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Magnetohydrodynamic wave mode conversion in the Earth's 
magnetotail 

J. De Keyset 
Belgian Institute for Space Aeronomy, Brussels 

Abstract. We study magnetohydrodynamic wave mode conversion as a mechanism 
contributing to the observed low-frequency electromagnetic fluctuation level in the plasma 
sheet. Low-frequency waves originating in the magnetosheath can transport energy across 
the tail flank magnetopause and through the tail lobes toward the plasma sheet. In the 
plasma sheet boundary layer and in the central plasma sheet, local conditions permit mode 
conversion to occur in resonant sheets. Resonant coupling to both Alfv•n and slow-mode 
waves is possible. Energy is fed to the plasma in these resonant sheets, which may help 
to explain the acceleration and heating of particles observed in the plasma sheet boundary 
layer and the central plasma sheet. 

1. Introduction 

The magnetotail consists of two lobes with oppositely di- 
rected magnetic fields connected to the polar caps, separated 
by a dense hot central plasma sheet (CPS) where the mag- 
netic field reversal occurs. Much attention has focused on 

the plasma sheet-lobe interface, also known as the plasma 
sheet boundary layer (PSBL), as it is believed to be magnet- 
ically connected to the auroral regions [e.g., Cattell et al., 
1982]. The PSBL is a temporally variable region character- 
ized by counterstreaming particle beams [e.g., Eastman et 
al., 1984; Baumjohann et al., 1990a; Parks et al., 1998]; an 
insight in the nature and origin of these beams is of prime 
importance for understanding auroral processes. 

Observations of particle beams in the near-tail PSBL ap- 
pear to be consistent with an open model of the magneto- 
sphere with a neutral line tailward of the point of observa- 
tion, where the PSBL would correspond to the separatrix be- 
tween open and closed magnetic field lines. The persistent 
presence of the PSBL argues for a continuous operation of 
field line merging [e.g., Tsurutani et al., 1986; Takahashi 
and Hones, 1988]. The spatial structure and the time vari- 
ability of high-speed ion beams ("bursty" flows) and their 
occurrence in both the PSBL and the CPS indicate that 

additional physical processes must be at work [Baumjo- 
harm et al., 1990a; Parks et al., 1998]. Important in this 
respect are the observations of electrostatic waves in the 
PSBL [Baumjohann et al., 1990b] and of intense short- 
duration electric field spikes and low-frequency waves and 
wave packets in the CPS and the PSBL [Cattell et al., 1982, 
1994]. Such electric fields could be responsible for the ac- 
celeration and heating of particles and the formation of par- 
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ticle beams [Hirahara et al., 1994]. Stochastic acceleration, 
for instance, could account for the power law energy spec- 
tra typical for plasma sheet particles [e.g., Zelenyi et al., 
1990; Ma and Summers, 1999]. 

Several mechanisms may be at the origin of the electric 
waves found in the PSBL and the CPS. Electrostatic waves 

have been ascribed to electron beam instabilities [Omura et 
al., 1996]. Ion multibeam instabilities have been proposed to 
account for lower frequency waves [Verheest and Lakhina, 
1991 ]. In the present paper we examine another mechanism 
that could contribute to the substantial low-frequency elec- 
tromagnetic fluctuation level observed in the PSBL: conver- 
sion between different magnetohydrodynamic (MHD) wave 
modes. MHD mode conversion is a process capable of trans- 
forming electromagnetic energy carried by waves into ki- 
netic energy. It takes place at plasma and field inhomo- 
geneities where the field-aligned wave vector component 
matches the local Alfv•n or slow-mode wave vectors, thus 

creating resonant layers where Alfv•n or slow-mode waves 
are excited. In the absence of dissipation the wave ampli- 
tudes locally are driven to infinity. If some (anomalous) re- 
sistivity is present or if the wave fronts are not exactly planar, 
the wave amplitude remains bounded. In the first case, en- 
ergy is dissipated and results in a heating of the plasma in the 
resonant sheet. In the second case, energy flux in the normal 
direction is diverted into the tangential directions at the site 
of resonance. MHD mode conversion has been invoked to 

address the problem of the heating of the solar corona [e.g., 
Poedts et al., 1989, and references therein], to explain mag- 
netospheric pulsations [Southwood, 1974], and to interpret 
ULF wave behavior at the Earth's magnetopause [Belmont 
et al., 1995; De Keyser et al., 1999]. In the present paper 
we use the techniques introduced by Belmont et al. [1995] 
and extended by De Keyser et al. [ 1999] to examine whether 
mode conversion could be responsible for the observed elec- 
tric fields and the acceleration and heating of particles in the 
CPS and PSBL. 
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We consider the following energy transport scenario: (1) 
Waves in the magnetosheath (MSH) propagate toward the 
tail flank magnetopause and boundary layer (MP/BL); these 
waves may be of solar wind origin, or they might be gener- 
ated in the magnetosheath, for instance, at the quasi-parallel 
bow shock. (2) These incident waves can be reflected, trans- 
mitted, or resonantly absorbed at the plasma and field inho- 
mogeneity that defines the magnetopause. (3) The wave am- 
plitude in the lobes reaches a finite nonzero level (for prop- 
agating waves) or decays exponentially with a characteristic 
distance of the order of the wavelength (for nonpropagat- 
ing waves). (4) In both cases the wave amplitude can be 
significant by the time the wave reaches the PSBL and the 
CPS. The wave can be transmitted, reflected, or resonantly 
absorbed at the plasma and field changes in the PSBL and 
the CPS. 

The purpose of this paper is to show that the scenario 
sketched above can indeed account for energy transport from 
the magnetosheath to the plasma sheet and plasma sheet 
boundary layer. We do so by studying mode conversion 
in the framework of linear nonstatic MHD for wavelengths 
1 - 50 RE and frequencies $ - 50 mHz. 

2. Geometry and Plasma Properties 

We consider a one-dimensional model of the tail, as we 

are interested in the energy transport in the direction per- 
pendicular to the plasma sheet. The plasma sheet is as- 
sumed to be a planar layer parallel to the tail axis; curva- 
ture or warping of the plasma sheet, and torsional defor- 
mation of the magnetotail [Tsurutani et al., 1986; Gosling 
et al., 1986] are ignored here. The equilibrium magnetic 
field is taken to be parallel to this plane; that is, the plasma 
sheet is a tangential discontinuity. This tail model there- 
fore has no closed field lines. We define :c to be perpen- 
dicular to the plasma sheet, pointing to the north; z points 
down the tail; •/ completes the right-handed frame, point- 
ing duskward. We consider only the northern half of the 
tail (with typical plasma parameters taken from Eastman et 
al. [1984] and Tsurutani et al. [1986]; the temperatures 
represent the sum of ion and electron temperatures): (1) 
the central plasma sheet, with equilibrium number density 

__ T,(0) 0 6 Nc(pø• 0.3 cn1-3, temperature_•,.ps - 35 x 1 K, and tail- 
ward bulk flow of V,, © - 200 km s -1' (2) the plasma sheet cps 

boundary layer, located at about Dcps = 2 RE (the plasma 
sheet thickness is 4 RE); (3) the lobe, with number density 

- - T(ø) - 2 x 106 K' (4) •v(ø) 0.02 cm 3 and temperature _• lobe '• ' lobe 

N (o) 
cosh2 (:c/Dcps) 
+•r(0) 1 z -- 27mp _ 
"•ob• (• erfc Dmp 
•r © 

_[_"'msh erfc (- - 27mP ), 
2 Drop 

cosh2 (:C/Dcps) 

with the corresponding temperature and tailward velocity 
profiles. The magnetic field angle in the y-z plane is defined 
by 
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Figure 1. Equilibrium state of the magnetotail adopted in 
the tail flank magnetopause, located at 27mp -- 20 RE with the simulations, for a magnetosheath field direction 0,nsh = 
half-thickness D,m, - 2 RE' and (5) the magnetosheath, 0 ø. The plasma sheet and the magnetopause/boundary layer 

T (0) with •v(ø) - 5 cm -3 - 2 x 106 K, and tailward both have a characteristic half-width of 2 RE. Only the 
"'msh ' msh northern half of the plasma sheet-lobe-magnetosheath sys- 

flow of v(ø) - 350 km s -1 The lobe magnetic field is tern is shown. (a) Tailward velocity. (b) Magnetosheath, ' msh 

3 - 20 nT We fix the sense of the 180 ø magnetic field lobe, plasma sheet, and total number density. (c) Tempera- lobe ' 
ture. (d) Magnetic field components parallel to the plasma 

rotation across the plasma sheet (/3(v © > 0). The magne- sheet and field strength. (e) Magnetic field orientation (0 ø is 
tosheath magnetic field can have any direction, specified by dawn-to-dusk, 90 ø is tailward); the magnetic field rotation 
0ms h the angle of r•(ø) with the • axis. We adopt an equi- across the plasma sheet is 180 ø (of which only the northern ' '•' ins h 

librium number density profile, half is plotted). 
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1 x- Xmp _ 1 
0 - 90 ø (• erfc Dmp cosh 2 (x/Dcps)) 

6}msh X + erfc (-- -- Xmp ). 
2 Dmp 

The equilibrium structure is then completely determined by 
pressure balance, and is illustrated in Figure 1. 

One of the conditions for MHD theory to be valid is that 
the length scales involved exceed the gyroradius scales. The 
ion gyroradius (for the values adopted above, and supposing 
that the total temperature is due to protons only) is 0.041/?E 
in the magnetosheath, 0.015 R•; in the lobe, and 0.21 Re at 
the center of the plasma sheet (this value strongly depends 
on the magnetic field minimum in the neutral sheet). We 
therefore only consider tangential wavelengths At > 1 R•;. 
MHD resonant layers are (in the absence of dissipation) in- 
finitely thin; the usefulness of the MHD description near the 
resonance is therefore limited. The one-dimensional approx- 
imation is reasonable only for wavelengths At < 50 Re, 
smaller than the tail diameter. 

The proton gyrofrequency is 110 mHz in the magneto- 
sheath, 300 mHz in the lobe, and 90 mHz at the center of 

the plasma sheet, placing an upper limit on the frequencies 
in the MHD model. In the tail lobes the Alfvdn and slow- 

mode wave travel times from the midtail to the ionosphere 
are of the order of hundreds of seconds (even longer in the 
MP/BL, the CPS, and the PSBL); the behavior of resonant 
waves with longer periods (lower frequencies) is affected by 
the ionospheric response. Field-aligned particle traveling 
times (especially for the electrons) from the midtail to the 
ionosphere set a similar lower limit on the frequencies for 
which the MHD simulations retain their local character. We 

therefore consider only frequencies between 5 and 50 mHz. 

3. Linear Perturbation Analysis 

We linearize the ideal MHD equations around the equi- 
librium configuration described in the previous section, by 
writing every quantity (depending on the position vector 
r and time t) as a sum of a one-dimensional equilibrium 
value and higher-order contributions' q(r, t) - q(O) (x) + 
q(•) (r, t) + .... In particular, we consider monochromatic 
waves with circular frequency co - 27rf and wave vectors 
k - kx(x)lx + kt, where kt - [O, ky,kz] is a constant 
tangential wave vector, of the form 

q(•) (r, t) - O(x)e i(kt"-•:t) . 

The linearized MHD equations can then be expressed in 
terms of the normal displacement fx and the total pressure 
perturbation -• as 

d 

dx 

d^ 

dx 

Expressions for C• and C2, as well as for all other perturba- 
tions in terms of • and ?, are given in the appendix. Defin- 

ing/•J - -C•(72, we find that these equations reduce in 
uniform regions to 

d 2 

(a7'- + - 0. 
As co is real, and as kt is real for plane waves, /(.'• is real 
as well. If R'• 2 > 0, the solution is a superposition of a 
left and a right going sinusoidal wave, with 
(propagating waves). If/(• < 0, the solution is a super- 
position of an exponentially growing and decaying mode, 
with kx - -{-iv/-g• 2 (nonpropagating waves). When 6'2 
becomes unbounded at some point in the domain (C• is al- 
ways bounded), KJ is unbounded there (when C• • 0) and 
the corresponding spatial scale tends to zero. 

Belmont et al. [1995] and De Keyset et al. [1999] have 
presented a detailed analysis for the static MHD case (equi- 
librium flow v © =0) of the conditions for which wave prop- 
agation is possible, as well as of the conditions for which 
singularities occur. In the appendix it is shown that the 
same analysis holds for nonstatic MHD if one replaces co 
by the Doppler-shifted frequency & = co - kt-v ©, so we do 
not repeat it here. The conditions for singularities to occur 
are precisely the dispersion relations for Alfvdn and slow- 
mode waves: A resonant coupling between the fast magne- 
tosonic waves propagating in the x direction and the tan- 
gential Alfvdn and slow-mode waves exists at these singular 
points. The resonance conditions are 

VA 

• V/V• .2 VA 

where cs is the speed of sound and v•4 is the Alfvdn velocity; 
/cA and/cs are the local Alfvdn and slow-mode wave vectors. 

The singularities of the ideal MHD solutions at resonant 
points can be removed by introducing a dissipation term. 
Another way to deal with these singularities, proposed by 
Belmont et al. [1995], is by considering surface wave vec- 
tors kt + eti that have a small imaginary part (et/kt << 1). 
The wave fronts then are modulated in the tangential direc- 
tion with a length scale • e/-• >> At, rather than being ex- 
actly planar. Introducing such an imaginary part avoids the 
zeros in the denominator of (72, and the singularities disap- 
pear. Since co is real, Im N• 2 =/= 0 in general' The ampli- 
tudes of waves propagating through a uniform medium no 
longer remain constant, and the time-averaged energy flux 
(0•) changes with x at a rate proportional to et. It is there- 
fore important to choose et sufficiently small so as to ap- 
proximate the equations for the plane wave case. It can be 
shown, for suitably small et, that the magnitude of the jump 
in the energy flux at the resonant points does not depend on 
the precise value of et (see the appendix); the sign of the 
jump, however, depends on the direction of et with respect 
to the magnetic field and the flow velocity. In the static case, 
Belmont et al. [1995] chose et so that kt.et = 0: Then 

Im KJ - 0, and (0•) remains exactly constant except at 
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the resonances. In the nonstatic case, no single choice of et 
can make K• real everywhere. In our simulations we have 
chosen et either manually, or by requiring that Kx 2 would be 
real in the magnetosheath by numerically finding the zero of 
Im Kx 2 as a function of ey (when ez is given) or of •z (when 
•y is given). 

We impose boundary conditions at the center of the 
plasma sheet. As the wave solutions are determined up to 
a scaling factor, we set •x(0) - 1. We require that only a 
left going wave is present,at this boundary, that is, that the 
phase difference between •cx and '? remains constant: 

d • 

dac •x 

This amounts to requiring that 

("•/•x) 2 -- Cl/C2. 

Hence, •:(0) - --[-•x(0)VC 1 (0)/C2(0), where the sign has 
to be chosen so as to select the left going wave. 

We solve the pair of linear first-order ordinary differential 
equations for •x and '? using an adaptive second-order accu- 
rate implicit complex integration scheme. We have chosen 
•t/kt • 10 -8, small enough to obtain a good approxima- 
tion to the plane wave case. Thanks to the adaptivity of the 
integrator we are able to resolve the resonant sheet, whose 
thickness scales with •t. We have verified the independence 
of the (Ox) profile on the value of 

4. Wave Solutions 

We first consider monochromatic waves with a frequency 
f = 10 mHz and wave vectors kt II lz and focus on the 
effects of the magnitude of the tangential wave vector and 
the direction of the magnetosheath magnetic field. 

The magnetosheath Alfv•n velocity is 72 km s -1, which 
corresponds to a tangential wavelength ,•A,msh : 1.13 -RE. 
In the cold plasma case all waves with a larger wavelength 
are propagating; in the warm plasma case the propagation 
domain is more complicated as the minimum wavelength 
for propagation depends on the direction of kt, but ,kt • 
ß •A,msh remains an approximate propagation condition [see 
De Keyser et al., 1999]. In addition, this limit roughly coin- 
cides with the lower wavelength limit for the MHD approx- 
imation set by the ion gyroradius scales. 

As a first example we consider a dawn to dusk interplan- 
etary magnetic field, that is, 0msh = 0ø: The magnetic 
field rotates over 90 ø across the northern tail flank magne- 
topause. Figure 2a shows the wave solution for a wavelength 
,•t = 12 -RE. The imaginary part of the wave vector was 
chosen as et = (0, -10-ski). The plots show the maximum 
modulus of the magnetic field fluctuations B (1) (in arbitrary 
units), the time-averaged energy flux (Ox) normalized to the 
energy flux carried by the incident magnetosheath wave, and 
the wave vector diagram with the field aligned component 
of the tangential wave vector/ell as well as the k•4 and ks 
profiles, which allows us to identify the nature of the reso- 

nances. From the amplitude of the magnetic field fluctua- 
tions we see that the incident waves are indeed propagating 
through the magnetosheath, but not in the lobe as the fluctu- 
ation amplitude rapidly decays to zero: The incident waves 
penetrate into the lobe up to a distance of the order of the nor- 
mal wavelength but are reflected. At the same time, however, 
we observe a sharp peak in the MP/BL: An Alfv•n resonance 
occurs at the point where/ell -- /cA (x); the fluctuation level 
becomes very high in a narrow layer. This is reflected in the 
energy flux profile: While the flux remains constant in the 
magnetosheath and in the lobe, there is a pronounced dis- 
continuous jump at the site of resonance, whose magnitude 
corresponds to the energy flux that is diverted there into the 
tangential directions. The wave vector diagram shows that 
there is an Alfv•n resonance in the PSBL as well; the associ- 

ated energy flux jump, however, is very small. While 7% of 
the incident energy flux is diverted at the MP/BL resonance, 
only 0.00005% is diverted at the PSBL resonance. This is 
essentially due to the fact that the lobe is not transparent for 
the incident waves. One can also infer from the wave vec- 

tor diagram that two additional slow-mode resonances will 
occur in the PSBL for smaller wavelengths; the energy flux 
reaching these resonances, however, is extremely small. 

Waves with a larger wavelength can more easily penetrate 
into the lobes. Figure 2b shows the solution for ,kt = 24 -RE, 
0msh = 0 ø, with the same et as before. Although the wave 
is still nonpropagating in the lobes, its penetration depth is 
larger. The figure shows the two AlfvSn resonances, each 
of which is responsible for diverting 0.04% of the incident 
wave energy. Note that the flux reaching the center of the 
plasma sheet (where the boundary condition requires that 
only left going waves are present) no longer is zero. In Fig- 
ure 2c we consider the same wavelength; now there is no 
magnetic field rotation across the northern tail flank magne- 
topause (0msh : 90ø). In the particular kt II B(ø) config- 
uration in the MP/BL region, no energy flux is diverted into 
the tangential directions at the MP/BL Alfv5n resonance; the 
flux diverted at the PSBL resonance remains about 0.04% of 

the incident wave energy. For a dusk to dawn magnetosheath 
field (0ms h : 180 ø) we obtain an energy flux identical to 
that of Figure 2b. This can be seen from the symmetry of 
the equations when kt II ix, the only change in the solution 

(1) that is, the polarization is the reversed sign of B? ) and vy , 
sense of the waves is reversed. 

The sign of the energy flux jumps depends on the orienta- 
tion of the imaginary part of the wave vector. This is shown 
for the case 0ms h : 180 ø, •t: (-10-8kt, 0), in Figure 2d: 
While energy from the tangential waves is diverted into the 
normal direction at the MP/BL resonance, the opposite pro- 
cess occurs at the PSBL resonance. This illustrates that the 

technique of considering nonplanar waves is more general 
than the introduction of a dissipation mechanism, which is 
irreversible and can only lead to absorption of energy. 

The previous examples show how the energy that reaches 
the PSBL resonance increases as the wavelength becomes 
larger. For larger wavelengths, however, no resonances oc- 
cur any more, unless we reduce the frequency. Figure 2e 
shows the case f = 5 mHz, ,•t = 48 -RE, 0msh : 0 ø. About 
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Figure 2. Wave solutions for different frequency-wavelength combinations and various orientations 
of the magnetosheath magnetic field. Left plots show wave amplitude (maximum value of IB(•)I) in 
arbitrary units (the solution is determined only up to a scaling factor). Middle plots show energy flux 
normalized to the energy flux carried by the incident magnetosheath waves. Right plots show wave vector 
diagram with the profiles of kll and the Alfv6n and slow-mode wave vectors/cA, and ks; the intersections 
of kll with/cA and ks correspond to the resonances. Parameters and orientations are (a) f - 10 mHz, 
At = 12 -R/•, •9ms h = 0ø: significant resonance only at the MP/BL; (b) f = 10 mHz, At = 24 -R•:, 
•9ms h -- 0 ø or 180ø: resonances at the MP/BL and in the PSBL; (c) f = 10 mHz, At = 24 -RE, •9msh 
90ø: significant resonance only in the PSBL; (d) f = 10 mHz, At = 24 -R•:, •9ms h : 180 ø, with a different 
orientation of the imaginary part of the wave vector: Energy is fed to the system at the MP/BL resonance, 
while energy is removed from the system at the PSBL resonance; and (e) f = 5 mHz, At = 48 
•9ms h = 0ø: resonance at the PSBL with an energy flux jump of 0.4% of the incident magnetosheath flux. 
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0.4% of the incident wave energy is converted into tangential 
waves at the resonance. 

5. Discussion 

The purpose of this paper was to evaluate a scenario for 
the deposit of energy in spatially localized layers in the 
plasma sheet and plasma sheet boundary layer. We have de- 
veloped a nonstatic linear MHD model to examine the prop- 
agation of electromagnetic waves for wavelengths ranging 
from 1 to 50/•E and for frequencies from 5 to 50 mHz. We 
have found that such MHD waves can indeed transport elec- 
tromagnetic energy from the shocked solar wind in the mag- 
netosheath across the tail flank magnetopause and through 
the lobe to the plasma sheet and the plasma sheet boundary 
layer, where mode conversion excites Alfvdn or slow-mode 
waves in thin resonant sheets. The associated fluctuating 
electric fields could play a role in the acceleration of plasma 
sheet particles. 

Limitations also arise from the neglect of kinetic effects (ion 
gyroradius length scale, ion gyration frequency). Electron 
inertia effects are unimportant due to the low-frequencies 
considered here. When the wave's phase velocity is of the 
same order as the thermal velocity, as in the warm plasma 
sheet, an MHD approximation with an adiabatic closure re- 
lation might no longer be appropriate. In spite of these lim- 
itations, mode conversion appears to be a plausible mecha- 
nism contributing to the substantial low-frequency electro- 
magnetic fluctuation level observed in the plasma sheet and 
the plasma sheet boundary layer; the magnitude of this con- 
tribution remains to be assessed from observations. 

Appendix: Linearized MHD Equations 

This appendix describes the linearization of the nonstatic 
ideal MHD equations [see also Walker, 1981;De Keyset et 
al., 1999]. Let :• be the normal to the plasma sheet. We de- 
note the mass density by p, the bulk velocity by v, a,•d the 

A more complete picture of the energy transport from the magnetic and electric fields by B and E. The thermal pres- 
magnetosheath to the PSBL should be obtained in the fu- sure is p = kBpT/m, where/cB is Boltzmann's constant, m 
ture by considering, for each frequency of the incident wave the (ion + electron) mass, and T the (ion + electron) temper- 
spectrum, a superposition of the different wave vectors com- ature. The specific energy is S - pv 2/2 4-/32/2it0 4-/9/(7 - 

5 is the ratio of specific heats. Conservation patible with the dispersion equation. This is the proper way 1), where 7 - • 
to introduce the external origin of the waves, including, for of mass, momentum, and energy are expressed by 
instance, the coupling to the ionosphere, and therefore to de- 
termine the overall changes of the normal energy flux at the 
resonances. 

The presence of magnetosheath waves is a prerequisite Opv 
in the proposed model. Solar wind pressure variations are Ot 
known to have a very broad frequency content that over- OS 
laps with the range of interest here, and can act as the ex- 
ternal driver of the oscillations in our model. Alternatively, 
such waves could be generated in the magnetosheath, as, 
for instance, turbulence originating at the quasi-parallel bow 

shock. The calculations presented here show that only a E + v x B = 0, (A4) 
small fraction of the incident wave energy, generally of the OB 
order of 0.1%, can be delivered to the plasma sheet, as most 0---•- + VxE - 0, (A5) 
of the waves are reflected since the lobe is not transpar- V.B - 0. (A6) 
ent for the magnetosheath waves. However, because of the 
high magnetosheath fluctuation level and the relatively low Let/•(r, t) denote the current position of a plasma element 
plasma sheet density, the energy flux per particle can be im- 
portant. Another possible source that could drive waves into 
the lobes is the Kelvin-Helmholtz instability at the magne- 
topause, which is characterized by frequencies ranging from 
several to 100 mHz and by wavelengths of several Earth 
radii [e.g., Walker, 1981], that is, within the frequency and 
wavelength ranges that were studied here. In that case, how- 
ever, the waves are nonpropagating in the magnetosheath; 
the driver is internal rather than external, a situation that was 

not considered here. Energy can then leak from the oscillat- 
ing magnetospheric boundary layer and can be fed to plasma 
sheet resonances in a way similar to that described here. 

The analysis presented here has several limitations. We 
have simplified the problem geometry, and we have ignored 

Op 
0--• 4- V-(pv) - 0, (A1) 

/32 1 
-- 4- V.[pvv + (p + --)I - --- B B] - 0 (A2) 

2/zo /zo ' 
P v2 7P 1 

0-7 +v'[(-C + - 0. (^3) 7- 1 /zo 

Ideal MHD includes only the convection electric field, and 
Maxwell's equations become 

the coupling of the tail with the near-Earth environment second-order perturbations then consist of waves with fre- 
and the ionosphere. We have only studied monochromatic quencies • 4- •: a dc and a double frequency component. 
waves; in reality, pulses and wave packets are often present. We will denote the average of q(2) over y, z, and t (that is, 

that was at position r at a reference time to; then 

v- dt: Ot + (v-V)•. (m7) 
We further define the isotropic total pressure by 

/32 
7- =p+-- (A8) 

2it0 

We write all quantities in the form q(r, t) = q(O)(x) + 
q(1) (r, t)+q(2)(r, t)+ .... where q(0) is the one-dimensional 
equilibrium state, and q(1) and q(2) are the first- and second- 
order perturbations. We consider monochromatic waves 
with circular frequency • = 27rf and tangential wave vec- 
tor kt = [O, ky,kz] of the form q(•) = •(x)e i(lCt'r-•t). The 
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the dc component)by (q(2)) _ • (x). The spatial derivatives 
are given by the operator X7 = [d/dx, 0, 0] for equilibrium 
quantities, and by •7 - [d/dx, iky, ikz] for first-order per- 
turbations. The time derivatives are d/dr -- 0 for zero-order, 
and d/dr =_ (-iw) for first-order quantities. 

For the one-dimensional case, the zero-order equations re- 
duce to dr ©/dx = 0, that is, the pressure balance condi- 
tion. 

Introducing the Doppler-shifted frequency & = cv - cvo 
with wo = kt.v(ø), and defining no = kt.B(ø), the first-order 
equations can be written as 

+ + © : 0, 

© + 
+p(o) (/•.V)v(O) = 0, 

-i05- + -Vp © - © - 0, 
• + 9xB © + v(ø)x• - 0, 

-ic;,•- ino9 + (•7.9 + 9.V)B (ø) - 0, 
- 0, 

i&• + 9 - o, 
-• + t5 + B(ø).•//•o - O, 

We use the time-averaged second-order equations to de- 
termine (v?)) and (B.?)). From the second-order expansion 
of (A7), and from (A5) and (A4) we find, respectively 

where an asterisk denotes complex conjugation. 
The mass flux vector is • - pv. The time-averaged 

mass flux across the one-dimensional structure is found, us- 
ing (AI 1), as 

The energy flux is 

0-(5-+ 

----Im{sCsc* } --0. 

1 
7P )v + --ExB 

7- 1 t•o ' 

where the first term represents the kinetic energy flux and 
the second term the electromagnetic Poynting flux. The 
time-averaged energy flux can be computed using (A11) and 
(A12)- 

2 (o where c s - 7p(ø)/p ) defines the local speed of sound. All 
perturbed quantities can be expressed in terms of • and ?, 
which are found by solving the pair of ordinary differential 
equations 

(A9) 

--,(AIO) - 
where •cA -- c•2 --O'/'•A and •kA -- kt'VA, with the Alfvdn 
velocity VA -- B © / V/pop © ß These equations are identical 
to those for the static case [see De Keyser et al., 1999] in 

After some algebra, we find that 

that is, the normal energy flux is the normal displacement 
which cv is replaced by &. The other linear perturbations are times the total normal pressure. The change in energy flux 
then found as over an interval [a, b] is 

• - dp © 2 2 -2 • 

2• 7 dp © c s 

• -- -i&•x, 

9y = dv? ) dx • + 

dx 

Oz: 
dx 

• ^ 

p(O)•A 

p(O)•A 

--(ky - 

p(O)•}A 

p(O) f•2 kA 

•kA WAy 

COkA VAz 

--(-•oky + 

•(-nok• + 

v• + cs 
&2Bz(ø) 

v• +cs 

A<qSx> J a dx • 
Using Cauchy's theorem at the singular points, we find 

A(½•) - T • & lim (x x•)[C• • •* , 
where the sum extends over all singular points x• in the in- 
terval. In the absence of singularities, {½•} remains con- 
stant. Otherwise, the energy flux changes discontinuously at 
each x•. The sign of each jump depends on how the integra- 
tion path in the complex plane is chosen when applying the 
Cauchy theorem. 
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