
Planet. Space Sci., Vol. 25. pp. 765 to 771. Pergamon Press, 1977. Printed in Northern Ireland 

FIRST AND SECOND ORDER APPROXIMATIONS OF THE FIRST 
ADIABATIC INVARIANT FOR A CHARGED PARTICLE 

INTERACTING WITH A LINEARLY POLARIZED 
HYDROMAGNETIC PLANE WAVE 

R. VANCLOOSTRR 

Aeronomy Institute, B-l 180 Brussels, Belgium 

(Receiued 10 December 1976) 

Abstract-In the present paper the effect of a sinusoidal modulation of an electromagnetic field on the 
invariance of the magnetic moment is studied. Such a generalized invariant plays an important role in 
problems concerning the motion of charged particles in the non-uniform magnetic field of the 
magnetosphere or the solar wind. In order to find an adiabatic invariant J, a canonical transformation 
is introduced, and J is expanded in an asymptotic series in the relative modulation amplitude. We are 
studying the first and second order terms of this expansion. It is further shown that the curves J= 
constant closelv fit the results obtained bv a numerical integration of the system of differential 

2 

equations goveking the motion of the particles. 

1. INTRODUCITON 

Since Alfven (1950) introduced the adiabatic 
theory, much attention has been devoted to the 
study of the three adiabatic invariants (the magne- 
tic moment, the longitudinal adiabatic invariant and 
the flux adiabatic invariant). This continuous inter- 
est is justified by the role these invariants play in 
problems regarding the motion of particles in the 
magnetosphere and in the interplanetary space. 
Interactions with hydromagnetic waves, and colli- 
sions with particles can be held responsible for the 
violation of the invariance. 

In this paper, the behaviour of the magnetic 
moment of a collisionless charged particle, interact- 
ing with a linearly polarized hydromagnetic plane 
wave, is studied. The methods used here are similar 
to those employed by Dunnett et ul. (1968), Dun- 
nett and Jones (1972), and Roth (1974), for square 
wave and sine wave modulation. 

tion that U/c is much smaller than unity, reduces to 

x+x (3) 

Y+Y (4) 

z+z-ut (5) 

t + t. (6) 

In the new Cartesian coordinate system, we have: 

B’ = B,,i$ + hB, cos (kZ& (7) 

B=o. (8) 

The variables defining the position of the particle 
(g), its velocity (@,, its linear momentum (P), and 
its Hamiltonian (X), were replaced by dimension- 
less variables, using the following definitions: 

a = AF, V=fohu’, P=ftnoAfi, 
x = fmZw2A2H. (9) 

The time t was replaced by 

In a reference system (X, Y, Z) we consider the 
motion of a charged particle under the influence of 
an electromagnetic field. The magnetic field is the 
sum of a uniform component, parallel to the Z- 
axis, and a plane wave, linearly polarized along the 
Y-axis. The electromagnetic field is given by the 
equations: 

In these definitions o = qB,/m is the gyration fre- 
quency in the field B,&, and A = 2r/k is the mod- 
ulation wavelength. 

The Hamiltonian H can then be written as : 

~=B,c?~+M~,cos (kZ-nr)si$ (1) 

~=h;B,cos(kZ-i2t)~?~. (2) 

The relative modulation amplitude is h, while the 
phase velocity U equals a/k. We perform a 
Lorentz transformation, which under the assump- 

with 
H=H,+hH,+h’H,, 

Ho = ;[(P, + Y )’ + (p, - x)’ + pz*l 

H,= -I(p,+y)sin2az 
r 

H2 = -$ sin’ 2~2. 

(11) 

(10) 

(12) 

(13) 

(14) 
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A canonical tranformation (Roth, 1974) is intro- 
duced: 

(x, y, x; pz, py, pz) + (Q,, Qz, Qs;.Pi, pa pa), 

defined by 

x=P,+P;“sinQ, 0% 

y= Q1+P:‘2cos Qz 06) 

Z=Qs (17) 

px=-Q1+P:‘2cosQ, (18) 

py = PI - PI’= z sin Qz (19) 

h = p3. (20) 

Figure 1 shows the zero order representation of the 
particle motion. It can be seen that PI and Q1 
represent the Cartesian coordinates of the guiding 
center in the (x, y)-plane, while Pz and Qz are re- 
spectively the square of the Larmor radius and the 
Larmor phase angle. H,,, HI, Hz can then be writ- 
ten as 

H,, = 2P, + ;P,’ (21) 

H, = -2 P;” cm Qz sin 2rQs (22) 
T 

Hz = & sin’ 2?rQ3. 

The equations of Hamilton can now be deduced 
and integrated numerically. We refer to these 

FIG. 1. ZERO ORDER REPRESENTATION OF THE PARTICLE 

GYROMOTION. 

results later on, in comparing them with the results 
of the adiabatic theory. 

Any generalized invariant J can be found as a 
solution of 

[J, HI = 0, (24) 

where [ ] is the Poisson bracket. Writing the 
function J as a power series expansion: 

J= i h”J,, (25) 
n-0 

leads to a set of an infinite number of recursion 
relations: 

[Jo, &I = 0 (26) 

VI, &I + [Jo, HII = 0 (27) 

[Jz, &I + [JI, HII + [Jo, Hz1 = 0 (28) 

[A, &I+ K, HJ+[J,, &I = 0. . . . (2% 

The result of these formulae is a system of differen- 
tial equations, determining J,, i = 0, 1,2, . . . . The 
aim of the present work is to solve these equation, 
for J,,, J1 and Jz. It will be shown that J,, must 
satisfy certain conditions in order to obtain physi- 
cally possible solutions. 

2. SOLUTIONS FOR THE FIRST AND SECOND 
ORDER PROBLEMS 

Introducing the transformation 

Qz = 2(s + z)/Ps 

Q3=2 
enables us to write equation (26) as 

(30) 

(31) 

aJ0 - 0. z- 
As a consequence, J,, must be an arbitrary function 
of P,, P2, P3, Q1 and 

PxQz-2Q, 
S= 

2 * 
(33) 

Jo will be chosen to depend only upon Ps. Defining 
u = Qz, w = 2wQS, equations (27) and (28) can be 
replaced by : 

P3 2 = -4Pi12 cos u cm w$ (34) 
3 

P,a.‘“=’ aJ, 2P;12 aJ1 
a2 ~TP:~~ 

cosusinwz +- sinusinw- 
r aP, 

-4P:“cosucoswS+~sin2w$. (35) 
aP, T 3 
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From these equations and from the particular 
choice of &, it follows that .I1 and .I2 can be written 
as functions of the zero order Larmor radius in the 
following manner: 

J1 = A,,J’;” (36) 

Ji = Az,~+ AZZPZ. (37) 

The unknown coefficients A,,*, AZ,* and A,, are 
functions of u, w and P3 alone. By defining A,,, = 
.I,,, the original system of differential equations can 
be replaced by: 

aAj-1 i-1 
P$$= -4cosUcos W-$- j-1,2 (38) 

aA 1 
P3P=- 

7r 
cos u sin w?+lsin u sin wA~,~ 

?r 

+:sin 2w&. d&o 
dP, 

(39) 
rr 

This system can be easily integrated: 

~sin(~~w)+~sin(~-w) 1 J0 (40) 

A2,0= -& (2-5;) cos 2wJ, (41) 

with 

p=TrPG A=l+fi; B=l-g; C=O 

and 

In our discussion the magnetic moment &rn~,~/B 
wiI1 be evaluated at points corresponding to succes- 
sive periods of the magnetic field modulation. For 
these points we have Z = nh, or z = n, n being an 
integer. PZ and P3 can then be written as functions 
of 

*+ 

We have 

p2 ‘5 
ZI 02 (45) 

P3 = f n(l- @112; p = f yry(l -@ln. (46) 

For the points where z = n, the magnetic field al- 
ways has the same value and 5 is proportional to 
the magnetic moment. The particle motion will 
consequently be studied in a (u, t)-plane. In the 
zero order approximation the magnetic moment is 
conserved and we therefore see that 5 is indepen- 
dent of the phase angle u. At w = 27rn, equations 
(40), (41) and (42) can be simplified to: 

A 1.1= -?f 

Az,o= -& (2-+;).I/ 

(47) 

(48) 

Conditions which Jo must satisfy will result from the 
fact that all zeros in the denominators of A1,l, A2,2 
and Azeo must be eliminated. 

Another condition will be explained in the fol- 
lowing sections. 

3. CHOICE OF Jo FOR THE FIRST ORDER 
PROBLEM 

Several functions for .I0 may be chosen, provided 
that they eliminate the singularities in A,,, for the 
values p = f 1. It should be noted that the rep- 
resentations of the particle motion in the (u, .$)- 
plane with each of these functions will not be 
identical. They must be considered as different Srst 
order approximations. As .I*’ must be proportional 
to AB in order to remove the singularities, we 
choose 

Jo = A”Bb + arbitrary constant, 

with aa2, ba2. 
Taking for instance a = b = 2, we have 

(SO) 

and 

J,’ = -4ABC, (51) 

A,,0 = const + A*B’ 

A 1,1 = 87rC sin u. 

The expression for J can be written as 

.I = const + A2B2 + 8-vhCP:” sin u. 

(52) 

(53) 

(54) 
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We define 

X(t) = A*B* 

Y& h) = 87rhCPy. 

(5% 

(56) 

Selecting values for h and u, and considering a 
number of initial conditions (u,, [,), we obtain the 
adiabatic invariant curves from the equation 

X(t)+ Y(& h) sin w =X(&J+ Y(&, h) sin ug. 
(57) 

In these and subsequent calculations, the positive 
value of /3 is taken into account. This corresponds 
to particles with positive initial velocities along the 
main magnetic field B&. In Figs. 2 and 3 the 
curves resulting from equation (57) are displayed in 
the (u, .$)-plane. 5 varies between 0 and 1, u varies 
between-3rr/2 and ~12. The velocities in Figs. 2 
and 3 are assigned the values l/n and 2/r respec- 
tively. The relative amplitude of the field perturba- 
tion, h equals 0.025. These curves agree with the 
results obtained from numerical integration of the 
equations of Hamilton derived from (21), (22) and 
(23). This integration has been performed by Roth 
(1974) and the results of these numerical calcula- 
tions are shown in Figs. 4 and 5. The curves in Figs. 
2 and 3 demonstrate the manner in which the 
adiabatic theory predicts the existence of a func- 
tional relationship between the perpendicular kine- 
tic energy 5 and the phase angle u. It is also clear 

0.6 

I 

FIG. 2. INVARIANT CURVES RESULTING FROM FIRST ORDER 

THEORY,FOR h = 0.025, 0 = I/T~, UO=-?r/2, AND FOR DIF- 
FERENTVALUESOF&,,FROM0.05 TO 0.95. .&,= A*B*. 

FIG. 3. INVARIANTCURVES RESULTINGFROML~RSTORDER 

THEORY,FOR h= 0.025, U=2/rr, Uo=-7~12, AND FOR DIF- 
FERENTVALUESOF&,,FROM0.05 TO 0.95. &= A*B*. 

that there exists a resonance point surrounded by 
closed curves. The abscissa of the resonance point is 
-n/2. The ordinate can be obtained from equation 
(57). Indeed, determining the derivative of sin u 
with respect to 6, for u =-r/2, yields 

dX dY --_I__ 
= d5 ’ d6 

Y 
. (58) 

u=-?r,* 
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FIG. 4. INTEGRATED ORBITS, FOR h = 0.025, u= l/r, UO= 
-?r/2, AND FOR DIFFERENT VALUES OF 50, FROM 0.05 TO 

0.95. 
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A2.o = tS’f(B) 

A22_ ~2 [2(2+~W3)+4w(~)i 
4 I AB I 

t *--. . . . . . . ..._* . . . . . . . . . . . . . . . . . . . . . * . . . . . . . . . ..-, 

FIG. 5. INTEGRATED ORBITS, FOR h = 0.025, u =2/r, w0 = 
-W/2, AND FOR DIFFERENT VALUES OF &, FROM 0.05 TO 

0.95. 

A resonance point R(-~12, &) is given by 

d-u = 0. (5% 

Making a >2 or b >2 in the above theory will 
inevitably give rise to the appearance of several 
resonance points. This is due to the fact that the 
corresponding choices of J0 lead to functions Y, 
which have a number of zeros, and these induce a 
discontinuous behaviour of (p(t), with several in- 
tersections of the .$-axis. 

As a conclusion we may say that as far as the first 
order is concerned we can use 

J,, = A*B* + arbitrary constant. (60) 

This means that we cannot use analogous solutions 
for the second and higher order problems. Indeed, 
elimination of all singularities is not possible with- 
out higher powers of A and B. These give rise to 
several resonance points which do not exist in the 
exact numerical solutions. 

4. CHOICE OF & FOR THE SECOND ORDER 
PROBLEM 

To solve the second oruer problem we have tried 
a function J,,, satisfying the differential equation: 

J,,’ = ABCf@). (61) 

In this case the equations (47), (48) and (49) are 
reduced to: 

x ~0s 214 -W(P) + WO3,1}. (64) 

Elimination of the singularities in the coefficient of 
cos 2u is possible. We take a function f(B) satisfy- 
ing a linear differential equation, such as: 

2Pf’(P)+(2+P’)f(P)=ap(I-P*). (65) 

Integration leads to the result 

f(p) =$ [a(5 - p’) + be-(@2/4)], (66) 

where b is the integration constant. The calculation 
of Jo follows from (61). Indeed integration (61) 
leads to: 

(67) 
+ arbitrary constant. 

The equation defining the adiabatic invariant 
curves is now given by 

X(Q h) + Y(& h) sin u + Z(& h) cos 2w = 

X(&, h) + Y(&, h) sin R,+ Z(&, h) cos 2~ (68) 

with 

X(5, h) =JfJ+~WfW +27F2~*Pf03)+Pfl(P)1~ 

(69) 

Y(& h) = -2?rhC P;‘*f(@) (70) 

Z(& h) = -g h2CP2a. (71) 

Equation (68) can be written as a quadratic equa- 
tion in sin u. This equation is homogeneous in a 
and b, so that the invariant curves will depend upon 
the parameter m = a/b. Difhculties similar to the 
ones described in section 3 may arise here. Indeed 
we have: 

_dX+dY+dz 
u--n,* = “‘;+yz d’. (72) 

The equation (p(e) = 0, may only have one solution, 
namely the &-value for the resonance point. Situa- 
tions can be described where a particular choice of 
m gives rise to a second resonance point, due to the 
discontinuous hehaviour nf rnl$). An imnnrtnnt re- 
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F I G .  6 .  I N V A R I A N T  C U R V E S  R E S U L T I N G  F R O M  S E C O N D  

ORDER THEORY, FOR h = 0 . 1 ,  r e = l ,  v = l / T r ,  Uo= ~r/2, 
AND FOR DIFFERENT VALUES OF ~0 FROM 0.05 TO 0.95.  

determine the value of m in such a way that a fixed 
point ( -~ ' /2 ,  ~) is a resonance point. This is only 
acceptable when the condit ion Y + 4 Z # 0  is 
satisfied for any ~ be tween 0 and 1. In our  calcula- 
tions we obtained satisfactory results with the 

value m = 1. (73) 

In Figs. 6 and 7 we show the curves resulting from 
equat ion (68) for h = 0 . 1  and v = l / T r  and 2/rr 
respectively. In Fig. 8 we compare  the results ob-  
tained from numerical  computat ion with the curves 
deduced (a) from the first order  theory as explained 

1.0 i 

0.8 

06 

0. t, 

- aTt/2 -Tt - /2 0 I~12 
u 

FIG. 7. INVARIANT CURVES RESULTING FFROM SECOND 
ORDER THEORY, FOR h=O.1, re=l ,  v=2/~r, uo--~r/2 , 

A N D  FOR D I F F E R E N T  V A L U E S  OF ~o F R O M  0 . 0 5  TO 0 . 9 5 .  

",/'J ",I "t /", I t  
I / . . ,4 ,,r, ..f ,4 / ' |  ' 

o,U / / ;  7: t",, I ,  I ', 
/ I I i I 

, 7 
°'r- '- / )  , t  , 

01 L I 
-IZ/2 -I~12 *2~/5 

u 

FIG. 8. COMPARISON OF INTEGRATED ORBITS (DOTS) TO IN- 

VARIANT CURVES RESULTING FROM (a) FIRST ORDER THEORY 

(DASHED LINES); (b) SECOND ORDER T~EORY (m = I), 

(SOLID LINES), FOR DIFFERENT VALUES OF ~0 FROM 0.02 TO 

0.16. 

in Section 3, and (b) from the second order  theory 
as shown in Section 4, for h =0 .1  and v = 1/~-. To 
display the differences clearly, we examine a region 
in the resonance domain. 

5. OTHER POSSIBLE CHOICES OF Jo FOR THE 
FIRST O R D E R  PROBLEM 

In Section 3 it is shown that an essential condi- 
tion :1o must satisfy is that its first derivative be 
proport ional  to A B ,  so that we can write 

Jo '= A B  g(/3) = (1 -/32) g(/3). (74) 

The  results obtained in that section correspond to 

g(/3) = -4/3. (75) 

found some remarkable  results in Roth  (1974) 
using 

g(B) = -(~r2ve-/32) -1'2. (76) 

Finally we can obtain a first order  solution by 
neglecting all terms of h 2 in the solution explained 
in Section 4. This corresponds to g(/3) =/3f(/3), f(/3) 
being defined by (66). The curves resulting from 
first order  theory, but making use of a function J0 
satisfying second order  requirements ,  proved to be 
bet ter  than those obtained from the other  first 
order  theories ment ioned in this paper. 

6. CONCLUSIONS 

In the previous sections, it is shown that it is 
possible to find different approximations of the first 



Adiabatic invariant of charged particles in hydromagnetic wave 

adiabatic invariant. Visual evaluation helps us to con- 
clude that for our choices of the parameters h and 
u, the second order approximation is the best one. 
The first order counterpart of this approximation 
proves to be better than any of the other first order 
solutions. This shows that the magnetic moment 
can be replaced by the lirst order truncation of the 
second order invariant. The accuracy is very high 
even in the resonance region and for larger values 
of the relative amplitude of the magnetic field 
perturbation. This first order truncation avoids 
tedious numerical integration of a system of 
differential equations. In fact, the introduction of 
this new approximate constant of motion, added to 
the constancy of the total energy permits in many 
practical cases the full description of the charged 
particle motion. This is important in determining 
the trajectories of cosmic ray particles in inter- 
planetary space and the dispersion of the solar wind 
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particles through the inhomogeneities of the inter- 
planetary magnetic field. 
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