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Linear magnetohydrodynamic response of the magnetopause 
to magnetosheath fluctuations 

J. De Keyser 
Belgian Institute for Space Aeronomy, Brussels 

Abstract. We study the response of the magnetopause to incident magnetosheath ULF 
fluctuations by combining the linear magnetohydrodynamics (MHD)approach with 
harmonic analysis. We consider plane wave fronts arriving at the magnetopause with 
various tangential wavelengths. The fluctuations in the magnetosheath are pulse trains 
or waves with a broadband ULF spectrum. We obtain the magnetopause response to 
these fluctuations based on the computation of the transmission, reflection, and absorption 
characteristics of monochromatic linear MHD waves at different frequencies in a given 
equilibrium magnetopause configuration. Particular attention is given to MHD wave mode 
conversion as an ingredient for explaining the enhanced electromagnetic fluctuation level 
near the magnetopause. 

1. Introduction 

The magnetospheric boundary layer separates the shocked 
solar wind in the magnetosheath from the magnetospheric 
plasma. This boundary layer usually consists of two parts. 
The outer part is the magnetopause current layer, which car- 
ries the diamagnetic current associated with the transition 
between the magnetosheath and the magnetospheric mag- 
netic fields. The inner part is the low-/high-latitude bound- 
ary layer, generally located on closed magnetic field lines 
and containing magnetosheath plasma that somehow man- 
aged to cross the magnetopause. The overall structure of 
the magnetospheric boundary can be described by equilib- 
rium models that assume the magnetopause to be locally 
in a tangential or rotational discontinuity state [e.g., Son- 
nerup and Cahill, 1968; Lee and Kan, 1979; Paschmann et 
al., 1979]. The boundary, however, is strongly affected by 
transient phenomena. These are particularly important for 
mass and energy transport across the magnetopause. Such 
phenomena include flux transfer events, impulsive penetra- 
tion of plasma, percolation, and diffusion. 

In this paper we do not focus on large-scale transient 
mechanisms that affect the structure of the magnetopause but 
on the ever-present small-scale ultralow frequency (ULF) 
fluctuations [LaBelle and Treumann, 1988]. These ULF 
waves are known to exist in the broadband fluctuation spec- 
trum of the solar wind, but they might also be generated in 
the Earth's vicinity, for instance as turbulence immediately 
upstream of the quasi-parallel bow shock [Engebretson et 
al., 1991]. These ULF waves are convected downstream 

across the bow shock and through the magnetosheath. Dif- 
ferent hydromagnetic ULF wave modes have been identi- 
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fled in the magnetosheath [Anderson et al., 1982; Song et 
al., 1994; Lacombe et al., 1995]. The ULF fluctuation level 
generally peaks at the magnetopause and is suppressed in 
the magnetosphere [Perrant et al., 1979; Anderson et al., 
1982; Rezeau et al., 1989; Engebretson et al., 1991; Rezeau 
et al., 1993; Song et al., 1993]. Belmont et al. [1995] were 
the first to suggest that the peak fluctuation level at the mag- 
netopause not necessarily meant that these fluctuations were 
generated there by some instability but that this peak could 
also be due to resonant amplification of the incident magne- 
tosheath fluctuations. Resonant mode conversion of MHD 
waves, which leads to localized resonant amplification of 
the wave amplitude, is a well-studied process in different 
contexts [e.g., Southwood, 1974; Poedts et al., 1989; Zhu 
and Kivelson, 1989; Hollwe$, 1997, and references therein]. 
Mode conversion occurs at plasma inhomogeneities such 
as the magnetopause, where the Alfvdn and sound speeds 
change, so that the Alfvdn or slow-mode frequencies can 
match the incident wave frequency at some points. The res- 
onant excitation of tangential Alfvdn and slow-mode waves 
by the incident wave enhances the fluctuation level there. 

In the cold plasma case only Alfvdn resonances are pos- 
sible; they are due to the changing Alfvdn velocity across 
the magnetopause [Belmont et al., 1995]. De Keyser et 
al• [1999] discuss the warm plasma case, with changes in 
plasma parameters and in magnetic field intensity and orien- 
tation across the magnetopause, showing the simultaneous 
presence of multiple resonant layers corresponding to both 
Alfvdn and slow-mode resonances. The present paper fur- 
ther extends this work by considering magnetosheath wave 
packets or waves with a broadband spectrum, rather than the 
monochromatic waves used before. This improves the real- 
ism of earlier simulations of the magnetosheath wave mode 
conversion scenario. To this end, we combine the order anal- 

ysis (linearization, with its implicit limitation to small per- 
turbation amplitude) with harmonic analysis (to reproduce 
various waveforms and incident wave spectra). The pres- 
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ence of a broadband spectrum leads to resonant absorption 
of wave energy not in one or a few isolated resonant layers, 
but the absorption is distributed more evenly throughout the 
magnetopause. 

The merit of this paper lies in the study and interpretation 
of the effect of broadband ULF fluctuations on the magne- 
topause. This is of direct relevance for the interpretation of 
the magnetopause response to the observed magnetosheath 
wave spectra. We focus here on two types of magnetosheath 
waves identified by Anderson et al. [1982]: (1) We examine 
the dynamic consequences of intermittent, "spiky" pertur- 
bations on the magnetopause. To this end, we consider a 
periodic density pulse train with a period that is much larger 
than the pulse duration, in order to avoid interference effects 
between incident pulses and their reflections. (2) We also 
study the effects on the magnetopause of ULF continua with 
substantial power in a broad low-frequency band, like those 
identified observationally [Rezeau et al., 1989; Song et al., 
1994; Lacombe et al., 1995]. 

2. Geometry and Plasma Properties 

We consider the same subsolar magnetopause configura- 
tion as De Keyset et al. [1999]. The equilibrium is of the 
tangential discontinuity type without plasma flow, that is, 
the normal magnetic field B? ) - 0, and the equilibrium 
velocity v © - 0 (x is the coordinate along the Earth-Sun 
line). The magnetospheric field B•nsp h - B(ø)(-oo) and 
the magnetospheric and magnetosheath mass densities and 
(ion + electron) temperatures P•nsph' P•nsh' r•nsph' r•nsh are 
given. The (ion + electron) mass is denoted by To. We then 
adopt the following equilibrium profiles: 

p(0) , 
msph (2•) -- /9msph{•(x/D), 
p(0) , msh(2•) -- /9rnsh•(--2•/D), 

_(0) A(0) /9 © (2•) -- /•rnsph (2•) q-' /Vms h (2•), 
T(0) (x) r,•, (0) •, (0) /p(O) -- [1 msph/9msp h (2•) -Jr- I msh/9rnsh (2•)] (2•), 
p(0) p(0) (0) th (2•) -- ]CB r 

1 

where •(x/D) - • erfc (x/D) allows a smooth transition 
with half width D (erfc denotes the complementary er- 
ror function). These profiles specify a magnetopause with 
half thickness D, centered at x - 0. In the present pa- 
per we will not consider the effects of magnetic field rota- 
tion across the magnetopause; the magnetic field remains 
unidirectional. We adopt the values /9•nsph/m -- 1 cm -3, 
/9•nsh/TO' -- 20 cm- 3, r•nsph = 20 X 106 K, r•nsh = 
4 x 106 K, Bmsph -- 65 nT, and a magnetopause half thick- 
ness D - 300 km [Berchem and Russell, 1982]. The mag- 
netic field profile is determined from pressure balance, with 
Brash -- 46 nT. This equilibrium configuration is shown 
in Figure 1. It is characterized by Alfvdn speeds VA,msh = 
225 km s-1 < VA,msph -- 1420 km s- • and sound speeds 
Cs,msh -- 235 km s-1 < Cs,msp h __ 525 km s-1 

The proton gyrofrequency is 700 mHz in the magneto- 
sheath and 1000 mHz in the magnetosphere, setting an up- 

E 

20 

10 

20 

10 

50 

magnetosphere magnetosheath 

incident 

waves 

I i 

d 

Pmag % Pth 

I I I 
- 1 ooo o 1 ooo 

x (km) 

Figure 1. Equilibrium low-shear subsolar magnetopause 
configuration used in this paper. The characteristic half 
width of the transition is 300 km: (a) number density, (b) 
temperature, (c) magnetic field, and (d) thermal and mag- 
netic pressure satisfying pressure balance. 

per limit to the frequencies we can safely consider within 
the MHD approximation. The Alfvdn and slow-mode travel 
times from the subsolar point to the cusp are of the or- 
der of hundreds of seconds; the behavior of resonant waves 

with longer periods (lower frequencies) is affected by the 
cusp response. We therefore consider frequencies f in the 
range 5 - 500 mHz (periods 2 - 200 s). For such frequen- 
cies we find typical Alfvdn wavelengths AA = vA/f= 
1500 - 150,000 km that are much larger than the ion gy- 
roradii p,•,.•, = 58 km and /9msph : 92 km. The one- 
dimensional approximation becomes invalid for the largest 
of these wavelengths as they are of the order of the radius 
of curvature of the magnetopause. The magnetosheath flow 
also can no longer be ignored far from the subsolar point. 
The magnetopause layer was chosen to be sufficiently wide 
(several ion gyroradii) so that the MHD approximation does 
apply. 

3. Linearization and Harmonic Analysis 

We linearize the ideal MHD equations around the equilib- 
rium configuration by writing every quantity (depending on 
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position r and time t) as a sum of its equilibrium value and 
higher order contributions' q(r, t) - q(0)(a:) + q(•)(r, t) + 
... The linearization procedure (see the Appendix) assumes 
that every perturbed quantity is smaller than its equilibrium 
value: q(•) << q(0). Such small-amplitude perturbations do 
not essentially alter the state of the plasma through which 
they propagate. Therefore the unperturbed plasma proper- 
ties (and their gradients) completely determine the propaga- 
tion characteristics of the waves; no wave-wave interactions 

are taken into account. The response of the system to a su- 
perposition of several small-amplitude waves then simply is 
the superposition of the responses of the system to each indi- 
vidual wave. We exploit this property here to use harmonic 
analysis in order to compute the system response to small- 
amplitude wave packets or broadband waves. We consider 
periodic perturbations q(•) that are composed of waves with 
frequencies w+n - -{--/ZWbase -- -+-27r/Zfbase, where n - 
1, 2,... ,nmax, and with wave vectors k - k•(x)l• + 
where the tangential wave vector kt - [0, ky, k•] is the same 
for all frequency components. Such broadband plane wave 
perturbations are of the form 

f'lma x 

q(•)(r,t) -- y•, •n(X)e i(kt'•'-•'•t) + O_n(X)e i(kt'•'+•'•t), 

that is, the set of On constitute the discrete Fourier trans- 
form of the first-order perturbation. For each frequency COn 
the perturbation •,• (x) can be computed from the linearized 
MHD equations, which can be expressed in terms of the nor- 
mal displacement •x and the total pressure perturbation -? as 

dx ' 
d^ 

Expressions for (7• and (72 are given in the Appendix. The 
perturbation wavelength can be smaller, of the same order, or 
larger than the equilibrium gradient length scales that appear 
in the expressions for (71 and C2 through the local Alfv•n 
and sound speeds. Note, however, that the wavelength range 
is limited by the assumptions inherent in the planar MHD 
problem setup, as discussed in the previous section. In uni- 
form regions, the propagation equations become the simple 
wave equation 

d 2 2 " 

+ -0, 
with Kx 2 - -C'•(72. As kt is real for plane waves, K• 2 is 
real as well. If K• 2 > 0 the solution is a superposition of 
a left- and a right-going sinusoidal wave, with kx - +Kx 
(propagating waves). If Kx 2 < 0, the solution is a super- 
position of an exponentially growing and decaying mode, 
with k• - +i v/-K• (nonpropagating waves). When (72 
becomes unbounded at some point in the domain (C• is al- 
ways bounded), K• 2 is unbounded there (when C• •= 0) and 
the wavelength in the normal direction tends to zero, corre- 
sponding to resonant absorption. The resonance conditions 
reflect the coupling between the magnetosonic waves propa- 

gating in the a: direction and the tangential Alfv•n and slow- 
mode waves at the singular points: 

vA 

k•4 and ks are the local AlfvSn and slow-mode wave vectors 

[Belmont et al., 1995; De Keyset et al., 1999]. Each spectral 
component is characterized by its proper resonance condi- 
tions, and its proper transmission, reflection, and absorption 
coefficients. 

Following Belmont et al. [1995], we consider surface 
wave vectors kt + eti that have a small imaginary part 
(et/kt << 1). The wave fronts then are slightly modulated 
in the tangential direction with a length scale ,,- e•- • >> ,•t, 
rather than being exactly planar. Introducing this imaginary 
part avoids the unboundedness of (72 at the points of reso- 
nance. In general, one then has Im Kx 2 -/= 0, implying that 
the amplitude of a wave propagating in a uniform medium 
no longer remains constant and that the time averaged en- 
ergy flux {Ox ) associated with that wave changes with x at a 
rate proportional to et, which must therefore be chosen small 
enough. The magnitude of the jump in the energy flux at the 
resonant points is then independent of the precise value of et 
(see the Appendix); the sign of the jump, however, depends 
on the direction of et with respect to the magnetic field and 
the flow velocity. 

4. Boundary Conditions 

For the computation of each spectral component we im- 
pose boundary conditions on the magnetospheric side: We 
require that only a left-•oing wave is present there, imply- 
ing that "•(Xmsph) = -+-•x (Xmsph)V/C1 (2:msph)/C2(Xmsph), 
where the sign is chosen so as to select the left-going wave 
[De Keyset et al., 1999]. As the linear wave solutions for 
each frequency are determined up to an arbitrary scaling fac- 
tor, we choose •x(2rmsph) -- 1. We solve the differential 
equations for • and -? using an adaptive second-order im- 
plicit integrator. We have chosen et/kt • 10 -6, with et an- 
tiparallel to B ©. Thanks to the adaptivity of the integrator, 
we are able to resolve the resonant sheets, whose thickness 
scales with 

There are different ways to specify the nonmonochro- 
matic magnetosheath fluctuations. Total pressure variations 
in the magnetosheath may be due to fluctuations of dynamic 
pressure (density or normal velocity variations), of thermal 
pressure (density variations), or of magnetic pressure (vari- 
ations in field strength). In the simulations presented here, 
we impose density perturbations in the magnetosphere; the 
model then self-consistently computes the precise nature 
of the incident and reflected magnetosheath perturbations, 
which in general involve variations of all plasma and field 
parameters, not only of the density. The periodic density per- 
turbation $msph (t) at the magnetospheric edge (x = Xmsph, 
y = Z = 0) has a Fourier expansion 
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/),max 

$msph(t) -- Z $ne-iv:=t + 
n----1 

We limit nmax in order to keep all frequencies below the 
ion gyrofrequency. Note that $msph is a real function of 
time, implying $,• ---- $*-n (the asterisk denotes the com- 
plex conjugate). Imposing 8msph(t) -- /9(1)(Xmsph, t), or 
sn -- t•n (Xmsph), produces the desired linear combination of 
the spectral components that matches the driver. Note that, 
because Ct and C2 do not depend on the sign of o:n, we also 
have •,• - •*_n for any perturbed quantity. Doing the in- 
verse discrete Fourier transform, we necessarily obtain real 
perturbations q(t)(x, t). We choose the perturbation $msph 
to have an arbitrarily small unit amplitude, as the solution is 
fixed only up to a scaling factor. 

We have to stress here that the procedure outlined above 
does not always work: Waves that cannot propagate in the 
magnetosheath should not be present in the magnetospheric 
boundary condition, that is, we cannot arbitrarily choose the 
imposed waveform. We therefore modify the above pro- 
cedure by setting s,• : 0 for those frequencies for which 
Re K• 2 < 0 in the magnetosheath. 

5. Solutions 

We consider the low magnetic shear subsolar tangential 
discontinuity magnetopause, where the magnetic field B © 
is along y. The base frequency is chosen to be fbase = 
$ mHz. We use 100 frequencies in the Fourier description 
of the driver signal; the highest frequency does not exceed 
500 mHz. We keep these frequencies fixed but consider two 
different cases depending on the tangential wave vector. 

5.1. Intermittent Perturbations 

In a first example we focus on the response of the mag- 
netopause to individual density pulses, as an example of in- 
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Figure 2. Wave vector diagram across the magnetopause 
for the first example (see text). The plot shows the Alfvfin 
and slow-mode wave vectors kA (x) and ks(x) correspond- 
ing to the base frequency of the periodic incident signal, 
which vary by an order of magnitude across the magne- 
topause. The solid horizontal line corresponds to the wave 
vector kll of the incident wave; the dashed lines give the 
harmonics kll/n. Since there are no intersections between 
kA(x) or ks(z) and any of these harmonics, no resonant 
amplification can occur. 

termittent perturbations. We use a periodic sequence (period 
is 200 s) of pairs of pulses of unit magnitude (in arbitrarily 
small units) with alternating sign. The wave vector is chosen 
to be kt = [0.5, 0]kA,msph. The base frequency 5 mHz was 
chosen so as to ensure that all harmonic components remain 
in the MHD regime; on the other hand, the base period is 
sufficiently large (for the given wave vector) and the pulses 
are sufficiently far apart so that we can study the response 
of the magnetopause to an individual pulse without interfer- 
ence from other incident or reflected pulses. The tangential 
Alfvfin wavelength at the magnetopause that corresponds to 
this frequency/wave vector combination is very large, of the 
order of the diameter of the magnetosphere. Each pulse lasts 
10s. 

The base frequency wave and its harmonics are all prop- 
agating in both the magnetosheath and the magnetosphere 
(ReK• 2 > 0). This is illustrated in Figure 2, which com- 
pares kll/n with the local Alfvfin and slow-mode wave num- 
ber profiles ]CA(X) : Odbase/V A and ks(x) = Odbase/½s. In 
the cold plasma case the criterium kll/n <km is a necessary 
and sufficient condition for propagation; in the warm case 
this condition still holds approximately if cs is of the same 
order as VA [De Keyser et al., 1999]. If the base frequency 
component is propagating, its harmonics are too. 

Figure 3a shows the driving density perturbation $msph 
imposed at the magnetospheric edge of the simulation do- 
main. Figure 3b gives the power spectral density Pmsph(f) 
of this perturbation; most of the power is in the lowest fre- 
quencies. (The contribution of the higher frequencies in- 
creases for larger pulse width to period ratios.) Figure 3c 
plots the density perturbation $n•sh (t) at the magnetosheath 
edge of the domain, 5000 km upstream of the magnetopause, 
showing the alternating incident and reflected pulses. Note 
that the magnetosheath density fluctuation amplitude ex- 
ceeds that in the magnetosphere by a factor 50. The power 
spectral density of the magnetosheath density fluctuations 
P, nsh (f) is given in Figure 3d. 

The velocity and density perturbations v(• •) (x, y - 0, z - 
0, t) and p(1)(x, y = 0, z = 0, t) are given in Figure 4 as 
a function of distance x from the magnetopause and time 
t. The earthward traveling pulses of alternatingly earthward 
(v(• 1) < 0) and sunward (v?) > 0) flow perturbations in 
the magnetosphere are caused by incident pulses in the mag- 

(•) 
netosheath (same v.• sign), which also produce reflections 
(the echoes in Figure 3c). Figtire 4 shows the successive ef- 
fects of these alternating pulses. The vertical scales must be 
interpreted as being relative to the unit magnetospheric den- 
sity perturbation amplitude. Near t = 50 s a positive pulse 
raises the density in the unperturbed magnetopause. At 100 s 
or -100 s a negative pulse brings the excess density at the 
magnetopause back to zero, near -50 s the next negative 
pulse forces a density depletion at the magnetopause, and, 
finally, near 0 s a positive pulse brings the magnetopause 
back to its unperturbed state. The net density change must 
be zero since the driver is periodic. The density perturbation 
is maximal in the magnetopause, where it has about 10 times 
the magnetosheath perturbation amplitude. The transmitted 
pulse density is only about 1/50th of the incident one. 
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Figure 3. Driver perturbations for the first example (see 
text): (a) The specified density perturbation 8msph at the 
magnetospheric edge of the simulation domain, with an ar- 
bitrarily small unit amplitude, and (b) its power spectral den- 
sity Pmsph. (c) The corresponding perturbation 8rash at the 
magnetosheath edge of the domain, with an amplitude that 
is 50 times larger than that of the magnetospheric signal, 
showing the incident and reflected pulses, and (d) its power 
spectral density Pmsh. 

Let us focus on a single pulse, for instance, the incident 
enhanced density pulse arriving at the magnetopause near 
t = 50 s. Before the arrival of this pulse the magnetopause 
is in an essentially unperturbed state. When the pulse ar- 
rives, the density inside the magnetopause starts to increase. 
This increase continues progressively as long as the incident 
pulse lasts. Part of the pulse propagates across the mag- 
netopause, but with a sharply reduced density. The prop- 
agating pulse is characterized by a faster group velocity: 
Kx is larger there because of the higher Alfv(•n and sound 
speeds, such that the phase velocities of the frequency com- 
ponents Vph(W) = w/Kx are all proportionally larger. A 

reflected pulse is produced, which travels at the same speed 
as the incident one but in the opposite direction. This wave 
corresponds to a density reduction and an earthward flow 
perturbation, as though the strong density enhancement in 
the magnetopause transition requires some material from the 
magnetosheath to be pulled in. 

Figure 5 illustrates the effect of the perturbation on the 
total density. We have superposed the perturbation on the 
equilibrium density, thereby choosing the perturbation am- 
plitude large enough to be able to see its effect, but small 
enough so as to guarantee positivity of density and pressure 
everywhere. The effect of incident density enhancements is 
to bring plasma toward the magnetopause layer, thus shift- 
ing it more earthward, while incident density depletions al- 
low the magnetopause to move outward again. Note that to- 
tal pressure balance is satisfied up to first order at all times. 
The effect of a periodic pulse train is therefore an oscillating 
motion of the magnetopause over a distance of the order of 
the magnetopause thickness: The linear MHD response is 
controlled by the gradients of the unperturbed state; as soon 
as the perturbation is so large that it significantly alters the 
equilibrium (that is, when the location of the magnetopause 
significantly changes such that it no longer corresponds to 
the gradients of the unperturbed state) a nonlinear treatment 
is needed. 

Considering time averages over a multiple of the pulse 
train period, we find that there is no net absorption of en- 
ergy at the magnetopause. We define the integrated trans- 
mission, reflection, and absorption coefficients ct, cr, and 
ca as the transmitted, reflected, and absorbed time-averaged 
flux relative to the incident time-averaged energy flux inte- 
grated over all frequencies; conservation of energy requires 
ct + c,. + ca = 1. In this example the time-averaged energy 
flux ((/)•) is constant and negative (earthward), as shown in 
Figure 6a. The flux in the magnetosphere corresponds to the 
transmitted pulse, which carries ct = 53% of the incident 
flux. The magnetosheath flux is the sum of the incident (neg- 
ative) flux and the (positive) reflected flux (reflection coeffi- 
cient c•. = 47%). As there is no absorption (ca = 0%), the 
magnetosheath and magnetospheric fluxes are equal. Fig- 
ure 6b plots the extreme values of the magnetic field pertur- 
bation; the amplitude of the ULF fluctuations clearly peaks 
at the magnetopause, while it is suppressed in the magne- 
tosphere. It must be noted that there is a small and fluctu- 
ating normal magnetic field component B• present in this 
perturbed tangential discontinuity magnetopause. This does 
not imply that the magnetopause becomes of the rotational 
discontinuity type but simply reflects the motion of the mag- 
netic field lines associated with the wave; within the MHD 
frame, there can be no transfer of mass across the field lines 
at any time. 

Figure 7 shows the spectral transmission, absorption and 
reflection coefficients ct(f), ca(f), and c•(f) in the 5 - 
500 mHz range. For the given wave vector kt the trans- 
mission is enhanced as the frequency (and hence k A and 
ks) goes up; the reflection coefficient is correspondingly re- 
duced. For none of the frequencies any absorption occurs. 
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Figure 4. Perturbations for the first example. (a) Velocity perturbation along the Earth-Sun line. (b) 
Density perturbation, showing the strong magnetopause density enhancements or depletions produced by 
the incident positive or negative density pulses. The reflected and transmitted pulses are also visible, 
although the amplitude of the latter is very small. The scales are relative to the arbitrarily small unit 
magnetospheric density perturbation amplitude. 
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Figure 5. Spatiotemporal plot of the total number density 
N in the first example, when a fixed perturbation amplitude 
is chosen (small enough to remain within the linear regime, 
large enough so that it is visible in the figure). The incident 
positive and negative density perturbation pulses produce in- 
ward and outward magnetopause motion. 

5.2. Response to a Broadband ULF Continuum 

In the second example we study wave energy transport 
in the case of magnetosheath fluctuations with substantial 

a 

-5000 

' b 

0 5000 

x (krn) 

Figure 6. Resonant amplification characteristics for the 
first example: (a) The time averaged energy flux (,&•(:c)) 
across the magnetopause remains constant and negative, in- 
dicating earthward energy flow and the absence of resonant 
absorption. (b) In spite of the absence of absorption, the 

(•) 
maximum magnetic field perturbation/•rnax (:C) (in arbitrary 
units) peaks at the magnetopause. 

power in a broad low-frequency band; we use a spectrum 
that is qualitatively similar those reported by Song et al. 
[1994]. The tangential wave vector kt -- [40, 40]kA,msph) is 
relatively large and corresponds to an Alfv6.n wavelength of 
5000 km. The lowest frequency modes are nonpropagating 
in the magnetosheath and the magnetosphere, the intermedi- 
ate frequency modes are propagating in the magnetosheath 
but nonpropagating in the magnetosphere, while the highest 
frequency modes are propagating everywhere (see Figure 8). 
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Figure 7. Spectral transmission, reflection, and absorption 
coefficients ct, cr, and ca, in the first example. 
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Figure 8. Wave vector diagram across the magnetopause 
for the second example (see text). The plot shows the Alfv6n 
and slow-mode wave vectors kA (a:) and ks(a:) correspond- 
ing to the base frequency of the periodic incident signal, 
as they vary by an order of magnitude across the magne- 
topause. The solid horizontal line corresponds to the wave 
vector kll of the incident wave; the dashed lines give the har- 
monics kll/n. The intersections between kA(x) or ks(x) 
and kll/n correspond to mode conversion sites where reso- 
nant amplification occurs. 

For the base frequency and the modes up to n - 6, kll/n 
lies above the kA and ks profiles. There is a broad band of 
modes for which kll/n matches kA and/or ks at some point 
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Figure 9. Driver perturbations for the second example (see 
text): (a) The specified perturbation $msph at the magneto- 
spheric edge of the simulation domain (solid line) and the 
pulse train it is obtained from by filtering away the low- 
frequency modes that do not propagate in the magnetosheath 
(dashed line), and (b) its power spectral density Pmsph- 
The corresponding incident perturbation Stash (the scale is 
relative to the unit magnetospheric density perturbation am- 

inside the magnetopause transition, giving rise to Alfv6n or plitude), and (d) its power spectral density Pmsh, illustrating 
slow-mode resonances. For the highest frequency part of the the dominant presence of modes that do not propagate in the 
spectrum, kll/n remains below the kA and ks profiles. magnetosphere. 

Figure 9a shows the driver $msph in the magnetosphere 
(solid line), which is obtained by filtering away the lowest 
frequencies from the originally proposed pulse train (dashed 
line): Since these modes are nonpropagating in the magne- 
tosheath, the periodic square pulse signal cannot exist in the 
magnetosphere. Figure 9b gives the power spectral density 
Pmsph(f) of this perturbation. Figure 9c shows the corre- 
sponding perturbation Stash in the magnetosheath. The fre- 
quency components that do not propagate in the magneto- 
sphere dominate Stash (Figure 9d); otherwise, they should 
have essentially vanished by the time they reach the mag- 
netospheric edge of the simulation domain, in which case 
they would be absent from the magnetospheric signal $msph. 

Note the substantial fluctuation power in the 50-300 mHz 
band. 

Figure 10 plots the density fluctuation p(1) (a:, y = 0, z = 
0, t). Interference occurs between incident and reflected 
waves in the magnetosheath. The magnitude of the density 
perturbations in the magnetosphere is strongly reduced, by a 
factor 5000. The peaks situated at a: = -600 km correspond 
to a site of resonance with strong effect on the density. 

The resonant absorption is most easily identified in plots 
of the energy flux profile and of the maximum magnetic field 
perturbation (Figures 1 l a and 1 lb). While the energy flux 
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Figure 12. Spectral transmission, reflection, and absorption 
coefficients ct, cr, and ca, for the second example. Note the 
abrupt changes in these coefficients at 300 mHz, where the 
magnetosphere becomes transparent for the incident waves. 

Figure 10. Density perturbation for the second example. 
The density peaks witness the resonant behavior inside the 
magnetopause transition. The density scale is relative to the 
unit magnetospheric density perturbation amplitude. 
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Figure 11. Resonant amplification characteristics for the 
second example: (a) The time averaged energy flux 
changes across the magnetopause due to resonant absorp- 
tion; the staircase-like jumps arise from the use of a dis- 
crete rather than a continuous spectrum. (b) Sharp peaks in 
the maximum magnetic field perturbation B,•x (.z) (in arbi- 
trary units) indicate that resonant behavior occurs through- 
out large parts of the magnetopause. 

makes a discrete jump at each individual resonance, the dis- 
crete spectrum used here is so close to a continuous one 
that the energy flux profile resembles a smooth continuous 
curve rather than a staircase line, at least in the earthward 

part of the magnetopause layer. The magnetic field pertur- 
bation has a very irregular appearance, with a succession of 
closely spaced peaks that are, in principle, infinitely narrow 
and high (as Im kt -• 0) and that correspond to mode res- 
onances throughout the magnetopause transition. A quanti- 
tative estimate of the resonant amplification factor is impos- 

sible within the ideal MHD framework (the amplification is 
infinite). The mode conversion process drives the excitation 
of surface waves on the magnetopause with the prescribed 
5000 km tangential wavelength. The fluctuating Bx compo- 
nent witnesses the bending of the magnetic field lines due to 
this surface wave, while there is no mass transport across the 
field lines. 

Figure 12 shows the spectral transmission, absorption, and 
reflection coefficients. Frequencies below 50 mHz are not 
present in the incident signal. Below 300 mHz the spectral 
transmission coefficient is zero as such waves do not prop- 
agate in the magnetosphere. These waves are characterized 
by partial absorption and partial reflection; the spectral ab- 
sorption is stronger for lower frequencies, while reflection 
off the magnetopause occurs more easily for the highest of 
these frequencies. Above 300 mHz the magnetosphere be- 
comes transparent, such that about 90% of the incident flux 
is transmitted. In the particular example shown here, the in- 
tegrated transmission coefficient is about 0%, the integrated 
absorption amounts to 11%, while 89% is reflected. The 
small integrated transmission in spite of the high spectral 
transmission above 300 mHz is due to the negligible contri- 
bution of the highest frequency components in the incident 
perturbation Stash. 

6. Discussion 

This paper evaluates a scenario for the transport of electro- 
magnetic energy present in magnetosheath ULF fluctuations 
to the magnetopause. The calculations have been carried out 
in the framework of linear ideal MHD. The particular contri- 
bution of this paper is twofold: (1) We have extended earlier 
work concerning resonant amplification of monochromatic 
MHD waves at the magnetopause [Belmont et al., 1995; De 
Keyser et al., 1999] to the the case of incident waves with a 
broad frequency content. (2) We have computed the magne- 
topause response to both intermittent and continuous small- 
amplitude broadband ULF hydromagnetic waves. 
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In a first example we have considered intermittent small- 
amplitude MHD waves in the form of individual density 
pulses arriving at a stationary magnetopause. Our simu- 
lations illustrate that an obvious effect of such pulses is 
a small-scale motion of the magnetopause, in addition to 
fluctuations in other plasma and field parameters, including 
small density enhancements near the magnetopause. The 
linear MHD limitation manifests itself in the fact that the 

maximum distance of motion is of the order of the magne- 
topause thickness itself. Both small- and large-amplitude 
motion of the magnetopause (over distances exceeding the 
magnetopause thickness) are well known from observations 
[Song et al., 1988]. 

In a second example we have studied the effect of broad- 
band fluctuations. The simulations offer a fairly realistic 
view of the magnetopause response to such a broadband sig- 
nal. Pertaut et al. [1979], Anderson et al. [1982], and Song 
et al. [1994] confirm the presence of such broadband com- 
pressional waves in the inner magnetosheath; other wave 
modes appear to dominate in the outer magnetosheath. The 
computations illustrate that ideal MHD resonant behavior in 
general does not lead to an individual singular layer inside 
the magnetopause but that the resonant process is spread out 
more evenly throughout the transition, leading to a relatively 
wide region characterized by magnetic field and density ir- 
regularities. Such irregularities might be important for diffu- 
sive transport of mass across the layer. While no such trans- 
port can be present in an ideal MHD description, the inclu- 
sion of inertial effects would lead to substantial mass trans- 

port [Winske and Omidi, 1995]. Treumann et al. [1995] 
even suggest that the ULF waves can provide sufficient dif- 
fusion to form the low-latitude boundary layer. As such 
mass transport would alter the ion and electron density pro- 
files in the magnetopause current layer, it would affect the 
time evolution of the charge separation electric field inside 
the magnetopause that is constantly discharged in the iono- 
sphere [Willis, 1970]. 

We have deliberately not studied the case of a zero-order 
motion of the magnetopause in order to avoid a number of 
complications. Because of the discharge of the electrostatic 
field at the magnetopause through the ionosphere, a one- 
dimensional tangential discontinuity magnetopause might 
appear impossible altogether. This discharge, however, can 
easily be balanced by the continuous replenishment of the 
charge carriers responsible for the charge imbalance that 
produces the electrostatic field. The resulting dynamic equi- 
librium therefore remains essentially a one-dimensional tan- 
gential discontinuity equilibrium. Consider now a slow zero- 
order motion, that is, a magnetopause velocity vMp less 
than the ratio of the magnetopause thickness divided by the 
characteristic time, or thickness times frequency: vMp < 
1.5 km s -• in the first example for the 5 mHz base fre- 
quency, and Vmp < 15-90 km s -• in the second applica- 
tion for the 50-300 mHz band in which most of the signal 
power is concentrated. In this case the stationary magne- 
topause analysis holds essentially unmodified. Otherwise, 
for a faster zero-order motion, the coupling to the ionosphere 

will introduce a spatial gradient in the structure of the mag- 
netopause along the magnetopause surface. Only for suffi- 
ciently small wavelengths the one-dimensional approxima- 
tion can be justified. The present analysis can then be ap- 
plied in a frame comoving with the magnetopause, if one ac- 
counts for the Doppler shift associated with the frame trans- 
formation. Note also that the earthward state should change 
as the magnetopause moves. And then there is the question 
to what extent the magnetopause is accelerating or deceler- 
ating. As the magnetopause is observed to have speeds that 
are of the order of the slow-/high-speed motion threshold, 
it can be concluded that the overall response of the magne- 
topause will not be affected by zero-order motion, although 
the details of the interaction are expected to depend on it. 

The linear ideal MHD approximation has several limita- 
tions. It can only be used to describe waves with frequencies 
below the proton gyrofrequency, while observations show 
that the fluctuation spectra extend beyond the proton gy- 
rofrequency. Ideal MHD does not allow to quantitatively 
estimate the resonant amplification factor. The linear de- 
scription breaks down in resonant layers as the perturba- 
tion amplitude becomes infinite there. A nonlinear approach 
[Song et al., 1998] and the inclusion of kinetic effects are 
inevitable for a more realistic description [Lacombe et al., 
1995; Johnsot• and Cheng, 1997]. Another limitation of 
the present model is the absence of any coupling with the 
ionosphere. The model therefore gives only a qualitative de- 
scription. Nevertheless, our simulations of mode conversion 
reflect some of the observed characteristics of the magne- 
topause: rapid small-scale magnetopause motion, the en- 
hanced ULF fluctuation amplitudes throughout the magne- 
topause layer and the suppression of such fluctuations in the 
magnetosphere. We also note the presence of a small fluc- 
tuating normal magnetic field component in magnetopause 
configurations that otherwise display tangential discontinu- 
ity characteristics. Such normal magnetic field variations, 
which are also frequently seen in a minimum variance anal- 
ysis of magnetopause observations, are interpreted in this 
context as the signature of the small-scale nonplanarity of 
the magnetopause surface due to surface waves. 

We have used in this paper a superposition of waves of 
the form e i(k'"'-•'t) by keeping kt fixed and summing over 
different frequencies, which has allowed us to model the 
magnetopause response to temporally localized plane wave 
pulses. It is interesting to note the formal similarity of 
this procedure with the superposition of waves produced by 
keeping co fixed and summing over different wave vectors. 
This allows one to study the magnetopause response to spa- 
tially localized pulses. One can also consider Fourier de- 
compositions in both space and time, so as to produce spa- 
tially and temporally localized pulses, that is, incident blobs 
with slightly enhanced density. Incoherent turbulence could 
be studied in the same manner. Similar to the results pre- 
sented here, the linear MHD description would apply to den- 
sity fluctuations that are so small that they would perturb the 
magnetopause position only slightly. 
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A1. Appendix A: Linearized MHD Equations 

This appendix briefly describes the linearization of the 
static ideal MHD equations [see Walker, 1981; De Keyser 
et al., 1999]. Let x be the normal to the plasma sheet, p be 
the mass density, v be the bulk velocity, and B and E be 
the magnetic and electric fields. The thermal pressure is p: 
kBpT/m, where kB is Boltzmann's constant, m the (ion + 
electron) mass, and T the (ion + electron) temperature. The 
specific energy is œ = pv2/2 + B2/2/•0 + P/(7- 1), where 

5 is the ratio of specific heats. The ideal MHD equa- 

Opv 
Ot 

tions are 

Op 
0--• + V-(pv) - 0, (A1) 

B 2 1 B • +V.[p•+ (p+ 7ffd•0)•-- B] - 0, (A2) /•0 

OS p v2 7P 1--ExB] 0 (A3) a-• + v'[(-5- + )• + - ' 7- 1 /•o 

Ideal MHD includes only the convection electric field, and 
Maxwell's equations become 

E+vxB = 

OB 
--+VxE = 
0t 

X7.B - 

0, (A4) 

o, (AS) 

0. (A6) 

Let •(r, t) denote the current position of a plasma element 
that was at position r at a reference time to; then 

v- dt = Ot + (v-V)•. (A7) 
We also define the total pressure by 

Z 2 
r=p+-- (A8) 

2•uo 

We write all quantities in the form q(r, t) = q(O)(x) + 
q(•)(r, t) + q(2)(r, t) +... where q(0) is the equilibrium 
state, and q(•) and q(2) are the first- and second-order pertur- 
bations. We consider monochromatic waves with frequency 
w = -+-27rf and tangential wave vector kt = [0, ky, kz] of 
the form q(•) - O(x)e i(k•'"-ø•t). The second-order perturba- 
tions are waves with frequencies w -+- w: a DC and a double 
frequency component. We denote the average of q(2) over y, 
z, and t (that is, the DC component) by (q(2)(x)). The spa- 
tial derivatives are given by the operator V = [d/dx, 0, 0] 
for equilibrium quantities, and by •7 - [d/dx, iky, ikz] for 
first-order perturbations. The time derivatives are d/dt = 0 
for zero-order quantities, and d/dr -- (-i(0) for first-order 
quantities. 

Accounting for the static tangential discontinuity equilib- 
rium that is used here, with Bx © - 0 and v © - 0, the 
zero-order equations reduce to dr ©/dx = 0, that is, the 
pressure balance condition. Defining n0 = kt.B(ø), the first- 
order equations are 

-i•) + (•7.• + o.v)p © - 0, 

-i(0p(ø)O +•7•- 1---[(•-V)B(ø)+/n0/)] - 0, 
/•0 

-i•(• 2^ _ 2 - CsP ) + 9.Vp © Cs9.Vp ©-0, 
• + OxB © - 0, 

-i•/• - i•0o + (•7.• + o.v)•(ø) - 0, 
•.•) - o, 

i(0• +9 -0, 

_• +.• + 1•(0)./• _ 0, 
/•0 

2 7p(ø)/p © defines the local sound speed. We where c s - 
solve for •x and •: 

d .• _ C•x p(O) 2 
2 d ^ 

2 /(02 - •)p(o)• , kA 

where Q}A -- (02 - CO/cA and (0kA -- kt'VA, with the Alfvfn 
velocity VA -- B © / V/•0p © . The other perturbations are 

13 - dP(ø) • ix + • + •s••/•, 
•_ O © • a• •x + v] + •]•/•' 

5x - - i(0•x , 

& : •z(ø) •x + (_•o•z + 
dx 

The mass flux vector is 0 = pv. The time-averaged mass 
flux across the magnetopause is 

(0 dp(ø) 
----Ira {•*} =0, 

where the asterisk denotes complex conjugation. The energy 
flux vector is 

P v2 7P + __1 ck - (-•- + )v ExB. 7- 1 tto 

The time-averaged normal energy flux is 

(Ox)- (o?)) - •,, {,•x**}. 
The energy flux change over an interval [a, b] is given by 
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Using Cauchy's theorem at the singular points, we find 

X--• X c• 
Xo• 

where the sum extends over all singular points x• in the in- 
terval. In the absence of singularities, (0.,:1 remains con- 
stant. Otherwise, the energy flux changes discontinuously at 
each x•. The signs of the jumps depend on how the integra- 
tion path in the complex plane is chosen when applying the 
Cauchy theorem. 
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