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Summary. - The thermodynamic field theory, exposed in this issue, allows to de­
scribe thermodynamic systems, even when evolving far away from equilibrium. More 
particularly it is shown that far from equilibrium the tensor which relates forces with 
flows will display a skew-symmetric part. In this work we describe a simple chemical 
model characterised by the existence of a limit cycle ( chemical oscillations). This 
model allows to compute the generalized flows taking into account Onsager's theory 
and by making an appropriate choice of fluxes and forces which leaves invariant the 
expression of the entropy production. We show that the numerical results are in 
agreement with the theoretical predictions. 

PACS 11.10.Kk - Field theories in dimensions other than four. 
PACS 05.70.Ln - Nonequilibrium and irreversible thermodynamics. 
PACS 01.30.Cc - Conference proceedings. 

1. - Introduction 

An introductory work on thermodynamic field theory has been published in the 
present issue f l] .. · The aim of the work was to evaluate the relation between the gen­
eralised thermodynamic forces and their conjugated flows. When the system is below 
the first in.stability, it cah be shown that the evolution of the thermodynamic system 
is well described in the space of Riemannian geometry. Beyond the first instability, the 
property of stationary length cannot be- applied ·since no length is defined in the ther­
modynamic space. To ensure the validity of the Universal .Criterion of Evolution which, 
as known, remains valid,eve,n when the ,syf?tem is far from equilibrium, we introduced a 
thermodynamic space with symmetric connection: the Weyl space. 

(*) Paper presented at the III ICRA Network Workshop and VI Italo--Korean Meeting on Electro­
dynamics and Magnetohydrodynamics around Black Holes, Rome-Pescara, July 12-24, 1999. 
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Fig. 1. - Projection of the solution of eq. (1) on the plane .X1 = 0. This curve coincides with 
the expression found by De Donder. 

As example of application, we treated the Unimolecular Triangular Reaction problem. 
In the limit of weak-field approximation, the field equations read 

(1) [(hµv )f];p = 0. 

The approximated solution of eq. (1) is 

(2) if 
_x2 .ft 
--<--
JrE vlfIT' 

if 
_x2 .ft 
-->--
JrE vlfIT' 

where Lµv is a matrix which, at equilibrium, reduces to the matrix Lµv, built up by 
Onsager's coefficients [1] and X µ = X µ / R ( X µ denote the thermodynamic forces and 
"R" the universal constant of gases). The projection of the solution (2) on the plane 
xt = 0, coincides with the expression found by de Donder (see also fig. 1) 

(3) Wi = w; [ 1 - exp[-Xi]] = w; [ 1 - exp [-~] ] . 

, - ,,,. 
In this paper, we will analyse in great detail a more complex chemical system near the 
first instability (chemical oscillatiQns): the Field-Koros-Noyes modeL We will show that 
the numerical solution of the model is in agreement with theoretical predictions. 
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2. - The Field-Koros-Noyes model 

The Field-Karas-Noyes model (FKN) is interesting under various standpoints. First 
for our purpose the selected model must remain simple and tractable yet still exhibit at 
least three independent variables. Secondly it must be "interesting" in the framework of 
the field description of thermodynamic, i. e. it must be able to display singular behavior. 

In the early and mid 20th century, several experimental works have described chemical 
systems which, under some carefully chosen conditions, were able to exhibit a periodic 
behavior in the sense that some chemical concentrations oscillate in time. Most notably, 
the works of Bray (1928), Belusov (1951-1959) and Zhabotinsky [2] are remarkable in 
this regard. Using a simple trimolecular model, the so-called Brusselator, Prigogine and 
Lefever [3] show how this kind of behavior is compatible with the thermodynamic far 
from equilibrium. Later, Field, Koras and Noyes proposed one simplified model of the 
Belusov and Zhabotinsky reaction whose dynamic is described by three variables. 

Without going into the details of the chemical reaction involved, let us just summarize 
the 5 steps of the model: 

Step Reaction rate 

A+Y ~ X+P W1 == k1AY - kXP ~ 

A+Y ~ 2X+2Z w2 == k2AX - kX2 z2 
(4) ~ 

X+Y ~ 2P W3 == k3XY - kP2 
~ 

2X ~ A+P W4 == k4X2 
- kAP ~ 

B+Z ~ ly W5 == k5BZ - kYfl2 
~ 2 

To avoid divergence of affinities of the single chemical steps, we have to take into con­
sideration also the reverse steps. Each of them is characterized by the same arbitrary 
kinetic constant k. Also, for the sake of simplicity, we chose/ to be equal to 2. It should 
also be noted that one of the reverse steps involves a quadrimolecular reaction which is 
highly unlikely (its probability of occurrence is almost negligible). Additional details and 
references about this particular reaction can be found in ref. [4]. 

(5) 

(6) 

(7) 

(8) 

(9) 

The thermodynamic equilibrium is defined by the following conditions: 

where the uppercase kinetic constant Ki is simply the reduced constant kif k. 
For carefully chosen values of the parameters away from equilibrium, this model ex­

hibits an oscillatory behavior. We illustrate this in fig. 2 where the reversible model is 
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Fig. 2. - Oscillatory behavior of the reversible FKN model ( eq. ( 4)). The concentration of X, 
Y and Z are shown for the value of parameters given in the text. 

numerically integrated using the values of parameters A = 0.06, B = 0.02, k1 = 1.28, 
k2 == 8, k3 = 8 x 105 , k4 = 2 x 103 , k5 = 1, P = 10-3 and k = 0.0032. 

3. - The metric tensor 

In this chemical problem, we do not have to solve the field equation for the metric 
9µv· Equilibrium thermodynamic imposes some conditions to the metric. We know 
that the metric must reduce to Onsager's tensor at equilibrium. The first step is to 
correctly define the forces and fluxes. They must be linearly independent. The forces 
are a suitable linear combination of the chemical affinity while the fluxes will be derived 
from the corresponding linear combination of readion rate or velocity. 

Following Haase [5], the affinities of the reactions can be expressed in term of the 
linearly independent generalized forces Fr as 

R 

(10) Al= LbrlFr, 
r=l 

where R is the number of independent forces and l runs from 1 to L, the number of 
elementary steps. The tensor character of the different quantities will be introduced 
below. The fluxes (velocity) must then be expressed as 

(11) 
L 

Vr = LbrlWl • 
l=l 

The linearly independent velocities are those cor:responding to the three independent 
chemical species X, Y and Z. We finally find that 

(12) 
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(13) 

(14) 

and, then 

(15) 

(16) 

(17) 

V2 == -W1 - W3 + W5 , 

V3 == 2W2 - W5 

and the affinity of each step is defined as (see, e.g, [6]) 

(18) A = RTI (K1AY) 
i n XP ' 

(19) (K2A) A2 = RTln XZ2 , 

(20) A = RTI ( K3XY) 3 n p2 , 

(21) (K X
2

) A4 = RTln lp , 
(22) A5 = RTln (K5:z) . 
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We need now to evaluate the Onsager tensor at equilibrium. It is obtained by expressing 
the fluxes (12), (13) and (14) in terms of the forces (15), (16) and (17) and by linearizing 
such that 

(23) V . - L··Fi '1, - 'tJ • 

. A tedious but straightforward computation gives 
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The last step is to evaluate the metric tensor 9µv corresponding to the chemical system 
such that 

(25) 

and such that 9µv reduces to Lij at equilibrium. 
The metric can be evaluated from the known value of the fluxes in terms of the forces 

( eqs. (12)-(14)) and after some algebraic manipulations we obtain 

As known, the metric tensor is symmetric near equilibrium. Moreover, far from 
equilibrium, in particular when the thermodynamic system reaches a bifurcation point, 
the metric tensor will lose its symmetric property showing also the skew-symmetric part. 
To test this statement, we have numerically solved the chemical kinetic (eq. (4)) starting 
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Fig. 3. - Absolute difference between transposed metric components with respect to the distance 
from equilibrium (denoted by the arrow). The control parameter, k 5 , is in logarithmic scale. 
The difference vanishes at equilibrium ( according to Onsager's theory) and strongly increases 
when the system reaches its oscillatory state. For k5 close to unity, the system has reached a 
stable limit cycle. 

from the equilibrium state and changing one of the parameters in order to drive the 
system away from equilibrium to its oscillatory state. 

Figure 3 displays the absolute difference between transposed component of the metric 
tensor \gµv - gvµ I as we move away from the equilibrium state marked by an arrow. 

4. - Conclusion 

According to our theory (ref. [I]) we have verified, using a simple chemical example, 
the existence of the skew-symmetric part of the metric tensor when a thermodynamic 
system is far from equilibrium. We have chosen to explore this kind of model because, 
as known, a chemical system exhibits rapidly the non-linear relations between affinities 
and chemical velocities. 

The . method we used to construct the metric tensor of the chemical model can be 
followed in general. It takes into account Onsager's theory, when the system is near 
equilibrium, and gives a suitable ·definition of the thermodynamic variables which allow 
the entropy production to be expressed as a sum of products of forces and their conjugated 
fluxes. 

The mathematical complexity·ofthe theory ::raises .problems to explore analytically 
more complex systems. Moreover, complex systems have to be analyzed numerically 
and experimentally to test the validity of the theory. At present, we are investigating 
non-linear effects foreseen by the theory in the Hall systems. 
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