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Abstract

A kinetic model of tangential discontinuity in a
collisionless magnetized plasma with multiple particle
species has been reviewed in this paper. It is a one-
dimensional and stationary model whose boundary
conditions on each side of the current sheet are
specified by unlike densities, temperatures and average
velocities for each plasma componment. These average
velocities must however be compatible with the
asymptotic conditions of plasma uniformity. The model
also allows the magnetic field to make an arbitrary
rotation in the plane of the discomtinuity. Vliasov
equations for the particle species and Maxwell's
equations for the fields are solved simultaneously. The
theory is self-consistent in that the electric
potential and the electric field are obtained from the
charge-neutral approximation which is verified in most
cases. In particular, it is shown that the electric
field inside the current sheet is far from being
identical with the convection electric field which is
assumed to be a good approximatiom for the actual
electric field in the MHD framework. The velocity
distribution functions complying with Vlasov equation
are linear combinations of shifted Maxwellians.
Asymptotically their first moments are idemtical with
those of the actual velocity distribution functions an
experiment would measure on both sides of a current
sheet. With such distributions all the moments of any
order are analytically determined in terms of the
electric potential and of the compoments of the vector
potential. A numerical method is used to solve
Maxwell's equations for the fields and their correspond-
ing potentials. Therefore a full description of the
microscopic structure of the current sheet can be made.
The model is a powerful tool for studying the
structure of tangential discoontinuities which occur in

collisionless space (or laboratory) plasmas.

I. Introduction

Space plasmas have a natural propensity to break
up into distinct regions with characteristic densities,
compositions, temperatures, magnetizations and average
particle velocities (Falthammar et al., 1978, Alfvén,
1981, p. 40). The boundaries between these regions are
often stable transition layers with very high observed

lifetimes. These layers contain interpenetrated plasmas
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from the adjacent zones and most of them have eleczric
current sheets which change the orientation and intensity
of the local magnetic field. Their observed thickness is
usually of the order of a few ion Larmor gyroradii (see
for instance : Burlaga, 1971; Burlaga et al., 1977, for
the solar wind discontinuities). Typical examples of such
a cellular structure of space plasmas are the filamentarv
character of the solar wind and the containmenr :f plas=as
originating from planets and stars inside distinct
compartments dividing the neighborhood of planetary

magnetospheres.

Boundary layers resulting from a partition of
magnetized plasmas can be classified into (Nishida, 1978,
p. 17) : tangential discontinuities, contact discontinu-
ities and shocks. For tangential and contact discontinu-
ities there is no mass flow across the boundary layers
which are then convected along with the flow. To
distinguish between these two types of discontinuities one
has to examine the magnetic field component along the
normal to the boundary. If this component vanishes, then
it is a tangential discontinuity for which the total
plasma and field pressure across the discontinuity is
conserved, while in the case of a finite normal component,
it is a contact discontinuity for which the particles
rapidly diffuse along field lines making the plasma
pressure uniform. On the other hand, when the plasma flows
across the boundary layers, these structures are
propagated through the medium. The resulting wvaves are
large amplitude, sharp structures or shock waves. These
shocks include totationél discontinuities (intermediate

shocks) as well as slow and fast shocks.

Equilibrium coanfigurations of tangential discontinu-
ities in collisionless plasmas have been discussed by a
number of authors in the context of thermonuclear
contaimment. Harris (1962) considered a pianch configura-
tion in which an exactly charge-neutral layer (i.e., with
no electric field) was confined between two oppositely
directed magnetic fields produced by perpendicular flowing
currents. On the other hand, Nicholson (1963) obtained a
pinch configuration for an exactly charge-neutral layer
confined between two reversing flowing diamagnetic
currents perpendicular to a given external magnetic field.
A superposition of Harris and Nicholson's models was made
by Kan (1972). In Kan's model, reversing and field-aligned
currents, perpendicular to each other, produced
corresponding diamagnetic and opposite magnetic fields
inside an exactly charge-neutral plasma with a slab
configuration. Sestero (1964) provided a model for the
microscopic description of hydrogen plasma sheaths using
Vlasov equations for ions and electrons coupled with
Maxwell's equations for the fields. The plasma sheaths he
considered connected two different uniform states of a
plasma in a magnetic field. In the charge-neutral
approximation (i.e., with a small charge separation),
solutions were obtained which scaled according to some

representative electron Larmor radius, or iom Larmor
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radius, or piecewise, according to both. Sestero
generalized this model by considering also cases
iavolving shearing plasmas (Sestero, 1966). Inside
these sheaths the magnitude of the magnetic field
changed while the direction did not. However, Sestero
did not include changes in composition, temperatures,
anisotropies, etc... Although Kan's model included
Bultidirectional currents (Kan, 1972), it was restricted

€o exactly charge-neutral layers.

These early models of tangential discontinuities
were adjusted and generalized to describe the micro-
scopic structure of current sheets in space plasmas.
Thus, kinetic theories of tangential discontinuities
were elaborated for the purpose of explaining the
structure of the earth's plasmapause (Roth;~l976),
of current sheets in the solar wind (Lemaire and
Burlaga, 1976) and of the terrestrial magnetopause
(Alpers, 1969; Roth, 1978, 1979, 1980; Lee and Kan,
1979). In this context the most improved model was
elaborated by Roth in a series of papers (Roth, 1976,
1978, 1979, 1980). This model considers the structure
of steady-state tangential discontinuities in a
collisionless magnetized plasma with multiple particle
species. It includes changes in magnetic field
intensity and direction, plasma bulk velocity,
composition, temperatures and anisotropies. It is not
restricted to exactly charge-neutral layers. The role
of collisions as prime mover for the dissipation is
played by wave-particle interactions which determine
the stability and thickness of the current layers
(Roch, 1980).

By reason of the considerable significance of such
kinetic models for our understanding of the micro-
scopic structure of current layers in space plasmas we
will devote this paper to a review of the author's
model. Section 2 will be devoted to the description of
this model, with particular emphasis on the boundary
conditions. Unidimensional plane current layers are
considered and the determination of their microscopic
structure is based on both Vlasov and Maxwell's
equations for plasma and fields. In section 3, the
moments of the velocity discribution functions are
determined in terms of the electric potential and the
components of the vector potential. The numerical
method for solving Maxwell's equations is explained in
section 4. Hence, by solving these equatiomns for both
the potentials and the fields we can also compute the
various moments determined in section 3. This is done
by means of a suitable numerical program (see numerical
results in Roth, 1978, 1979, 1980). Therefore a
complete description of the microscopic structure of
the current sheet can be achieved. In particular, the
electric field is found by assuming that the charge-
neutrality approximation remains true. It is also shown
that the actual electric field is far from being

identical with the convection electric field. Finally,

conclusions will be summarized in section §.

2. Description of the model

In a cartesian coordinate system, the plane of a
discontinuity is parallel to the (y, 2z) plane and ail
the variables are assumed to depend on the x co-
ordinate, normal to the discontinuity. Since there .s
no mass flow across the transition and since the
parallel conductivity is very large, the electric field
is everywhere oriented along the x-axis. Furthermore,
the normal component of the magnetic field (Bx)
is assumed to vanish since this model applies to the

description of tangential discontinuities.

In rationalized MKSA units, Maxwell's equations

become for the one-dimensional geometry considered

here :

2
d”a u
—L =-uy z j;') )
dx v=]
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where L and H, are the vacuum permittivity and permeabi-
lity, respectively; u, the number of particle species;

ay and a, the non-vanishing components of the vector
potential (a); ¢, the electric potential; j;v) and

j:v). the components of the current densicty (i(”))
produced by the flow of particles of species v (each

)

particle carrying a charge Z' ’e; e being the magnitude
of the electromic charge); and n(v). the corresponding

number density.

The magnetic and electric structures of a
transition are determined by solving the system of
differential equations (1) - (3). This can be achieved
by numerical wmethods when the current and number
densities are known functions of 9, ay, and a. These
functions are the first moments of the plasma velocity
distribution functions determined from Vlasov equation.
These moments will be determined in section 3. For the
potential ¢, we replace Poisson's equation (3)

by the quasi-neutrality approximation

u
T 2®) a0

v=]

ly. a, $) =0 (4)
A self-consistent electric field is obtained

vhenever the charge density proportional to the

Laplacian of ¢ is much smaller than the charge density

associated with the positive (or negative) particles.



The velocity distribution functions must satisfy
Vlasov equation whose most general solution is any
function depending on the constants of the motion of a
single particle. These constants are the kinetic energy
(H) and the y- and z- components of the generalized

momentum (p).

From Liouville's theorem, it follows that the
velocity distribution functions satisfying Vlasov
equation are any functions of H, py and P, By
generalizing the method used by Sestero (1964, 1966),
the following velocity distribution functions F(v)

have been used by Roth (1978, 1979, 1980) :
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where H, py and p, vary in the set defined by the

inequalities :

- o0 < an 6
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0
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Here m(') is the mass of particles of species v. In

the (H, py, pz) space, the set defined by the in-
equalities (§ - (8) corresponds to the interior of a
paraboloid of revolution whose symmetry axis is
parallel to the H- axis and vhose vertex is located at
the point (Z(v)a ., Z(v)e a_, Z(v)e az). In equation
(5), qgv) are shifted Haxwe{lians in the presence of an
electric field while gi') (i = 1, 2) are discontinuous
functions in the (p_, pz) plane taking nou-negative
constant values cgv (k) in each quadrant Ek (k =1, 2,
3, 4) dividing this plane into four parts from a finite
origin géiz

in the following way :

. For Z(y) > 0, these quadrants are defined

E =1 - p" 1 x( ) + = |

1 * Poy,i 0z,i °
Ey = "c();h"'[ x Pé.:i"'l
By =l =™ ’é;),i“‘] = ’t(;zti‘
For z(") < 0, quadrants !l, EA and Ez, 83 are

permuted. Therefore the asymptotic parts of the
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quadrants E. are related to the asymptotic values of the

components 2f the vector potential located in the
corresponding quadrants Ei of the (a’, az) plane. This
can be easily seen from the definition of the generalized
momentum. Across the transition, from x = - = (| « }|)
to x = += (i »2), the point of the vector potential
draws a curve in the (ay, az) plane starting in the
asymptotic part >f a quadrant E; and ending in the
asymptotic part of another quadrant E; . (Transition
from an asymptotic configuration of g towards another
one actually determines the structure of the magnetic
field B and, in particular, the amount of rotation of
this vector across the tangential discontinuity).
Therefore if

@)

cp " (ky) =0 (10)

@)

€

(kl) =0 (1)

v)

i

that the velocity distribution function changes from
@) @) @)

< (kl) n, 2

Note however that the same result is also achieved

v

) k)

) in the particular cases for which n;y) -0

@)

1

it is seen from Eq. (5) and the definition of g

atx'-"'toc;”)(kz)u at x = + =,

without any restriction on the values of ¢
w)
and <, (kl

at x = -~ = and 7 + 0 at x = + o™,

The asymptotic velocity distribution functions
@)
(k)

i
the actual velocity distribution functions observed on

)

cé" must have the same first order moments as
each side of the tangential discontinuity. A simple
description of these functions is given by shifted

Maxwellians in the presence of an electric field :

w) 3/2
n-(”(ﬂ.p p)-N<:————) exp(--L)x
i y' Tz 0 ZIkTi(y) kTE")

1 r 2
exp { -;F'—)-’- -;-n(») Vi(”) -2 .!?) ]}‘ (12)

wvhere the lower indices i = | and i = 2 refer to
quantities evaluated at x= - * and x = + *, respectively.
4 v
In Eq. (12), T; ) and !é )
asymptotic temperatures and velocities of the particles

are the observed average

of species ¥, respectively; while No is a constant which
has the dimension of a number density. To simplify,
asymptotic isotropic temperatures have been considered
in this paper (However, asymptotic anisotropies have
also been taken into account by Roth, 1980). It must be
noticed that the velocity distribution functions defined
by Eq. (5) are solutions of Vlasov equation in a weak
way. Indeed, these solutions have mathematical dis-
continuities in the (py. pz) plane since their deriva-
tives are singular at the boundaries of quadrants Ek'
However, as shown in section 3, any moment of the
velocity distribution functions defined by Eq. (5)

is continuous vith respect to the potencials ¢, ay and
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s . Purthermore, these moments strictly meet the full
h:lrltchy of transport equations. It must also be
noticed that the observed asymptotic densities H( £
and avcra;e velocities !i<”) are not arbitrary. Indeed.

the plasma at x =7 = is charge-neutral and homogeneous.

This implies that

“u -
s 20 W)L (13
val t
LRI 4
Vi "% (14)
520 @) (o)
T z¥' n’ =0 (15)
i ” sk

y=|

Equation (13) is the condition of charge neutrality

at x = ¥ o, In Eqs. (14) and (15), V( )i and V(")

are respectively the parallel and perpendiculat‘?uith
respect to the magnetic field direction) average
velocities of the particles of species v, at x =7 =,
Equation (14) means that the perpendicular components
(Vftz) are uniform and all are equal to the perpendicular
component (Cl,i) of the asymptotic mass-velocity (gi)
defined by

- s
c = (16)
<

Indeed, since the plasma and fields become uniform
asymptotically, the electric drift remains the omly
perpendicular drift. This also implies that the asymptotic

electric field (Ei) is a convection electric field

given by
E =-C, xB8 A an

Finally, equation (15) shows that the parallel electric
current density vanishes at x = ¥ =. Indeed, since the
magnetic field becomes uniform at x = ¥ =, the electric
current becomes vanishingly small. From equatiomn (14),
it can be seen that, in frames of reference moving with
the asymptotic mass-velocity of the plasma, the average

peculiar velocity of the charged particles of species

v(gi(v)) is parallel to the asymptotic magnetic field,
i.e.,

) ) )

b a V.’ - = P o
21 = ‘gi ol ,1 £ “8)

In this equation, & is the unit vector parallel to
the asymptotic magnetic field direction. From Eqs. (13),

(15) and (18), it is easy to show that

u
r z2®) N @) L (19)
gt i v,

while, from Eqs. (18) and (16)

'3
w) () )
v}:l Ni L & [} (20)

Equations (14), (19) and (20) are the conditions that
®)

the asymptotic average velocities Xi muse fulfill for

the plasma and fields to remain uniform at x = * *,

From Eqs. (5) and (12) the asymptotic aumber
densities are of the form :
iy z

@) ) ] L L7 -
Ny oy (ki) “0 exp ¥ - X 12

where the exponential term is the asymptotic Boltzmann
factor. In this equation, 3 and 0 are the asymptotic
vector potentials and the asywptonc electric potentials,
respectively. The Boltzmann factor becomes homogeneous
at x = 7 =, since the asymptotic electric field vanishes

in each frame of reference moving with the velocity

!Ey). From Eq. (17), it can be deduced that
.1 =8 El '0,1 D
where 0 i (i = 1,2) are the asymptotic values of the

electrxc potentxal in frames of reference moving with
C..
~i

From Eqs. (21), (22) and (18), we can then

calculate the asymptotic number densities. We find

z®)

0
w) ) { 0,1 )
Ni = (ki) No exp iT(") + X. }' (23)
where
)
Z e
X — wi 24)
kT » ’

@)

1,i are the average peculiar

speeds of the charged pattxcles of species y at x = 7 o

In equation (24), u

in a direction parallel to the magnetic field, while

aﬂ,i are the parallel components of the asymptotic

vector potentials (also with respect to the magnetic

field direction). As the Boltzmann factor is homogeneous

at x = 5 e, it is clear from Eqs. (23) and (24) chat this

must also be the case for a,.
Note however that the integration of Eqs. (1) -

(3) requires only initial values at x = - = . Therefore,

the direction of the magnetic field at x = + o is not

known a priori (This is not the case for the intensity

B which can be deduced from a pressure balance

condition). To avoid an iteration process we consider

o)

the still general cases for which x = 0. These cases
can be classified into two distinct classes. The first
class includes the transitions for which the magnetic
field remains parallel to a given direction (a,= 0 in
the whole transition) while the second includes the
transitions for which the average velocities of all
particle species at x = + = are identical to the

) 0

corresponding mass-velocity of the plasma (u, 2 "

for v = 1,....Hu).



If wve normalize the electric potential in such a

wvay that

. -
0.1 (1] (25)

we can see, by putting i = | in Eq. (23) that
w)
N

c‘(")(kl) - exp (- X))
Yo

(26)

In eq. (26), NO is the total number density of
electrons on side 2, i.e., if there is j(1) electron

species,

im (a)
“0 = I Nz (27)
a=i -

If we assume that » = | corresponds to an electron
species whose number density is non-vanishing at x =
4+ - (Ngl) # 0), it can be deduced, by putting v = | and

i =2 in Eq. (23) that

(1) )
0" - e 2 :? In ———-—-—-—(T§ ) (28)
z e <, (kz) No

Taking account of Eqs. (22) and (25), this constant
’0.2 is seen to be the electric potential difference
between x = + o and x = - e, in a frame of reference
moving with the plasma mass-velocity. From Eq. (28),
it is also seen that the parameter cgl)(kz) can be chosen
as an arbitrary positive number regulating the electric
potential jump across the transition layer. The other
cgv)(kz) for v > | can now be deduced from Eqs. (23),

(28) and (24). We find, for v = 2,...,u

2@ ré”
W) ) T oM L)
N N Z T
Py 2 ( 2 ) 2 a5
z "2 N Dy n
0 2 (k) Fy

The role of the constants cg')(kj) and civ)(ka)

related to quadrants k, and k, is to allow the point of

the vector potential g3to dra: a curve vithin the (ay,
.z) plane whose asymptotic limits turm out to be in
predetermined quadrants : Ei| (corresponding to x = - =)
and Eiz (corresponding to x = + =). Generally, this will
be achileved if the kinetic plasma pressure associated
with the asymptotic parts of quadrants Ek and Ek4 is
larger than the total pressure (kinetic + magnetic)
associated with the asymptotic parts of quadrant Ek 5
This pressure unbalance can be made possible by a
suitable choice of the parameters c{”)(k3) and c§”)(k6).
Therefore, we should be able to simulate arbitrary

rotations of the magnetic field in the (y, z) plane.

Finally, for each velocity distribution function, 4
additional parameters (POy,l’ pOz,l) and (pOy,Z' POz.Z)
define two sets of quadrants whose origin is located at
Bg and Ry 3> respectively. Their role is to overlap or

» »

separate the contributions of the asymptotic plasma
@)

distributions of the form cﬁ")(ki) 0
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1f

2 o

lfl < (kj) = constant ; j =1, 2, 3, 4 (30)
and

) )
1y =4y an
w) @)
25,1 " 29,2 (32)

the corresponding ¥ - velocity distribution function
(F(v)) is a shifted Maxwellian everywhere within the
transition and it is obvious that the temperature

(9(”)) and the average velocity (< x(”) >) remain uniform
from x = - * to x = ¢+ ®, [f the electron (/ion)

species remain shifted Maxwellians from x = ~ * to x =

+ %=, only the ions (/electrons) can be accelerated

inside the transition, on a characteristic scale length
of the order of a few ion (/electron) Larmor gyroradii.
As Sestero (1964) we call these kinds of transition
ion(/electron) layers, respectively. On the other hand,
if Eqs. (30) - (32) are not fulfilled together, then one
obtains transitions which are variously scaled. Namely,
the scale length is an electron Larmor radius near the
middle of the sheath and an ion Larmor radius further

out towards the two ends.

3. Moments of the velocity distribution functions ¥

In this section, the results are related to any
velocity distribution function. Therefore, the upper
indices will be dropped, unless otherwise stated. All
the variables can be made dimensionless by introducing
four basic units for length (Xx), velocity (lv),
time (lc) and mass (1-), defined by

N
= ( 5 = ] v
e l-lo 0
K Té“) W1/2
A, - (_ (36)
e
ne
x: = ;T; (35)
Ay " 3, (36)

In these equations (33) - (36), L is the electron
mass and it is assumed that the upper index (a) pertains
to an electron species. Corresponding to this electron
species, the unit of length (lx) is the skin depth, the
unit of velocity (lv) is the thermal velocity, the unit
of time (xt) is proportional to the gyroperiod in a

magnetic field whose magnitude is A_, the magnetic

B
field unit, and, finally, the electron mass is the
unit of mass (l.). With this system of units, it is

easy to demoustrate that relations between dimensional
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physical variables and the corresponding dimensionless
ones are unchanged provided that, in the dimensionless
systenm used, the magnitude of the electronic charge

(e), the permeability of vacuum ono) and the Boltzmann's
constant (k) be all together equal to unity, i.e.

(identifying dimensionless quantities with a star index)
e 'no"k = | (37

From Poisson's equation (3), it can also be deduced that

x 1®)
. 2
€5 " 3 (38)

m C
e

where c is the speed of light in vacuum. Therefore, the

dimensionless form of Eq. 3 is

2
2« m c u "
4o .- = ps X a4 19 (39)
dx k T2 v =]

and the charge density can be ignored provided that

K rg @ '
—_— << 1 (40)
ue c2 dx'.2

Eq. (40) is a necessary and sufficient condition for

the quasi-neutrality approximation to hold.

Let us take, for v = I,...,p and 1 = 1,2

@)
N Sk B _
5 k1®) (e T®)

1 1

i.e., the inverse of the asymptotic thermal energies.

In the remaining part of this paper we shall only use
dimensionless quantities and shall therefore leave out the

star index.
Moments of any order Qrst are defined by
r s ¢t ’
Q *a <v \.ry v, > (42)

where n is the number density, Ve vy and A~ the
components of the particle velocity. The symbolization

< v: v; v: > represents the average value of the variable
quantity Ve v; v; over the entire distribution of

velocities.
It is found (Roth, 1980)
Q =0 (43)

TSt

if r is odd

2 4
Qge = = T M (ki) )
i=l k=]

if r is even, with

Hrst(k’i) = ci(k) Erai Ai(r) Ly:k,i(s) Lz (t) (45)

sk,i

vhere
£l g ( &

4 - F4 o

rac 2"/2 % (r/2)!

r/2
Ai(r) =g e exp ( Di)
- ]
s s €

5 kL(S)- < ‘( P \;'k =72

ik, j-o j ( I\i)J =

with

A
[}
f
~
-
-
]
L
<
e

Q Z-l n-l/Z
e § »1
A. =a Z2
1
T
1/2 =i
y ety

The vectors pertaining to Eqs.

(46)

(50)

b (51)

(52)

(53)

(54)

(55)

(50) - (55)

are two-dimensional vectors in the (y, z) plame. The

usual binomial coefficients occur in

by Eqs. (48) and (49). In these sums,

the sums defined

:k(k - l,.-.,“)

are two-dimensional vectors whose definition is the

following

= (=1, + 1)
L=,
1,3=(-l,-l)

%’('l’-')

(56)

Also, in Eqs. (48) and (49), expressions like

x (i,y) and Ri(y) are functions defined for real "y

and non-negative integral "i" as follows :

K(i,y) =y

for i >0

(57




r
c(i,y) =1 (58)
for i = 0
¥ ,
R(y) »  x' exp (- x7) dx (59)

y

In particular,

«(0,0) = I (60)
L /2
lo(Y) = erfc (y) 61)
2
1 2
ll(y) =3 exp (-y) 5 (62)

where erfc(y) is the complementary error functiom :

+
2 2
erfc(y) = Jf exp (- x") dx (63)
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4, The numerical methods of solving Maxwell's equatioas

We are now able to determine the second members
of Eqs. (1) - (2) and the first member of Eq. (4) in

terms of ¢, ay and a. Indeed, we have for each particle

species (leaving out the species index)

2 = Q00 NPT —— 91ﬂ$6“2_ -
jy = Z QOIO (65)
jz = Z QOOI (66)

Let us define (with k = 1)

( ZZ >1/2
A, = _— (a + 1)) (67)
= 2m k T. - %
1

with

|
1L = Z (ma V. - Eo,i) (68)
Let us also define
.i.";‘.'Zi (69)

i.e., the electric potential in a frame of reference
moving with the average velocity Vi. Then, from Eqs.
(50), (41) and (69), it can be seen that

I (70)

Now, from the formulae established in the previous

section, it can be deduced that

@) | 3 5.
e £ an
i=1  j=i %ij
2 4
*) £ 3 ®)
- £ (72)
QOIO i=1 i ij,y
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2 A
@) v)
Q - 3 < £, (73)
A G ETRS A
with
al? o L ¥ gi*) (74)
1] 4 i 1]
E?E) = L ng) c{v)(j) erfc (- € (,)) x
Lj.y & i i Z,] Z,i
v) (V) ¢ ) 12 ,(v)
_ ) . ]
by g ooke T8y 0 Hpal ¥ gy M T " Q) i
2
_ a0
exp ( Ay,i ) (75)
and
) 1.0 ). b ( )
Bijoz "%y o yesfel-e, A Px
@) - ) : *) /2 ;)
[V i erfe ( ‘z,j Az‘i + ez}j sign Z (2/x) Ui
exp (- A ("’ ) (76)
vhere Ogy) is the thermal velocity
. T(p) \1/2
@) ( tras
8. =
i n(')
and b
- ( ZU)O£U) >
K. = exp = —— e (78)
. k)
i
By ., 0 " RQ) ; AP,
Gij (3) erfe ( € o] y 1) erfec ( 'z,j 4 L
(79)
sign Z = + | for Z >0
= - ] for 2< 0 ~ (80)
Equations (1) - (3) can be written
dB »
z ( ) )
= “o 2 2 Qo (81)
dB u
=¥ = )
ax “o pfl Qom a2y
2 [
d’e | ( v) ()
n- i z Q (83)
dxz £0 v=] 000
As shown by Eq. (40), the quasi-neutrality
approximation is expected to hold in most cases.
Therefore, the electric potential is more suitably
determined from the plasma neutrality equation :
I
( ) 4(®)
z QOOO 0 %)

v=}

The electric field E can be obtained explicitly
in terms of ¢, ay and az. by taking the first derivative
of Eq. (4) with respect to x (Roth, 1980). It is found
that

x
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(84)
This result shows that the convection electric
field (E ) differs gemerally from the actual electric
&

fleld 'E). Indeed,

E.=-(CxB),

[
" 2 4
ra® oz o " xp,
L. v=l =t g1 M 85)

For the electric field (E) be equal to the
convection electric field (Ec)' it is sufficient that

Z(,)Z

) = coustant (86)
m

t®)
1

forv = 1, ...p and i = [,2.

For example, in the case of a hydrogen plasma
whose ion temperature is much smaller than the electron
temperature (cold plasma approximation), the condition
given by Eq. (86) could be met. However, in the case of
the earth's magnetopause, where the i temperature is
about 10 times as large as the electron temperature

(Eastman, 1979), Eq. (86) could pot be satisfied.

The charge density (q) can also be obtained by
taking the second derivative of Eq. (4) with respect to

x. The result can be found in Roth (1980).

The differential equations (81) and (82), together

with the field equations

da
B = - —2 (87)
y dx
da
B =L (88)
2 4x

form asystem of four differential equations of the
first order for ay, a, By and Bz' This system of
differeatial equations, coupled with Eq. (4) whose
solution is obtained by Newton's method of successive
approximation, is integrated numerically by using a
Hamin's predictor-corrector scheme (Ralston and wilf,
1965). In practice, one starts integrating with initial
values of lay’l' and [az’l[ large enough for the
asymptotic values of Qrst to be reached. Simultaneously

with the computation of ¢, ay, a, B and Bz, the

y
moments of the velocity distribution function are
computed from Eqs. (43), (44) and (45) - (59). This
gives the complete description of the structure of the

current sheet. Indeed, any physical parameter

describing this structure can be expressed in terms

of Qrst'

A numerical program is available at the Institute
for Space Aeronomy (Brussels). [t takes account of a
maximum of |2 particle species. This program can be
applied to the description of current sheets separating

the "cells" of space plasmas and numerical applications

can be found in papers by Roth (i978, 1979, 1980).
5. Conclusions

The kinetic model that has been developed in this
paper can be used to determine numerically the internal
structure of a tangential discontinuity in a collision-
less plasma. On each side of this plasma transition
layer, the first moments of the theoretical velocity
distribution functions are identified with the
corresponding moments of the actual distribution
functions. This model is not restricted to a hydrogen
plasma but the formalism is developed to take account
of a plasma with multiple particle species. It also
includes the presence of an electric field, normal to
the plane of the discontinuity. This electric field is
self-consistent since it derives from the distribution
of the electric potential which allows the plasma to be
quasi-neutral. In most cases, the weak charge density
sustaining this electric field does not however violate

the quasi-neutrality condition.

Although discontinuous in the plane of the
generalized momenta, the theoretical velocity distribu-
tion functions are not only solutiomns of Vlasov
equation but also solutions of the transport equations.
They form a set of linear combinations of shifted
Maxwellians which moreover are just one class of
functions amongst a number of others depending omly on
the constants of motion (in the Hamiltionian formalism).
From a mathematical point of view, these distribution
functions are very simple. Nevertheless, they include
all the parameters describing the asymptotic
characteristics of the plasma, i.e., the average
velocity, number density and temperature of each
particle species. Moments of arbitrary order have been
determined analytically in terms of the electric
potential (#) and of the components of the vector

potential (ay and az).

Since 1978, a numerical program for the
description of the intermal structure of tangential
discontinuities has been available at the Institute
for ‘Space Aeronomy (Brussels). This program is based on
the theory developed in this paper and solves Maxwell's
equations for the potentials and the magnetic field.
Furthermore, this program computes the moments of the
velocity distribution functions (up to 12 particle

species), the electric field and the charge separation,



thus leading to a complete description of the internal
structure of the layer. It can be used daily and cthe
cesults are given on a graphical format for every
physical variable calculated from moments up to the
third order. Numerical examples obtained with this
srogram have already been published elsewhere (Roth,
1978, 1979, 1980). They gave a description of the

internal structure ot the terrestrial magnetopause.

As shown in this paper, our model is based on the
kinetic description of plasma without resorting to the
MHD theory. In particular, it has been shown that this
latter theory is unable to describe the structure of
thin current sheets, since the actual electric field is
generally not equal to the convection electric field
which is assumed to be a good approximation of the
actual electric field in the MHD theory. Such a result
was already pointed out by Eastman (1979, p. 97-101) and
Roch (1982) for scale lengrths and plasma parameters that
are often observed near the earth's magnetopause and
adjacent plasma boundary layer. Consequently, electric
and gradient drifts in sharp boundary layers can be
very different from what is usually assumed from the

classical MHD approximation.

Finally, the many parameters used in this model
make it very gemeral. By a suitable choice of these
parameters, it is expected to "mimic" the observed
structure of a large class of tangential discontinuities.
Furthermore, when the model resorts to moments of
higher order, like the energy flow, the results that can
be obtained precede the observations (Roth, I980)§ Hotg
generally, the model and its associated numerical
program are a powerful tool for studying the structure
of tangential discontinuities which are inherent in
collisionless space (or even laboratory) plasmas. This
includes some of the boundary layers resulting from the
cellular structure of space plasmas, from the planetary
and pulsar magnetopauses to the cometary tails, without

forgetting the micro-scale structure of stellar winds.
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