptotic eleceric potentials, 

respectively. The Boltzmann factor becomes homogeneous 

at " •• -, since the asymptotic electric field vanishes 

in each frame of reference moving with the velocity 

V~V). From Eq. (17), it can be deduced that 
-1 

(22) 

where. o . (i • 1,2) are the asymptotic values of the 
,1 

electric potential in frames ' of reference moving with 

C .. 
-1 

From Eqs. (21), (22) and (18), we can then 

calculate the asymptotic number densities. We find 

where 

c~" ) (k . ) NO exp { -
1 1 

(" ) 
u . 

11,1 
a . 

II. L 
(24) 

(" ) In equation (24), u",i are the average peculiar 

speeds of ehe charged particles of species v at " - • 

in a direction parallel to the magnetic field, while 

a",i are the parallel components of the asymptotic 

vector potentials (also with respect to the magnetic 

field direceion). As the Boltzmann factor is homogeneous 

at " • + _. it is clear frrna Eqs. (23) and (24) that this 

..ust also be the case for a", 

Note however that the integration of Eqs. (I) -

(3) requires only initial values at " - - - . Therefore. 

the direction of the .agnetic field at x • + _ is not 

known a priori (This is not the case for the intensity 

B which can be deduced from a pressure balance 

condition). To avoid an iteration process we consider 

the still general cases for which xi") - O. These cases 

can be classified into cwo distinct classes. The first 

class includes the transitions for which the ~gnetic 

field r~ins parallel to a given direction (aq - 0 in 

the whole transition) while the se.cond includes the 

transitions for which the average velocities of all 

particle species at " • + - are identical to the 
(I' ) 

corresponding mass-velocity of the plasma (u".2 • 0 

for" - I .... .sa). 



If v. nonaalize the electric potential in .uch a 

vay that 

• • 0 0,1 (25) 

we can see, by putting i • I in Eq. (23) that 

~(II ) 
• 1 

~o 

up (- x( .. » 
1 

(2b) 

In eq. (26), NO i. the total number density of 

electron. on side 2, i.e., if there is j(l) electron 

specie', 

(27) 

If we assume that" • I corresponds to an electron 

species whose number density is non-vanishing at x • 

+ - (N~I) * 0), it can be deduced, by putting" •• and 

i • 2 in Eq. (23) 'that . . -0,2 ) (28) 

Taking account of Eqs. (22) and (25), this constant 

.0,2 is seen to be the electric potential difference 

betveen x • + " and x - - -, in a frame of reference 

moving with the plasma mass-velocity. From Eq. (28), 
(I) 

it is also seen that the parameter c2 (k2) can be chosen 

as an arbitrary positive number regulating the electric 

potential jump across the transition layer. The other 

c~") (k2) for II > • can now be deduced from Eqs. (23), 

(28) and (24). We find, for" • 2, ••. ,Il 

The role of the constants 

related to quadrants k3 and k4 

(29) ) 
NO 

c~')(kl) and C~"){k4) 
is to .allow the point of 

the vector potential ~ to drav a curve within the (ay ' 

ax) plane whose asymptotic limits turn out to be in 

predeter.ined quadrants : Ek (correspond ina to x - - -) 

and Ek (corresponding to x l + -). Generally, this will 

be achleved if the kinetic plasma pressure associated 

with the asymptotic parts of quadrants ~ and ~ i. 
. . 3 .4) larger than the total pressure (k~netlc + magnetlc 

associated with the asymptotic parts of quadrant ~ . 
I 

This pressure unbalance can be made possible by a 
.. ~)~) sUltable cholce of the parameters c i (k) and c i (k4)· 

Therefore, we should be able to simulate arbitrary 

rotations of the -agnetic field in the (y, z) plane. 

Finally, for each velocity distribution function, 4 

additional parameters' (POy,.' POz,.) and (POy,2' POz ,2) 

define tva sets of quadrants whose origin is located at 

RO,I and RO,2' respectively. Their role is to overlap or 

separate the contributions of the a.ymptotic plasma 

distribution. of the form c ~II) (k.) 1)~') 
~ 1 1 

2 
t 

i-i 

and 

If 

(II) ." (II ) 

". 2 

(II) (II) 
J10,' • J10 , 2 
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• I, 2, 1, 4 (l0) 

(31 ) 

(32) 

the correspond in" II - velocity distribution function 

(F~» is a shifted Maxwellian everywhere within the 

transition and it i. obvious that the temperature 

(9(11» and the average velocity « :t.(II) » remain unifona 

from x - - - to x • + -. If the electron (lion) 

species remain shifted Maxwellians from x • - - to x • 

+ -, only the ions (/eleetron.) can be accelerated 

inside the transition, on a characteristic Icale length 

of the order of a fev ion (/electron) Laraor Iyroradii. 

As Sestero (1964) we call these kinds of transition 

ion(/electron) layers, respectively. On the other hand, 

if Eqs. (30) - (32) are not fulfilled together, then one 

obtain. transitions which are variou.ly scaled. Namely, 

the scale length is an electron Larmor radius near the 

middle of the sheath and an ion Larmor radius further 

out toward. the two endl . 

). Homents of the velocity distribution functions l 

In this section, the results are related to any 

velocity distribution function. Therefore, the upper 

indices will be dropped, unless otherwise stated. All 

the variables can be aade dimen.ionless by introducing 

four basic units for length (Ax)' velocity (lv)' 

time (It) and _sa (l.), defined by 

A x 

'\ 1/2 

• ( -'e 2::-m-='~-N- ) 
"0 0 

A 
v ( 

k T~4) ,. 1/2 

-.. -) 
e 

A • m 
Ia e 

(3) 

(34) 

(35) 

(36) 

In these equations (l) - (16), lae is the electron 

mass and it is assumed that the upper index (4) pertains 

to an electron species. Correspondin" to this electron 

species, the unit of length (~x) i. the skin depth, the 

unit of velocity (~v> is the lhenaal velocity, the unit 

of time (~t) is proportional to the gyroperiod in a 

.agnetic field whose aagnitude is AB, the sagnetic 

field unit, and, finally, the electron ... s i. the 

unit of .. SI (~.). With this Iystea of UDits, it i. 

easy to deaonstrate that relations between dimensional 
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phy.ical va~iables and the co~~e,pondinc dimen.ionles. 

one. a~e unchanged provided that. i n the dimensionless 

.y.tem u.ed. the ma&nicude of the elect~onlc charce 

(e). the permeability of vacuum ~O) and the 801tzm.nn', 

con.tant (It) be all together equal to unity. i.e. 

( i dent i fyin~ dimensionless 1uanticies with a star index ) 

• 
"I' 0 

• 
a it " I (7) 

From Poisson's equation ( J), it can also be deduced that 

• 
• 0 • 

()8) 

where c is the speed of lig~t in vacuum. Therefore. the 

dimensionless form of. Eq . (3) is 

d
2

• 
*2 dx 

(39) 

and the charge density can be ignored provided that 

It T( a> 
2 

--2-
III C 

e 
I :::: I « I (40) 

Eq. (40) is a necessary and sufficient condition for 

the quasi-neutrality approximation to hold. 

Let us take. for I' - I •.• • • JJ and 

It T"') 
2 

It T~) 
1 

[It T~I') I' 
1 

- 1.2 

(41) 

i.e •• the inverse of the asymptotic thermal energies. 

In the remaining part of this paper we shall only use 

dimensionless quantities and shall therefo~e leave out the 

star index . 

Moments of any order Qrst are defined by 

where n is the number density . vx ' Vy and v z ' the 

component. of the particle velocity. The symbolization 

< vr 
V

S 
vt> represents the average value of the variable 

x . y zr s t 
quant1ty Vx Vy Vz over the entire distribution of 

veloc i ties . 

It is found (Roth. 1980) 

Qut • 0 (43) 

if r is odd 

2 4 
Qrst • 1; 1; M (It. i) rst 

i-I It-I 
(44) 

if r i s even, with 

vbere 

r! 

~ rat 
. 

2rl2 _ (r/2) ! 
Z,+t 

III 

~ . ( r) 
-r/2 

( - ~ . ) . .. exp 
l 1 

( 
-
<" 

L y ;k. i s) • 
j aO 

t 

LZ;It.i(t). 1: 
jaO 

{( ) .j 
z.1t 

J 

with 

ep. a eI . Z (. - ! ~) 1 1 

U. - h + 14-~ -J. 

O. -I -1/2 - z III 2o.i -J. 

A. - eI . 
Z2 

1 1 

h - m 
-1/2 

! 

O. -ml/2 Z-I V. 
-J. -:t 

( 
r + 

2 
s + t 

(46) 

(:'7) 

«s-j.O . I X 
y . l 

U .I} y.1 

(48) 

.. (t-j,D .)x 
%.1 

U .I} 
Z. l 

(49) 

(50) 

(51 ) 

(52) 

(53) 

(54) 

(55) 

The vectors pertaining to Eqs. (SO) - (55) 

are tvo-dimensional vectors in the (y, z) plane. The 

usual biooaial coefficients occur in tbe sums defined 

by Eq •• (48) and (49). In these sua., ~(k • 1 ••••• 4) 

are tvo-dimen.ional vectors who.e definition is the 

following 

!..I • (- I. + I) 

{.2 - (+ I. + I) (56) 

l.3 a (- I , - I) 

l{.-(+I.-I) 

Also. in Eqs. (48) and (49). expressions lilte 

,,(i.y) and Ri (y) are function. defined for real "y" 

and non-negative integral "i" as follows : 

i .. (i.y) • y 

for > 0 

(5]) 



&(i.y)-I 

for - 0 

r· .... i ' 
" ""p (- ,,"j d" 

y 

In particular, 

& (0,0)-1 

erfc (y) 

) I awp (_ y2) II (y ."2 ~ 

where erfc(y) is the complementary error function 

eric (1) 2 - -;m J
+">O 

exp (- i) dx 

y 

(58) 

( 59) 

(61 ) 

(62) 

(63) 

4. The numerical methods of solving Maxwell's equations 

We are nov able to determine the second members 

of Eqa. (I) - (2) and the first member of Eq. (4) in 

terma of _, a, and a
z

' Indeed, ve have for each particle 

species (leaving out the species index) 

n - QOOO 

with 

Let us define (with k • I) 

( Z2 

2 .. k T. 
1 

Let us also define 

V. 
_1 

(65) 

(66) 

(67) 

(68) 

(69) 

i.e., the electric potential in a frame of reference 

aoving witb tbe average velocity ~i' Then, from Eqs. 

(50), (41) and (69), it can be seen that 

"' . . 1 

Z 
kT. 

1 

(70) 

Nov, from the formulae established in the previous 

.ection, i't can be deduced that 

(II ) 

<lOIO -

2 
t 

i-I 

4 
t 

j-I 

(II ) 
n .. 

lJ 

(II ) 
f .. 
lJ,y 

(71) 

(72) 

Q flo) • 
001 

with 

(v) 
n , , 

LJ 

.(11 ) 
t . . .-

1 J • '! ~ 

and 
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2 
f~. ) 
lJ, z 

( 73) 

( 7~) 

[V{II~ erfc (- ~ . A{II~ + E . sign Z{II) (2/.)1/2 8~JI) x 
Z,l Z,j %,1. Z',J 1. 

where ,~JI) is the thermal velocity 
1 

, ~II ) 
1 

and 

G~~ ) 
lJ 

(
It Tt) )' 
(;r-

IB 

1/2 

sign Z • + for Z > 0 } 

for Z < 0 J 

dB 
z 

dX 

Equations (I) - (3) can be written 

• - j.l0 
II 
t 

II-I 

dB 
.J dx • "0 

jl 

t 
II-I 

As shown by Eq. (40), the quasi-neutrality 

approximation is expected to bold in most cases. 

Therefore, tbe electric potential is more suitably 

determined from the plasma neutrality equation: 

(76) 

(77) 

(78) 

(79) 

(80) 

(81 ) 

(82) 

(83) 

(4) 

The electric field E can be obtained explicitly 

in terms of ., ay and a
z

' by taking the first derivative 

of Eq. (4) with respect to x (Roth, 1980). It is found 

that 
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2 

E • -
z (~) 1 

,. 

1 

kT. (v) 
1 

(~ ) 
n .. 

LJ 

(84) 

~ht~ result ~hovs that th~ convection ~ l ectrlc 

fiel~ 'E ) ditters seAerally from the ~ctual ~lectric 
.: 

f~,d~ I E). {ndeed. 

E 
c 

IA 
t 

"-1 

v-I 

2 
t 

i-I 

4 

j-I 

(~ ) 
n .. 

1J 

(85) 

For the electric field (E) be equal to the 

convection electric field (Ec)' it is sufficient that 

2 
Z (~ ) 

a constant (86) 

for ~ - I, ... jJ and a 1,2. 

For example, in the case of a hydrogen plasma . 

whose ion temperature is much smaller than the electron 

temperature (cold plasma approximation), the condition 

given by Eq. (86) could be met. However, in the case of 

the earth's magnetopause, where the H+ temperature is 

about 10 times as large as the electron temperature 

(Eastman, (979), Eq. (86) could .!!..ot be satisfied. 

The charge density (q) can also be obtained by 

taking the second derivative of Eq. (4) with respect to 

x. The result can be found in Roth (1980). 

The differential equations (81) and (82). together 

with the field equations 

B 
Y 

da 

da 
z 

• .-J.. 
dx 

fo~ asystem of four differential equations of the 

first order for a a Band B . This system of 
y' z' y Z 

differential equations, coupled with Eq. (4) whose 

(87) 

(88) 

solution is obtained by Newton's method of successive 

approximation, is integrated numerically by using a 

Hamin's predictor-corrector scheme (Ralston and Wilf, 

1965). In practice, one starts integrating with initial 

values of fa II and y, 
asymptotic values of 

la I large enough for the 
z,l 

Q to be reached. Simultaneously 
rst 

with the computation of., a , a , Band Bz ' the 
y Z Y 

moments of the velocity distribution function are 

computed from Eqs. (43), (44) and (45) - (59). This 

gives the complete description of the structure of the 

current sheet. Indeed, any physical parameter 

describing this structure can be expressed in tena. 

of Qrst ' 

A numerical program is ~vailable ~t the {nstitute 

for Space Aeronomy (Brussels). (t takes account of a 

~aXimum ~f I: partic l e species. This ?ro~ram .:an be 

applied to the description of current sheets separatin~ 

the "cells" ~f soace ;>Iasmas and numerical .lppl i catlons 

can be f~und in papers by Roth (1'178.1979.1980). 

5. Conclusions 

The kinetic model that has been developed in this 

paper can be used to determine numerically the internal 

structure of a tangential discontinuity in a collision­

less plasma. On each side of this plasma transition 

layer, the first moments of the theoretical velocity 

distribution functions are identified witn the 

corresponding ~ments of the actual distribution 

functions. This model is not restricted to a hydrogen 

plasma but the formalism is developed to take account 

of a plasma with multiple particle species. It also 

includes the presence of an electric field, normal to 

the plane of the discontinuity. This electric field is 

self-consistent since it derives from the distribution 

of the electric potential which allows the plasma to be 

quasi-neutraL In most cases, the weal< cbarge densi ty 

sustaining this electric field does not however violate 

the quasi-neutrality condition . 

Although discontinuous in the plane of the 

generalized momenta, the theoretical velocity distribu­

tion functions are not only solutions of Vlasov 

equation but also solutions of the transport equations. 

They form a set of linear combinations of shifted 

Kaxvellians which ~reover are just one class of 

functions amongst a number of others depending only on 

the constants of motion (in the Hamiltionian formalism). 

From a mathematical point of view, these distribution 

functions are very si~le. Nevertheless, they include 

all the para.eters describing the asymptotic 

characteristics of the plasma, i.e., the average 

velocity, number density and temperature of each 

particle species. ~oments of arbitrary order have been 

determined analytically in terms of the electric 

potential (.) and of the components of the vector 

potential (ay and a z)' 

Sioee 1978, a numerical program for the 

descrip~ion of the internal structure of tangential 

discontinuities has been available at the Institute 

for Space Aeronomy (Brussels). This program is based on 

the theory developed in this paper and solves Maxwell's 

equations for the potentials and the magnetic field. 

Further.ore, this program computes the moments of the 

velocity distribution functions (up to 12 particle 

species), the electric field and the charge separation, 



.. 
thu. leading to a complete description of the internal 

,tructure Qf the layer. It can be uled daily and the 

resultl are given on a graphical fonaat for every 

physical variable calculated from ~ntl up to tbe 

third order. ~umerical ~xacples obtained with this 

~ro~ram have already ~~en ?ublLshed ~lsewhere (Roth, 

19,8, 1979, 1980). They ~ave a description of the 

Internal structure ot the terrestrial ~gnetopause. 

As shown in this paper, our model is based Qn the 

kinetic description of plasaa without resortinl to the 

MHO theory. In particular, it has been shoWD tbat this 

latter theory is unable to describe the structure of 

thin current sheets, since the actual electric field is 

generally not equal to the convection electric field 

which is assumed to be a good approximation of the 

actual electric field in tbe ~ theory. Such a result 

was already pointed out by Eastman (1979, p. 97-101) and 

Roth (1982) for scale lengthS and plasma parameters that 

are often observed near the earth's magoetopause and 

adjacent plasma boundary layer. Consequently, electric 

and gradient drifts in sharp boundary layers can be 

very different from what is usually assumed from the 

classical MHD approximation. 

Finally, the many parameters used in this model 

make it very general. By a suitable choice of these 

parameters, it is expected to "mimic" the observed 

structure of a large class of tangential discontinuities. 

Furthermore, when the madel resorts to ~ents of 

higher order, like tbe energy flow, the results that can 

be obtained precede the observations (Roth, 1980)~ ~re 

generally, the model and its associated numerical 

program are a powerful tool for studying the structure 

of tangential discontinuities which are inherent in 

collisionless space (or even laboratory) plasmas. This 

includes some of the boundary layers resulting fraa the 

cellular structure of space plasmas, from the planetary 

and pulsar magnetopauses to tbe cometary tails, witbout 

forgetting the micro-scale structure of stellar winds. 
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